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a b s t r a c t

Increasingly, there is a focus on utilising renewable energy resources in a bid to fulfil increasing energy re-

quirements and mitigate the climate change impacts of fossil fuels. While most renewable resources are free,

the technology used to usefully convert such resources is not and there is an increasing focus on improving

the conversion economy and efficiency. To this end, advanced control technology can have a significant im-

pact and is already a relatively mature technology for wind turbines. Though wave energy systems are still in

their infancy, significant benefits have been shown to accrue from the appropriate use of control technology.

To date, the application communities connected with wind and wave energy have had little communication,

resulting in little cross fertilisation of control ideas and experience, particularly from the more mature wind

area to wave. This paper examines the application of control technology across both domains, both from a

comparative and contrasting point of view, with the aim of identifying commonalities in control objectives

and potential solutions. Key comparative reference points include the articulation of the stochastic resource

models, specification of control objectives, development of realistic device models, and development of so-

lution concepts. Not least, in terms of realistic system requirements are the set of physical and legislative

constraints under which such renewable energy systems must operate, and the need to provide reliable and

fault-tolerant control solutions, which respect the often remote and relatively inaccessible location of many

offshore deployments.

© 2015 International Federation of Automatic Control . Published by Elsevier Ltd. All rights reserved.
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. Introduction

With the continuing decrease in the stock of global fossil fuels,

ssues of security of supply, and pressure to honour greenhouse gas

mission limits (e.g., the Kyoto protocol), much attention has turned

o renewable energy sources to fulfil future increasing energy needs.

ind energy, now a mature technology, has had considerable prolif-

ration, with other sources, such as biomass, solar, and tidal, enjoy-

ng somewhat less deployment. Waves provide previously untapped

nergy potential and wave energy has been shown to have some

avourable variability properties (a perennial issue with many renew-

ble, especially wind), especially when combined with wind energy

usco, Nolan, and Ringwood (2010).

While wind and wave energy share certain characteristics i.e.

he raw resource is both free and somewhat unpredictable, their

evelopment has followed quite different paths, especially regarding
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he level of maturity achieved. Wind farms, both offshore and on-

hore, are now commonplace, and wind turbine design, with a few

xceptions, has largely converged on the horizontal–axis device. In

ontrast, at the time of writing, no commercial wave farms are in

xistence, though a number of commercial wave farms are currently

nder development. In addition, the current poor state of wave–

nergy technology development is highlighted by the availability of

ust a few commercially available Wave–Energy Converters (WECs),

ncluding the Wave Dragon Soerensen (2003), Pelamis Yemm, Pizer,

nd Retzler (2002), Oyster Whittaker and Folley (2012), the SeaBased

evice Leijon and Bernhoff (2006) and Wavestar Kramer, Marquis,

nd Frigaard (2011). The stark contrast in the operational principles

f these five devices, as well as the diversity in appearance and opera-

ion of the 147 prototypes listed in Koca et al. (2013), provides further

vidence of the relative immaturity of wave-energy technology.

One common misconception, in effective renewable energy

onverter design, is that converters must be optimally efficient.

owever, since the resource itself (wind and wave) is free, the

ain objective is to minimise the converted cost of the renewable

nergy i.e. the cost per kWh, taking into account the lifetime costs

capital, operational and commissioning/decommissioning costs) as
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well as energy receipts (value of energy sold). Nevertheless, for a

given capital cost, maximising the energy receipts (assuming relative

insensitivity of operational costs) is an important economic objective

and control system technology has an important role to play in

this regard. In an ideal world, one should consider the design of a

complete system from the top down. However, convention has it that

physical systems are usually designed by the discipline–specific ex-

perts and the control problem is then addressed in a subsequent step

by control engineers, working in collaboration with the discipline–

specific experts. Such an approach, though prevalent in the bulk of

industrial applications of control, is non–optimal, even if there are

some notable exceptions. Some preliminary studies do suggest a

strong interaction between the fundamental design of renewable

energy conversion machines and the algorithms and systems used to

control them, both for the wind Bianchi, Battista, and Mantz (2007),

Pao and Johnson (2011) and wave Garcia-Rosa, Bacelli, and Ringwood

(2015a), Garcia-Rosa and Ringwood, 2015 cases. In any case, given the

relatively low cost of control systems technology (sensors, actuators,

computer, software) compared to the cost of the renewable energy

converters (approx. $5m–$16m/MW for wave, $1.3m–$2.2m/MW

for wind World Energy Council (2013)), it will be assumed in this

paper that the focus is on increasing the energy conversion capacity

of a given wind or wave energy device. However, this relatively

simple implementation modality masks both the capability of con-

trol systems and the high level of engineering underpinning the

development of a suitable control algorithm. For example, many

high–performance model–based control design methods require an

accurate mathematical model of the system to be controlled and

a significant number of man–hours can be absorbed in modelling.

Nevertheless, there is usually a good case to be made for the incor-

poration of control technology to improve the performance (both

technical and economic), reliability and safety of a system Odgaard

(2012). By taking into account commonalities and contrasts in par-

ticular for wind turbines and wave energy devices, this work will

consider the role that modelling and control engineering can play in

making energy conversion systems more competitive and effective.

There are a number of economic issues associated with the in-

troduction of control systems for renewable energy devices which

need to be considered. One important factor is that many wind and

wave devices are situated in relatively remote and/or inaccessible ar-

eas, with consequent implications for maintenance. As a result, the

implemented control systems should be reliable and there is a need

for fault–tolerant control Blanke, Kinnaert, Lunze, and Staroswiecki

(2006), Odgaard (2012). In addition, any increases in duty cycle, ve-

locities or forces associated with energy converter components need

to be considered and these may impact operational cost via addi-

tional maintenance requirements.

Both wind turbines and wave energy devices exhibit nonlinear be-

haviour and are required to operate over a wide range of excitations.

Wind and wave energy systems also have particular physical con-

straints (displacements, velocities, accelerations and forces) which

must be strictly observed if such systems are to operate effectively

and have economically attractive useful operational lifetimes. The

motivation for this paper comes from a real need to have an overview

on the modelling and control challenges for wind turbines and wave

energy devices, which present common and different requirements

related to renewable source power conversion efficiency into electric

energy.

