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Abstract—This paper shows the benefits of using pseudo-
spectral (PS) methods for the optimal control of a three-
body hinge-barge device. Two different control formulations are
derived based on different representations of the dynamic model
of the device: the differential and algebraic equations (DAE)
formulation, and the ordinary differential equations (ODE)
formulation. Wave-tank tests are carried out in order to validate
the DAE and ODE models against experimental data. For control
design, PS methods show significant improvements in terms of
absorbed power with respect to an optimal damping strategy.

I. INTRODUCTION

Hinge-barge wave energy converters are articulated floating
structures that extract energy carried by the waves. The hinge-
barge device as shown in Figure 1 is composed of a number of
rectangular bodies interconnected by hinges, and is considered
to be an attenuator device, since it operates longitudinally to
the direction to the incoming wave. The relative pitch motion
between each pair of bodies is used to drive a Power Take Off
(PTO) system. Examples of hinge-barge WECs include the
McCabe Wave Pump (MWP) [1] and the SeaPower Platform
[2]. Another example of an articulated WEC is the Pelamis
WEC which is composed of multiple cylindrical section linked
by hinged joints [3]. For the Pelamis WEC, the control of
the power absorbed at each joint axis is realized considering
the inputs from all axes. Therefore, the real-time control of
all forces is implemented with respect to the entire machine
response. However, little detail on the control strategies for
the Pelamis WEC is provided in the available literature. In
[4], a hinged 5-body WEC consisting of a circular center
floater hinged to 4 smaller spherical buoys is considered. The
relative rotation between the central body and each buoy is
used to drive a PTO, and the absorbed energy is maximized
for both regular and irregular waves. For regular waves, the
optimal velocities and control forces are computed at each
frequency of the incident wave for both passive and active
control. A passive PTO is able to absorb energy from the
device only, while an active PTO can also deliver power
from the grid to the device. The optimization of the damping
coefficients of passive PTOs is also considered for the regular
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wave case. For irregular waves, only the optimization of
frequency-independent damping coefficients of passive PTOs
is considered for waves represented by different realizations
of the JONSWAP spectrum [5]. In this paper, both passive
and active controllers, which compute the optimal profile of
velocities and control forces of the PTOs, are considered
for both regular and irregular waves. The objective of this
paper is to asses the value of optimal pseudo-spectral (PS)
control methods applied to a three-body hinge-barge wave
energy device. PS methods are a subset of the class of
techniques used for the discretisation of integral and partial
differential equations known as mean weighted residuals [6],
[7]. In [8], PS methods are applied for the optimal control
of generic WECs. The remainder of the paper is organized
as follows: In Section II, the dynamic model of a three-
body hinge-barge device is derived while, in Section III, PS
methods are applied to solve the dynamics of a three-body
hinge-barge device. In section IV, the dynamic model of the
device is compared against tank test data to verify its validity
while, in Section V, PS methods are applied to optimally
control a three-body hinge-barge device. In Section VI, PS
optimal control is compared to a standard optimal controller
for both monochromatic and polychromatic waves. Finally,
overall conclusions are drawn in Section VIIL.

II. DYNAMIC MODEL OF A THREE-BODY HINGE-BARGE
DEVICE

This section briefly describes the dynamic model of a
three-body hinge-barge device originally derived in [9]. In
Figure 1, the device is represented together with the global
frame X, Z,, while a body frame is assigned to each body
composing the device. The analysis of the motion of the
devices is restricted to the two dimensional plane X — Z. The
total number of independent degrees of freedom of the system
in Figure 1 is four: The heave displacement 22 of body 2, and
the pitch angles 01, 6> and 03 of bodies 1, 2 and 3, respectively.

The dynamic model of the device can be derived with
two different formulations: the Differential and Algebraic
Equations (DAE) formulation and the Ordinary Differential
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Fig. 1. Three-body hinge-barge device, where X7, represents the global frame, and a local frame is assigned to each body composing the device.

Equations (ODE) formulation. In the DAE formulation, the
model is described as a set of differential equations for the
generalized coordinates of the unconstrained system and the
constraints are described by algebraic equations. In the ODE
formulation, the constraint equations are no longer described
explicitly, but rather embedded into a set of differential equa-
tions for the independent degrees of freedom of the system
only.