In general, in the fields considered in this paper, power conver-

sion is converting renewable sources to electric energy, regulating

also the voltage and frequency. Therefore, a power converter is an

electro–mechanical device for converting wind/wave energy to elec-

trical energy. The power converter includes an electrical machinery

that is used to convert and control both frequency and voltage.

It is worth noting that the combination of wave and wind en-

ergy systems will not be considered in this paper, as addressed e.g.
n Nolan and Ringwood (2005), Fusco et al. (2010), Teillant, Costello,

eber, and Ringwood (2012). Moreover, floating wind turbine con-

epts, which present important and challenging aspects for both the

odelling and control points of view, see e.g.Matha (2009), Schlipf

t al. (2013), are also beyond the scope of the current review.

With this view, the work will focus on commonalities and con-

rasts for wind and wave energy systems. Wind turbine systems seem

elatively mature from the modelling point of view, whilst wave

nergy devices present unique, interesting and challenging aspects.

herefore, the final aim is to see what modelling and control aspects

ight be common with a view to utilising some ideas, born in one do-

ain, within the other. These issues have begun to stimulate research

nd development in the wider control community in each domain,

nd the main results will be summarised in this work. In particular, a

roper mathematical description of these energy conversion systems

hould be able to capture the complete behaviour of the process un-

er monitoring, thus providing an important impact on the control

esign itself.

Therefore, the analysis of the commonalities and the contrasts be-

ween these two fields will be performed according the following

tems, which describe also the structure of the paper:

• Requirements of the generic control problem: unique aspects to

wind turbine and wave energy systems;

• Purpose of the models for wind turbines and wave energy sys-

tems;

• Models for the renewable resources: comparisons and contrasts

of wave and wind model characteristics;

• Control strategy development: objectives and available tools for

wind turbine and wave energy systems;

• Conclusions: are these two domains really comparable? On what

basis – modelling and/or control, and/or the intermittent resource

that drive them? Are there some fundamental issues, from a con-

trol perspective, that explain why wind turbines are now com-

monplace, but wave energy devices are not?

.1. Overview of wind turbine systems

The main components of a horizontal–axis wind turbine that are

isible from the ground are its tower, nacelle, and rotor, as can be

een in Fig. 1. The nacelle houses the generator, which is driven by the

igh–speed shaft. The high-speed shaft is in turn usually driven by a

ear box, which steps up the rotational speed from the low–speed

haft. The low-speed shaft is connected to the rotor, which includes

he airfoil–shaped blades. These blades capture the kinetic energy in

he wind and transform it into the rotational kinetic energy of the

ind turbine Bianchi et al. (2007).

Wind turbine control goals and strategies are affected by turbine

onfiguration Munteanu and Bratcu (2008). horizontal–axis wind

urbines may be ‘upwind’, with the rotor on the upwind side of the

ower, or ‘downwind’. The choice of upwind versus downwind config-

ration affects the choice of yaw controller and the turbine dynam-

cs, and thus the structural design. Wind turbines may also be vari-

ble pitch or fixed pitch, meaning that the blades may or may not be

ble to rotate along their longitudinal axes. Although fixed–pitch ma-

hines are less expensive initially, the reduced ability to control loads

nd change the aerodynamic torque means that they are becoming

ess common within the realm of large wind turbines. Variable–pitch

urbines may allow all or part of their blades to rotate along the

itch axis Bianchi et al. (2007), Burton, Sharpe, Jenkins, and Bossanyi

2011).

Moreover, wind turbines can be variable speed or fixed speed.

ariable–speed turbines tend to operate closer to their maximum

erodynamic efficiency for a higher percentage of the time, but

equire electrical power processing so that the generated electric-

ty can be fed into the electrical grid at the proper frequency. As
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Fig. 1. Wind turbine main components.

Fig. 2. Example power curves. The wind power curve shows the power available in the

wind for a turbine of the same size as the two example turbines.
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enerator and power electronics technologies improve and costs

ecrease, variable–speed turbines are becoming more popular than

onstant–speed turbines at the utility scale Bianchi et al. (2007).

Fig. 2 shows example power curves for a variable–speed and a

xed–speed wind turbine, as well as a curve showing the power

vailable in the wind for this 2.5 MWh example turbine. For both

urbines, when the wind speed is low (in this case, below 6 m/s),

he power available in the wind is low compared to losses in the

urbine system so the turbines are not run. This operational region

s sometimes known as Region 1. When the wind speed is high,

egion 3 (above 11.7 m/s in this example), power is limited for both

urbines to avoid exceeding safe electrical and mechanical load limits

dgaard, Stoustrup, and Kinnaert (2013).
Note that the example turbines in Fig. 2 produce no power in low

inds because they are not turned on until the wind speed reaches

certain level. Further, power is limited to protect the electrical and

echanical components of both turbines in high wind speeds. Both

urbines produce the same power at the design point for the fixed

peed turbine, but the variable speed turbine produces more power

ver the rest of Region 2 Pao and Johnson (2009).

The main difference in Fig. 2 between the two types of turbines

ppears for mid-range wind speeds, Region 2, which encompasses

ind speeds between 6 and 11.7 m/s in this example. Except for one

esign operating point (10 m/s in this example), the variable–speed

urbine captures more power than the fixed-speed turbine. The rea-

on for the discrepancy is that variable–speed turbines can operate at

aximum aerodynamic efficiency over a wider range of wind speeds

han fixed-speed turbines. The maximum difference between the two

urves in Region 2 is 150 kWh. As shown in Section 2.1, for a typi-

al wind speed distribution with a Weibull distribution, the variable–

peed turbine captures 2.3% more energy per year than the constant–

peed turbine, which is considered to be a significant difference in

he wind industry.

Not shown in Fig. 2 is the ‘high wind cut–out’, a wind speed above

hich the turbine is powered down and stopped to avoid excessive

perating loads. High wind cut–out typically occurs at wind speeds

bove 20–30 m/s for large turbines, with many factors determining

he exact value.

Even a perfect wind turbine cannot fully capture the power

vailable in the wind. In fact, actuator disk theory Froude (1889) (i.e.

theory used in fluid dynamics used for describing a mathematical

odel of an ideal actuator disk, such as an helicopter rotor) shows

hat the theoretical maximum aerodynamic efficiency, which is

alled the Betz Limit, is approximately 59% of the wind power Betz

nd Randall (1966). The reason that an efficiency of 100% cannot be

chieved is that the wind must have some kinetic energy remaining
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Fig. 3. Various WEC devices, based on diverse operating principles (a) OWC, (b) overtopping device, (c) self-reacting point absorber, (d) hinged–barge connected structure.
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after passing through the rotor disc; if it did not, the wind would

by definition be stopped and no more wind would be able to pass

through the rotor to provide energy to the turbine.

The most common mathematical description of the complete

wind turbine model will be provided in Section 3.2.

1.2. Overview of wave energy systems

Current wave energy prototype devices are diverse in operation

and principle Koca et al. (2013), Drew, Plummer, and Sahinaya (2009).

Some oscillating devices are shore-mounted and harness the motion

of an enclosed Oscillating Water Column (OWC), while others oper-

ate offshore and can be bottom or fixed platform referenced, or self-

reacting multi-body structures. Others utilise overtopping of a float-

ing reservoir to rectify the oscillating power flux of the waves. Fig. 3

shows a small selection of WEC devices.

While operating principles vary, WECs usually rely on the hydro-

dynamic wave force to create a variation in the displacement between

the WEC and a (fixed or relatively fixed) reference. In some case, the

reference is provided by the seabed while, in other cases, the vari-

ation is between two components of the same device, tuned to res-

onate at different frequencies. In the OWC case, the water column

itself provides the movement, with the body of the device remain-

ing relatively fixed. The relative motion is then harnessed into a use-

ful form using some form of pneumatic, hydraulic or electrical Power

Take–Off (PTO) system.

Like wind turbines, wave energy devices have to operate under a

wide variety of resource characteristics but, in the wave case, devices

are subject to both wave amplitude and wave period variations. In ad-

dition, there may be more extreme sea states where the device must

be put into a ‘safe’ mode, where power production is abandoned and

the device configured to minimise the likelihood of damage. There

is also a need to ensure that the rated power of the electrical sys-

tem is not exceeded in power production mode, articulated by the

flat portion of a typical wind turbine power curve, as described in
ection 1.1. Since the wave period changes frequently, it is difficult

o design a device to ‘resonate’ over all wave periods well; either a

evice in its natural form can resonate very well at a particular fre-

uency, or it can resonate poorly across a wide band of frequencies.

owever, control systems may be employed to artificially adjust the

esonant frequency of the device, preserving good power capture per-

ormance over a range of typical sea conditions. Unlike wind turbines,

he power flux incident on a wave energy device is reciprocating,

sually described (using linear wave theory) as a sum of sinusoids.

owever, like the wind turbine problem, there is a need to match

he device load to the available excitation and this presents itself as

n impedance–matching problem Ringwood, Bacelli, and Fusco (2014),

ompared to the resistance matching problem for wind turbines, re-

ecting the unidirectional motion of wind turbines and the (usually)

eciprocating motion of wave energy devices. Further clarification on

he impedance matching problem is given in Section 4.3.1. This load

atching is the effective means by which the resonant period of a

EC is altered. We can note that there is a significant interaction be-

ween the control problem and the optimal geometric design (in par-

icular size) of the device, for a specific wave climate Garcia-Rosa and

ingwood, 2015.

In addition to adjusting the loading on the device, a WEC control

ystem must also observe the physical constraints on a device, pri-

arily force and excursion constraints. However, velocity and accel-

ration constraints may also be relevant. In many cases, some con-

rol considerations can be used to optimise the trade-off between

orce and excursion constraints (noting that increased resisting force

esults in lower amplitude excursions) to maximise power capture

acelli and Ringwood (2013c).

Like wind turbines, wave energy devices are deployed in farms, to

aximise the economy of scale in the high costs associated with elec-

rical infrastructure and mooring systems. Like wind farms, the objec-

ive is to maximise the performance of the whole farm, considering

he prevalent direction of the incoming wave resource. However, un-

ike wind farms, WECs operating in a farm structure produce both
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Fig. 4. Power matrix for the Pelamis wave power device.
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estructive and constructive interference, since devices in motion

adiate waves which can constructively interfere with the incident

aves experienced by other devices. In fact, the farm containing nd

evices can have a better performance than nd isolated devices, for

articular wave directions and climates. As a result, the problem of

ontrolling a WEC array does not reduce to the individual control

f each device in the array, but should also consider the interac-

ions between the devices, if maximum power capture is to be at-

ained Bacelli, Balitsky, and Ringwood (2013a), Bacelli and Ringwood

2013a). In addition, a significant interaction between the optimal ar-

ay layout and the control system has also been identified Garcia-

osa et al. (2015a).

Since the power production of WECs is sensitive to both wave am-

litude and period, power production characteristics are defined by

wo input parameters, sometimes articulated in the form of a look–up

able, as shown in Fig. 4.

.3. Specification of the generic control problem

In general, control science attempts to devise algorithms that force

system to follow a desired path, objective, or behaviour modality.

raditionally, the control problem is defined by a tracking problem,

here the objective is for the system output to follow the reference

nput Kuo (1995). While problems of this type do occur in energy

onversion applications, for example speed control of both wind and

idal turbines, it is useful to broaden the set of problem descriptions

nd potential solutions a little, in order to assess the potential of con-

rol engineering in the general energy conversion context.

In general, the control problem definition requires the maximisa-

ion or the minimisation of a prescribed performance objective (such

s the max. energy, min. error) subject to proper system constraints

see e.g. amplitudes, rates, forces, etc) i.e. a constrained optimisation

roblem. The definition considered here is not inconsistent with the

urpose of a classic controlled system with a feedback loop, where

he objective function is usually some measure (e.g. a quadratic mea-
ure) of the difference between the controlled output and its desired

alue, i.e. the tracking error, with respect to the reference or the set–

oint. In this way, the desired performance of the tracking system in

losed–loop can be specified in a variety of ways Kuo (1995):

1. Desired transient response;

2. Desired steady–state response;

3. Desired closed-loop poles (roots of the closed–loop transfer func-

tion);

4. Trade-off between control energy and tracking error;

5. Minimisation of the sensitivity of the closed–loop system to vari-

ations in the system description;

6. Minimisation of the sensitivity of the closed–loop system to ex-

ternal disturbances.