A. DAE formulation

In this subsection, the DAE formulation is applied in order
to obtain the equations of motion for a three-body hinge-barge
device. The equations of motion are given as follows [9]:

q=1J(O)v 1
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where z is the vector of generalized positions expressed in
the body frame of each body:

b
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where zf p, and 0 are the heave displacement and pitch

angle of body k, respectively, with & = 1,2,3. The vec-
tor v represents the generalized velocities expressed in the
body frame of each body, while the vector q represents
the generalized positions expressed in the global frame. The
transformation matrix J(®) and the rigid-body inertia matrix
M in equation (2) are described in [10]. The terms B and
B,;sc in equation (2) represent the coriolis-centripetal and
viscous matrix, respectively. The hydrodynamic loads G, M,
K,wq¢ and f,4,. in equation (2) are obtained by means of
the boundary element software WAMIT [11]. The vector A
represents the constraint forces. The vector of PTO forces
fpro in equation (2) is given by the forces due to the PTO

systems connecting body 2 to bodies 1 and 3. As shown in
Figure 1, each PTO component is represented as a linear dash-
pot system. The vector of loads, due to the PTO systems acting
on the device, is given as follows:

frro=—[0 —Faa 0 Faa—Fea 0 Fgad' (5)

where:

Fy =cily (6)
FSQ = CQlQ (7)

where ¢;, [;, with i = 1, 2, are the damping coefficients and
length of the dash-pot system connecting body 2 to body 1
and 3, respectively. Now, the constraint equations C(z,t) in
equation (3) are derived in [9], and the matrix of the partial
derivatives of constraint equations, computed with respect to
the generalized positions and linearized around the equilibrium
position, is given as follows:

o0 1 -y -1
C=li 0 1 1 o o ®)

B. ODE formulation

The ODE formulation is now applied to obtain the equations
of motion of a three-body hinge-barge device. The vector of
independent velocities of the device is:

v =[01 20y, 005" ©

Given the matrix C, from equation (8), the transformation
matrix P used to express the relation between the vector of
generalized velocities and independent velocities is given as
follows:
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Using P, the equations of motion of the device expressed
with respect to the independent degrees of freedom are given
as follows:

qs =V (11)
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(12)
where:

M, = P"MP (13)
B, = P'BP + P"MP + P"M_ P (14)
Byisc.s = PTByiscP (15)
G, =P'GP (16)
M., = P"M_ P (17)
Krad,s = P K;oqP (18)
fuave,s = P fuaue (19)
tpro.s =P tpro (20)

III. PSEUDO-SPECTRAL APPROXIMATION METHODS

In this section, PS methods are used to compute an approxi-
mate solution to the integro-differential equations obtained for
the DAE and ODE formulations. Given the periodic nature
of the variables associated with the problem, positions and
velocities that appear in the equations of motion obtained for
the DAE and ODE formulations can be approximated with
a linear combination of zero mean trigonometric polynomials
(truncated Fourier series) as follows:

M
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where i = 1,..,6 N and ¢ = 1,..,n for the DAE and ODE

formulations, respectively. The parameter M is the order of
expansion for the positions and velocities. The vector of the
coefficients X! and X; of the approximated components of the
position and velocity vectors, are given as follows:

(23)
(24)

while the basis function vector ®(¢) is given as follows:

cos (Mwot) sin (Muwot)]"
(25)
where wy = 2w/T, is the fundamental frequency. The
derivatives of the ith components of the position and velocity
vector are, respectively,

®(t) = [cos(wot) sin(wot) ..
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where D, € R?M>2M g 3 block diagonal matrix, with the
k-th block (k =1, .., M) given as follows:
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Regarding the DAE formulation, substituting the approxi-
mated states (21), (22) and their time derivatives (26), (27) into
the equations of motion (1)-(3) yields the following equations
of motion in residual form:
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where ¢ = 1,..,6N, j =1,..,m, and J; p, M; p,, B; ,, G; p,
Kyad,, and CL ,, are the elements of the matrices J(©), M,

B, G, K, .4 and CqT, respectively.