Items 5 and 6 in the list above relate to the system robustness and

pecific control methodologies to address these objectives have been

eveloped since the late 1970s. In most cases, control design meth-

ds provide an explicit solution for the feedback controllers, while

ome methods solve the more general optimisation problem defined

t each time step. In the following, specific or general solutions, which

an be useful in the control of wind turbines and ocean energy de-

ices, will be recalled and analysed.

We propose a generic control problem framework, as shown in

ig. 5, consisting of an upper (optimal) setpoint generation stage and

lower control loop to ensure tracking of the setpoint. Both sets of

ontrol calculations must be mindful of physical constraints in the

ystem. In the wind energy case, for variable speed turbines, an opti-

al rotational speed is first calculated (for Regions 2–3 of the power

urve in Fig. 2), and torque and/or blade pitch control used to achieve

he required rotational speed. In the wave energy case, an optimal ve-

ocity profile is calculated for a device and the PTO system modulated

o follow the desired velocity profile.

Note, finally, that many control methods require a mathematical

odel of the system, in order to determine the control algorithm
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Fig. 5. Hierarchical control structure, showing the optimal setpoint (feedforward) cal-

culation and the servomechanism section.
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and such methods are termed model–based. The requirement for

an accurate mathematical system model often involves considerably

more work than the calculation of the controller itself, though sys-

tem identification techniques Simani, Fantuzzi, and Patton (2003),

Fusco and Ringwood (2014) can be employed to determine a black–

box model, i.e. a model which has no structural relationship to the

physical system. The combination of system identification techniques

with a mathematical procedure for controller determination can be

used to develop adaptive controllers, which have the capability to

adapt to unknown (in ‘self-tuning mode’) or time–varying systems.

Adaptive control schemes based on linear system models also have

the capability to track variations in a linear model due to the presence

of nonlinearity, though nonlinear systems are best controlled with a

dedicated fixed–parameter nonlinear controller. Significant care and

attention must also be paid to adaptive schemes to ensure stability

and convergence over all operating regimes Ioannou and Sun (1996).

1.3.1. Unique aspects to wind turbine systems

The goal in this tutorial is to introduce control engineers to the

technical challenges that exist in the energy conversion industry and

to encourage new modelling strategies and control systems research

in this area. In fact, wind turbines are complex structures operating in

uncertain environments and lend themselves nicely to advanced con-

trol solutions. Advanced controllers can help achieve the overall goal

of decreasing the cost of wind energy by increasing the efficiency,

and thus the energy capture, or by reducing structural loading and

increasing the lifetimes of the components and turbine structures

Bossanyi (2003).

Although wind turbines come in both vertical- and horizontal-

axis configurations, the work will focus on Horizontal–Axis Wind Tur-

bines (HAWTs). HAWTs have an advantage over Vertical-Axis Wind

Turbine (VAWTs) in that the entire rotor can be placed atop a tall

tower, where it can take advantage of larger wind speeds higher

above the ground. Some of the other advantages of HAWTs over

VAWTs for utility-scale turbines include pitchable blades, improved

power capture and structural performance. VAWTs are much more

common as smaller turbines, where these disadvantages become less

important and the benefits of reduced noise and omni–directionality

become more pronounced. Active control is most cost–effective on

larger wind turbines, and therefore this work will refer to wind tur-

bines with relatively large capacities. As remarked in Pao and Johnson

(2009), active control refers to those active actions allowing conver-

sion energy systems to achieve optimal power capture and structural

performance, such as the use of pitchable blades, power and torque

control techniques. On the other hand, the term active has been ex-

tended to fault diagnosis and fault tolerant control fields Chen and

Patton (1999), Mahmoud, Jiang, and Zhang (2003), Zhang and Jiang

(2008), Ding (2008), as outlined also in Section 5.1.

It is worth also noting that the mathematical description used

for wind turbine modelling and control is quite basic, as the pa-

per focusses on the related fundamental aspects. On the other hand,

real system cases require much more complex modelling and control

considerations, which have been highlighted through proper biblio-

graphical references.
.3.2. Unique aspects to wave energy systems

For ocean energy systems, the modelling effort can be consider-

ble, since hydrodynamic modelling is involved. While a variety of

omprehensive nonlinear modelling methodologies are available for

ydrodynamic modelling, including Smooth Particle Hydrodynamics

SPH) or Computational Fluid Dynamics (CFD) approaches, the diffi-

ulty of incorporating such models into a control formulation sug-

ests the use of more compact and structurally simple models. In ad-

ition, the very significant computational complexity of SPH or CFD

odels preclude their direct use for real–time controller implemen-

ation. Instead, model–based control strategies usually use compact

inear models, which are based on either local linearisation about an

perating point (see, for example, Bianchi et al., 2007; Leithead and

onnor, 2000 for the turbine case, or linear boundary-/element mod-

ls Eriksson, Waters, Svensson, Isberg, and Leijon, 2007 for the wave

nergy case). Even modest nonlinear extensions to linear boundary

lement methods can result in models which are computationally in-

ractable for real–time control Merigaud, Gilloteaux, and Ringwood

2012), while some specific parameterisations (e.g. to include viscos-

ty effects Bhinder, Babarit, Gentaz, and Ferrant, 2012) give nonlinear

arametric forms that may be possible to incorporate in model-based

ontrol schemes.

To summarise, WEC control systems must vary the PTO force in

rder to match the WEC to an incoming wave excitation in order to

aximise power capture, mindful of physical constraints. If operat-

ng in an array, the WEC control system must also consider inter-

evice hydrodynamic coupling. In essence, the calculation of the op-

imal PTO force (or, more commonly, the optimal velocity profile for

he WEC to follow) is a feed–forward problem, involving a calcula-

ion based on the some parameters of the incoming wave variations

nd the system model. Following this feedforward calculation, a tra-

itional feedback controller is employed to ensure that the optimal

elocity profile is followed.

. Models for the renewable resources

In the following, the mathematical descriptions for the renewable

esources that drive the models provided above will be briefly high-

ighted.

.1. Wind models

The differential heating of the Earth’s atmosphere is the driving

echanism for wind. Various atmospheric phenomena, such as the

octurnal low-level jet, sea breezes, frontal passages, and mountain

nd valley flows, affect the wind inflow across a wind turbine rotor

lane Manwell, McGowan, and Rogers (2002), which spans from 60

o 180 m above the ground for megawatt utility-scale wind turbines.

iven the large rotor plane and the variability of the wind, hundreds

f sensors would be required to characterise the spatial variation of

he wind speed encountered over the entire span of each blade.

The available wind resource can be characterised by the spatial

r temporal average of the wind speed; the frequency distribution of

ind speeds; the temporal and spatial variation in wind speed; the

ost frequent wind direction, also known as the prevailing wind di-

ection; and the frequency of the remaining wind directions Manwell

t al. (2002). The probability of the wind speed being above a given

urbine rated wind speed can be used to predict how often the tur-

ine operates in Region 3 at its maximum, that is, rated power capac-

ty. The capacity factor CF is defined by the ratio:

F = Eout

Ecap
(1)

here Eout is a wind turbine energy output over a period of time and

cap is the energy the turbine would have produced if it had run at

ated power for the same amount of time.
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Fig. 6. Sample histogram of wind speed and Weibull function.
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To predict the capacity factor and maintenance requirements for

wind turbine, it is useful to understand wind characteristics over

oth long and short time scales, ranging from multiyear to subsecond.

etermining whether a location is suitable and economically advan-

ageous for siting a wind turbine depends on the ability to measure

nd predict the available wind resource at that site. Significant vari-

tions in seasonal average wind speeds affect a local area’s available

ind resource over the course of each year. Wind speed and direc-

ion variations caused by the differential heating of the Earth’s sur-

ace during the daily solar radiation cycle occur on a diurnal, that is,

aily time scale. The ability to predict hourly wind speed variations

an help utilities to plan their energy resource portfolio mix of wind

nergy and additional sources of energy. Finally, knowledge of short-

erm wind speed variations, such as gusts and turbulence, is used in

oth turbine and control design processes so that structural loading

an be mitigated during these events.

Therefore, it is very important for the wind industry to be able

o describe the variation of wind speeds. Turbine designers need the

nformation to optimise the design of their turbines, so as to minimise

enerating costs. Turbine investors need the information to estimate

heir income from electricity generation.

If you measure wind speeds throughout a year, you will notice

hat in most areas strong gale force winds are rare, while moderate

nd fresh winds are quite common. The wind variation for a typical

ite is usually described using the Weibull distribution, as shown in

ig. 6. This particular site has a mean wind speed of 7 metres per sec-

nd, and the shape of the curve is determined by a so–called shape

arameter of 2.

Fig. 6 shows that 6.6 m/s is the median of the distribution, which is

kewed, i.e. it is not symmetrical. Sometimes, very high wind speeds

ccur, but they are very rare. Wind speeds of 5.5 m/s, on the other

and, are the most common ones. 5.5m/s is called the modal value of

he distribution. The probability distribution function has the form of

2):

p(v) = k

A

( v
A

)k−1

e−( v
A )

k

(2)
here A > 0 and k > 0 are the scale and shape parameters, respec-

ively, which determine the function form. In particular, k determines

he decrease rate of the function, whilst A represents the function

kewness. Properly chosen parameters and a value for k indicates that

he average speed and wind energy calculated from the gross Weibull

istribution will be equal to that calculated from the histogram of the

xample in Fig. 6.

The statistical distribution of wind speeds varies from place to

lace around the globe, depending upon local climate conditions, the

andscape, and its surface. The Weibull distribution may thus vary,

oth in its shape, and in its mean value. If the shape parameter is

xactly 2, as in Fig. 6, the distribution is known as a Rayleigh distribu-

ion. Wind turbine manufacturers often give standard performance

gures for their machines using the Rayleigh distribution.

It is worth noting that more detailed model of the wind are not

sually exploited in the related literature, as shown for example in

dgaard et al. (2013), Odgaard and Stoustrup (2013), Odgaard and

toustrup (2014). However, in the remainder of this section, a typical

ind description is briefly outlined Burton et al. (2011). Wind can be

odelled as the sum of a steady state mean wind and a perturbation

ind, accounting for turbulence and/or gusts. The deterministic com-

onent of the wind field implements the transients specified by IEC

1400–1 Bottasso, Croce, and Savini (2007), the exponential and log-

rithmic wind shear models, and the tower shadow effects, which in-

lude the potential flow model for a conical tower, the downwind em-

irical model Bottasso et al. (2007), or an interpolation of these two

odels. Their expressions will be omitted for brevity. The stochastic

omponent of the wind field can be described according to the Von

arman or Kaimal turbulence models.

In this way, the wind model generates, from a scalar mean wind

peed at hub height, a time–varying matrix that contains the wind

peed for each point in the wind field:

field(t, R, θ) = vmean(t) + Vws(t, R, θ) + Vts(t, R, θ)

+ Vwk(t, R, θ) (3)

here Vfield is the total wind speed field, vmean is the mean wind

peed, Vws is the wind shear component, Vts is the tower shadow
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Fig. 7. Typical Pierson–Moskowitz wave spectra, from (5), for different steady–state wind velocities. Both the wave amplitude and period increase with an increase in the driving

wind speed.
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component, and Vwk is the far wake component of one preceding

wind turbine (relevant for the case of wind farms). Notice the de-

pendence on the rotor radius R, and rotor azimuth angle θ . When

required, the simplified wake model is represented as a part of the

wind field (i.e. a circle) with a lower wind speed Friis et al. (2011).

The wake is centred around a point (R0, ϕ) placed on the rim of the

wind field, and with the form of (4):

R2 − 2 R R0 cos (θ − ϕ) + R2
0 = W 2 (4)

where R0 is the radial coordinate for the centre of the wake, ϕ is the

angular coordinate of the centre of the wake, and W is the radius of

the wake.