Regarding the ODE formulation, substituting the approxi-
mated states (21), (22) and their time derivatives (26), (27)
into the equations of motion (11)-(12), yields:
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where i = 1,..,n, and My, ,, B G, , and Kmd’si)p
are the elements of the matrices My, B, G; and K44 s,
respectively. PS methods are used to compute the coefficients
x? and X that minimize the residuals (29)-(31) and (32)-(33)
for the DAE and ODE formulations, respectively [12].

Si,p?

IV. MODEL VALIDATION

The purpose of this section is to identify and validate the
dynamic model of the hinge-barge device against tank exper-
iments. The optimization of the WEC geometry is beyond
the scope of this paper. A specific three-body hinge-barge
device was tested in a wave tank using facilities of the U.S.
Naval Academy, Annapolis [13]. The dimensions of body 1
are: length= 0.68 m, width=0.4 m and height=0.1 m. The
dimensions of body 2 are: length= 0.28 m, width=0.4 m and
height=0.15m. The dimensions of body 3 are: length= 1 m,
width=0.4 m and height=0.1 m. The PTO is made of two
dashpots placed above the hinges and connecting body 2 to
body 1 and 3, as shown in Figure 1. A tank test with an
incident wave from a Bretschneider spectrum with a significant
wave height H, = 15 cm and significant period T = 1.276
seconds was performed, with the direction of the waves along
the longitudinal direction of the device. Given the frequency
domain model of the device, the viscous damping matrix
B,isc,s and the phases of the vector of the excitation forces
fuave,s in equation (12) can be identified using the irregular
wave test [9]. To validate the identified model, a series of
tank tests with an incident wave from a Jonswap spectrum
with a significant wave height H, = 15 cm and significant
period T' = 1.276 seconds was performed. PS methods were
applied to compute an approximate solution for the equations
of motion obtained for the DAE and ODE formulations. A
fundamental frequency wy = 0.12 rad/s is chosen, while the
order of expansion N, for the position and velocity of the
states is 70. Note that the response of the device obtained
with the ODE and DAE formulations are identical. In Figure
2, the frequency response of the heave of body 2 obtained
from the tank experiments is compared against the response
obtained from the ODE formulation. In Figure 3, the frequency
responses of the pitch angles of bodies 1,2 and 3 obtained
from the tank experiments are compared against the responses
obtained from the ODE formulation. In Figure 4, the time
domain response of the heave of body 2 obtained from the tank
experiments is compared against the response obtained from
the ODE formulation. In Figure 5, the time domain responses
of the pitch angles of bodies 1,2 and 3 obtained from the tank
experiments are compared against the responses obtained from
the ODE formulation. Both DAE and ODE PS formulations
showed good agreement with experimental tests in terms of
device motion.

V. PSEUDO-SPECTRAL OPTIMAL WEC CONTROL

This section describes the direct transcription of the optimal
control problem [8] for a three-body hinge barge device. For
a generic WEC control problem, the vector of PTO forces in
equation (2) is considered to be fpro = F,u, where F,, is the
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Fig. 2. Frequency response of the heave of body 2 obtained from tank
experiments and ODE formulation for an irregular wave made using using
Jonswap spectrum with a significant wave height Hs = 15 cm and significant
period T = 1.276 sec.
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Fig. 3. Frequency response of the pitch angles of body 1, 2 and 3 obtained
from tank experiments and ODE formulation for an irregular wave made
using using Jonswap spectrum with a significant wave height Hs = 15 cm
and significant period T = 1.276 sec.

configuration matrix and u is the vector of control variables
[8]. For the case of a three-body hinge-barge device, F,, is
given as:

010 -1 0 0"

F2=10 0 0 -1 0 1

(34)

and the vector of control variables is considered to be u =
[T1 T2])T, where 7y is the torque applied by the PTO connecting
body 2 and 1, while 75 is the torque applied by the PTO
connecting body 2 and 3. The torques can be approximated as
follows:

M
Tp(t) = T;fw (t) = Zu;,kcos(kwot) + up, . sin(kwot) (35)
k=1

= 3(t),



: —tank tests
0.02- . -- ODE formulation|
0.01 j
E
3“ 0
-0.01f ¥ §
-0.02- i 1
0 10 2 30 40
t [sec]
Fig. 4. time domain response of the heave of body 2 obtained from tank
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Fig. 5. time domain response of the pitch angles of body 1, 2 and 3 obtained
from tank experiments and ODE formulation for an irregular wave made
using using Jonswap spectrum with a significant wave height Hs = 15 cm
and significant period 7' = 1.276 sec.

with p = 1,2. The vector of the coefficients @, is given as
follows:

; T
by = [up up 1 U, U] (36)

The cost function considered for the optimal control prob-
lem is as follows:

T
=1 / (vI'Fyu — ru’u)dt (37)
T Jo

where r is a weighting parameter. The cost function in
equation (37) balances the average power absorbed by the
PTOs and the squared norm of the control vector using the
parameter r. The term ru”u in equation (37) is used to
ensure a convex cost function which facilitates the search of
the globally optimal solution to the optimization problem. By
substituting the approximated velocities and control torques

defined in equations (22) and (35), respectively, into equation
(37), the cost function can be written as:
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where 0y, is a square matrix of zeros of dimension &k and I,
is an identity matrix of dimension k. Therefore, the optimal
control problem is defined by a finite dimensional optimization
problem with cost function (38), and dynamic constraints
(29)-(31) and (32)-(33) for the DAE and ODE formulations,
respectively.

VI. CONTROL RESULTS

In this section, PS methods are applied to control a three-
body hinge-barge device, given the model in Section IV.

A. Regular waves

The power dissipated by the PTO systems was recorded
for a series of regular wave tests performed for a range
of frequencies w from 3.14 rad/sec to 7.54 rad/secs and
direction of the waves along the longitudinal direction of
the device. In Figure 6, the dynamic model shows a good
agreement with the tank data in terms of capture width ratio.
An alternative strategy to PS methods for the control of the
device is to consider a model in the frequency domain, and
compute the optimal linear damping coefficients of the PTOs
that maximizes the energy absorption at each frequency of
the incoming wave [14]. In Figure 6, a comparison between
the capture width ratio given by the optimal linear damping
control, PS passive and active control is evaluated for each
frequency of the regular incoming wave. For the PS active and
passive control, the fundamental frequency wy of positions,
velocities and torques is equal to the frequency of the incoming
wave, while the order of expansion N, is equal to 1. A convex
cost function, defined as in equation (38) with r = 10, is
considered for both PS passive and active control.
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Fig. 6. Comparison between the capture width ratio given by the tank data,
dynamic model, optimal linear damping control, PS passive control and PS
active control with convex cost function for different frequencies of a regular
wave of amplitude A = 2 cm.

B. Irregular waves

In Figure 7, a comparison between the capture width ratio
with the optimal linear damping control, PS ODE and DAE
passive control, and PS active control with convex cost func-
tion is shown for a polychromatic wave over a time horizon of
20 s. For the PS active and passive control, the fundamental
frequency of positions, velocities and torques is equal to
wo = 0.314 rad/s, while the order of expansion N, is equal
to 30. The polychromatic wave is obtained from a JONSWAP
spectrum with a significant wave height H; = 15 cm and
significant period 1" = 1.276 secs. It is important to highlight
that a trade-off value for r that ensures the convexity of the cost
function without degrading the absorbed power significantly
must be selected appropriately for each time horizon of the
control problem. This is consistent with the use of Model
Predictive Control (MPC) for wave energy conversion control
problems [15].

VII. CONCLUSIONS

This paper demonstrates that PS methods are a compact
and efficient formulation for the modelling and control of a
three-body hinge-barge device. Experimental tests on a spe-
cific three-body hinge-barge device with polychromatic waves
were carried out to validate the use of the PS models. Both
DAE and ODE PS formulations showed good agreement with
experimental tests in terms of device motion. Furthermore, this
paper shows that, for regular and irregular waves, the average
absorbed power with both PS passive and active control is
approximately two times greater than the average absorbed
power with optimal linear passive dampers.
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