Finally, stochastic variables can be added to the wind components

except tower shadow, giving a closer to reality parameterisation of

the wind speeds throughout the rotor plane. In this way, the wind

field is converted to equivalent winds signals that acts on two distinct

parts of the blades, namely the tip and root sections, in order to obtain

a linearisable model description.

2.2. Wave models

The two measurable properties of waves are height and period.

Researchers and mariners usually characterise wave heights by the

average of the highest one–third of the observed wave heights. This

statistically averaged measure is termed the significant wave height

and usually denoted as H 1
3

or Hs. In addition, real ocean waves do not

generally occur at a single frequency. Rather, a distributed amplitude

spectrum is used to model ocean waves, with random phases. Energy

spectra are widely used to represent sea states Bretschneider (1952),
ierson and Moskowitz (1964), Hasselmann (1973), Ochi (1998). A

ypical wave spectral density (or wave spectrum) has the form

T (T) = AT 3e−BT 4

, (5)

ith the coefficients A and B, for example, given for the Pierson–

oskowitz model by Pierson and Moskowitz (1964) as

= 8.10x10−3 g2

(2π)4
(6)

= 0.74

(
g

2πV

)4

, (7)

here V is the wind velocity measured 19.5 m above the Still–Water

evel (SWL), g is the acceleration due to gravity, and T is the wave pe-

iod in seconds. Some typical wave spectra generated from this model

re shown in Fig. 7. Note that the available wave energy increases (ap-

roximately) exponentially with wave period T.

Not all waves are well represented by the spectral models of the

ype shown in (5). In some cases, where swell and local wind condi-

ions are relatively uncorrelated (which can often be the case, for ex-

mple, on the West Coast of Ireland International (2005)), ‘split spec-

ra,’ consisting of spectra containing two distinct peaks, can occur.

he variety of spectral shapes, some of which are illustrated in Fig. 8,

resents a significant challenge to both the WEC designer and control

ngineer.

All of the aforementioned wave spectral models are for fully de-

eloped waves; in other words, the fetch (the distance over which the

aves develop) and the duration for which the wind blows are suf-

cient for the waves to achieve their maximum energy for the given

ind speed. In addition, linear wave theory is assumed, meaning that
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Fig. 8. Real wave spectra recorded at Galway Bay in Ireland. In general, low frequency waves have the highest power. Narrow–banded seas make wave forecasting and WEC control

more straightforward, allowing a focus on a predominant single frequency.
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aves are well represented by a sinusoidal form, which relies on the

ssumption that there are no energy losses due to friction, turbu-

ence, or other factors, and that the wave height H is much smaller

han the wavelength λ.

However, not only is the ‘wind-wave’ component in Fig. 8 for set

3 at odds with the spectrum shown in Fig. 7, there are three dis-

inct low frequency components in set G1. Directional wave anal-

sis Gilloteaux and Ringwood (2009) can be used to reveal the

ndividual components. In general, with regard to wave directional-

ty, directional wave devices are tethered with nondirectional moor-

ngs, which allow the devices to face the predominant wave direc-

ion (weather vaning), or devices are nondirectional, such as heaving

uoy–type devices.

There are a number of exceptions to this general rule, including

hore-mounted oscillating water-column devices and, while many

evices can be considered nondirectional, the (fixed) moorings to

hich they are attached are rarely truly nondirectional.

In general, a wave spectrum is assumed to be stationary for up to

h. Time–frequency analysis via the wavelet transform Nolan, Ring-

ood, and Holmes (2007) can be used to examine spectral variabil-

ty. For longer durations, such as a year, wave scatter diagrams (see

ig. 9) provide a joint probability table of significant wave heights and

haracteristic periods for a particular wave site. For example, the data

hown in Fig. 9 show two predominant wave climates which exist at

particular site.

The energy in an ocean wave, consisting of both potential and

inetic energy, is proportional to the square of the wave ampli-

udeMcCormick (1981) and proportional to the wavelength,

w = Ep + Ek = ρgH2λb

8
, (8)

here H is the wave height above SWL, λ is the wavelength, ρ the

ater density, and b the crest width. In deep water, the energy in

linear wave is equally composed of potential energy (exhibited by

he wave height) and kinetic energy (dependent on the motion of the

articles), so that

p = Ek = ρgH2λb

16
. (9)

or simulation purposes, wave spectra are usually discretized and in-

ividual sinusoidal components used, where the amplitudes are de-

ermined from the spectral density (such as in Fig. 7), and random

nitial phases employed for the individual components.

.3. Comparisons and contrasts of wave and wind model characteristics

The wind and wave models described in Sections 2.1 and 2.2 can

e used to evaluate how much the available raw power can be con-

erted into the actual extracted power from hypothetical wind and

ave farms. For example, regarding the power extracted from wind,

he relatively mature state of wind turbine technology permits the
se of well established power curves, and wind distribution func-

ions, as shown in Sections 2.1 and 3.2, respectively. Computing the

xtracted power from wave energy devices, on the other hand, is not

uite as straightforward, mainly because of the fact that there is little

stablished commercial wave technology and the operating princi-

les of the available devices are very diverse, so that it is difficult to

nd a standardised measure of the extracted power. In addition, in-

tead of the single resource parameter (wind speed) in the case of

ind energy, a minimum of two parameters are needed to quantify

he wave power, from (8). This leads to the use, by some WEC devel-

pers, of the power matrix (for example in the case of the Pelamis

evice), though some studies suggest that the two parameters usu-

lly used to model sea spectra (for example, as in (5)) are insufficient

o correctly detail power production capabilities De Andres, Guanche,

idal, and Losada (2015). This observation reflects that fact the oscil-

atory WECs, which make up the bulk of WEC types, are highly re-

ponsive to the spectral content of waves.

In order to determine the power extracted from wind or wave

arms, the power from single devices must be projected to the

orresponding number of wind turbines and wave energy converters.

sually, the yearly average power output levels of the farms are

onsidered. The reason why the rated capacity is not used is that the

apacity factors for wind turbines and wave devices are not the same,

ue to the significant differences in the probability distribution of

heir produced power values. Wind turbines, most of the time, work

ither at low level or at full capacity, whereas the wave power output

s mostly concentrated at average levels, so that a comparison based

olely on the capacity and not taking into account the capacity factor,

ould be quite unjust and might return misleading results.

Moreover, the evaluation of the extracted power levels depend on

he particular device. In the case of wind, the well advanced state of

he technology resulted in a certain convergence of the performance

f the off–shore wind turbines available on the market, so that their

ower curves are quite comparable. The field of wave energy, on the

ther hand, is still an assortment of different devices, based on rather

iversified operating principles, so that their power characteristics

re very different and can also be very site specific.

One other contrast, between wind and wave systems, should be

oted in relation to resource quantification. For both wind and waves,

irectionality plays an important role. However, while HAWTs can

aw to face the wind, and VAWTs have no directional sensitivity

though the site itself may be sensitive), many wave devices are

ighly sensitive to wave direction. As already mentioned, though the

evice itself (for example a point absorber) may be insensitive to

ave direction, the moorings which tether the device are not, leading

o a directional sensitivity.

. Models for wind turbines and wave energy systems

In this section, the main models and their mathematical de-

criptions for wind turbines and wave energy devices will be briefly
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Fig. 9. Sample scatter diagram for the Atlantic Marine Energy Test Site (AMETS) at Belmullet, Ireland. In general, both peak period, Tp , and significant wave height, Hs , increase

together. Typical Atlantic waves cover a period span of 6–12 s.
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recalled, in order to highlight their main purpose oriented to the

design of control strategies.

3.1. Purposes of models

Prior to the design and application of new control strategies on

real wind turbines, the efficacy of the control scheme has to be tested

in detailed aero–elastic simulation model. Several simulation pack-

ages exist that are commonly used in academia and industry for wind

turbine load simulation. One of the most used simulation package is

the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) code

Jonkman and Buhl (2005) provided by the National Renewable En-

ergy Laboratory (NREL) in Golden (Colorado, USA), since it represents

a reference simulation environment for the development of high–

fidelity wind turbine prototypes that are taken as a reference test–

cases for many practical studies Jonkman, Butterfield, Musial, and

Scott (2009). FAST provides a high–fidelity wind turbine model with

24 degrees of freedom, which is appropriate for testing the developed

control algorithms but not for control design. For the latter purpose,

a reduced–order dynamic wind turbine model, which captures only

dynamic effects directly influenced by the control, is recalled in this

section and it can be used for model–based control design Bianchi

et al. (2007). We can also note that the FAST tool has been evolved

to deal with wave energy devices and also complimented with the

WECSim tool, also developed by NREL.

The main issues used for highlighting similarities and differences

of the models that describe the behaviour of wind turbines and wave

energy devices will be articulated in the following.

3.2. Wind turbine models

Due to the competitive nature of the wind turbine industry and

possible confidentiality issues, the modelling available in the wind

turbine literature is usually kept at a conceptual level. For more de-

tailed modelling of pitch regulated wind turbines see, e.g., Burton

et al. (2011), Muljadi and Butterfield (1999), Knudsen, Bak, and Soltani

(2011). It is worth noting also that, in the wind turbine area, there
ave been a number of IFAC and IEEE publications with sessions and

pecial issues starting from 2009, based also on competition studies,

.g.Ostergaard, Stoustrup, and Brath (2009), Pao and Johnson (2011),

dgaard and Odgaard (2012). These sessions and special issues have

ed to important results and publications that will be briefly sum-

arised below, in order to give readers a basic research review.

Previous studies have shown that linear aero-elastic models used

or the analysis of wind turbines are commonly of very high order.

ultibody dynamics coupled with unsteady aerodynamics (e.g. dy-

amic stall) are among the recently developments in wind turbine

ero-elasticity Rasmussen et al. (2003), Bianchi et al. (2007), Hansen

2011). The resulting models contains hundreds or even thousands

f flexible modes and aerodynamic delays. In order to synthesise

ind turbine controllers, a common practice is to obtain linear time–

nvariant (LTI) models from a nonlinear model for different operating

oints. Modern control analysis and synthesis tools are inefficient for

uch high–order dynamical systems; reducing the model size is cru-

ial to analyse and synthesise model–based controllers. The most in-

eresting modelling solution available in the literature relies on the

inear Parameter Varying (LPV) framework, as it has shown to be

uitable to cope, in a systematic manner, with the inherent varying

ynamics of a wind turbine over the operating envelope Bianchi et al.

2007), Ostergaard et al. (2009), Adegas, Sloth, and Stoustrup (2012),

degas, Sonderby, Hansen, and Stoustrup (2013). Wind turbine LPV

odels are usually simple, first–principles based, often neglecting

ynamics related to aerodynamic phenomena and some structural

odes. This in turn restricted LPV control of wind turbines to the

cademic environment only. A procedure to encapsulate high–fidelity

ynamics of wind turbines as an LPV system would be beneficial to

acilitate industrial use of LPV control.

Other modelling approached that one may find in the literature

re based on some type of simplified wind turbine descriptions

edersen and Fossen (2012). These may have the form of lookup–

ables as in Bianchi et al. (2007) or linear models obtained from

omplex numerical simulation tools Namik and Stol (2010). Hybrid

odels blending lookup tables with mechanical models have also

een used Bottasso et al. (2007). These and even simpler approaches
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Fig. 10. Block diagram of the complete wind turbine model.
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redominate. Linear models can be valid in a small envelope around

he linearisation point, which requires several individual models to

over the operational domain of the turbine Pintea, Popescu, and

orne (2010).

However, most of the control algorithms for modern variable–

itch wind turbines, that one may find in the literature, are usually

ased on some type of simplified wind turbine linear model. There-

ore, after these considerations, this section will address the most im-

ortant components of a HAWT used for the linear modelling of a

ind turbine installation. They consist of the wind turbine tower, its

acelle, and the rotor, visible from the ground, as depicted in Fig. 1.

As sketched in Fig. 10, the complete wind turbine model consists

f several submodels for the mechanical structure (’Mechanics’), the

erodynamics (‘Aero’), as well as the dynamics of the pitch system

‘pitch’) and the generator/converter system (‘converter’). The gen-

rator/converter dynamics are usually described as a first order delay

ystem. However, when the delay time constant is very small, an ideal

onverter can be assumed, such that the reference generator torque

ignal is equal to the actual generator torque. In this situation, the

enerator torque can be considered as a system input, whilst the gen-

rator is the device that converts mechanical energy from the aero-

ynamic torque to electrical energy.

Fig. 10 reports also the wind turbine inputs and outputs. In partic-

lar, v is wind speed, FT and Ta correspond to the rotor thrust force

nd rotor torque, respectively; ωr is the rotor angular velocity, x the

tate vector, Tg the generator torque, and Tg, d the demanded genera-

or torque. β is the pitch angle, whilst βd its demanded value.

The drive–train, consisting of rotor, shaft and generator is mod-

lled as a two–mass inertia system, including the shaft torsion θ	,

here the two inertias are connected with a torsional spring with

pring constant kS and a torsional damper with damping constant dS.

he angular velocities ωr and ωg are the time derivatives of the ro-

ation angles θ r and θ g. The drive–train can be thus described as the

ollowing linear system:

ω̇r(t)

ω̇g(t)

θ̇	(t)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−BS + Br

Jr

BS

ng Jr
−kS

Jr

ηdt BS

ng Jg

− ηS BS

n2
g

− Bg

Jg

ηS kS

ng Jg

1 − 1

ng
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ωr(t)

ωg(t)

θ	(t)

⎤
⎦

+

⎡
⎢⎢⎢⎢⎣

1

Jr
0

0 − 1

Jg

0 0

⎤
⎥⎥⎥⎥⎦

[
Ta

Tg

]
(10)

here is Jr the moment of inertia of the low speed shaft (rotor), Bg

s the viscous friction of the high speed shaft (generator), Jg is the
oment of inertia of the high speed shaft, and ηdt is the efficiency

f the drive train. The rotor torque Ta is generated by the lift forces

n the individual blade elements, whilst Tg represents the generator

orque. The ideal gearbox effect can be simply included in the genera-

or model by multiplying the generator inertia Jg by the square of the

earbox ratio ng.

In pitch–regulated wind turbines, the pitch angle of the blades is

ontrolled only in the full load region to reduce the aerodynamic ro-

or torque, thus maintaining the turbine at the desired rotor speed.

oreover, the pitching of the blades to feather position (i.e. 90°) is

sed as main braking system to bring the turbine to standstill in crit-

cal situations. Two different types of pitch technologies are usually

xploited in wind turbines, i.e. hydraulic and electromechanical pitch

ystems. For hydraulic pitch systems, the dynamics can be modelled

y means of a second–order dynamic model Odgaard et al. (2013),

hich is able to display oscillatory behaviour. For electromechani-

al pitch systems, which are more commonly used, a first–order de-

ay model is sufficient. In this work, the first–order delay model is

ecalled:

˙ = − 1

τ
β + 1

τ
βd (11)

here β and βd are the physical and the demanded pitch angle, re-

pectively. The parameter τ denotes the time constant.

An explicit model for the generator/converter dynamics can be in-

luded into the complete wind turbine system description. Note that

or mere simulation purposes, this is not necessary, since the genera-

or/converter dynamics are relatively fast. However, when advanced

ontrol designs are considered, an explicit generator/converter model

ight be required in order to take into account the fast generator

orque dynamics. In this case, a simple first order dynamic model can

e sufficient, as described e.g. in Odgaard et al. (2013):

˙g = − 1

τg
Tg + 1

τg
Tg,d (12)

here Tg, d represents the demanded generator torque, whilst τ g the

elay time constant.

The aerodynamic submodel consists of the expressions for the

hrust force FT acting on the rotor and the aerodynamic rotor torque

a. They are determined by the reference force Fst and by the aerody-

amic rotor thrust and torque coefficients CT and CQ Gasch and Twele

2012):

FT = Fst CT (λ, β)

Ta = Fst RCQ(λ, β)
(13)

he reference force Fst is defined from the impact pressure 1
2 ρ v2 and

he rotor swept area π R2 (with rotor radius R), where ρ denotes the

ir density:

st = 1
ρ π R2 v2 (14)
2
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Fig. 11. Wave–energy PTO system components and potential control inputs. In general, only one of these control inputs is used by the energy–maximising control.
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It is worth noting that, for simulation purposes, the static wind speed

v is used. The aerodynamic maps CT and CQ used for the calcula-

tion of the rotor thrust and torque are usually represented as static

2–dimensional tables, which already take into account the dynamic

contributions of both the tower and the blade motions.

As highlighted in the expressions (13), the rotor thrust and torque

coefficients (CT, CQ) depend on the tip speed ratio λ = ωr R
v and the

pitch angle β . Therefore, the rotor thrust FT and torque Ta assume the

following expressions:⎧⎨
⎩

FT = 1

2
ρ π R2 CT (λ, β) v2

Ta = 1

2
ρ π R3 CQ(λ, β) v2

(15)

Note that the rotor thrust in (13) and (15) is a horizontal force,

i.e. a structural load, which should be mitigated, as suggested in

Section 4.2 Bossanyi (2003).

The expressions (15) highlight that the rotor thrust FT and torque

Ta are nonlinear functions dependent on the wind speed v, the ro-

tor speed ωr, and the pitch angle β . These functions are usually ex-

pressed as two–dimensional maps, which must be known for the

whole range of variation of both the pitch angles and tip speed ra-

tios. These maps are usually a static approximation of more detailed

aerodynamic computations that can be obtained using, for example,

the Blade Element Momentum (BEM) method. In this case, the aero-

dynamic lift and drag forces at each blade section are calculated and

integrated in order to obtain the rotor thrust and torque Gasch and

Twele (2012). More accurate maps can be obtained by exploiting the

calculations implemented via the AeroDyn module of the FAST code,

where the maps are extracted from several simulation runs Laino and

Hansen (2002).

It is worth noting that for simulation purposes, the tabulated ver-

sions of the aerodynamic maps CQ and CT are sufficient. On the other

hand, for control design, the derivatives of the rotor torque (and

thrust) are needed, thus requiring a description of the aerodynamic

maps as analytical functions. Therefore, these maps can be approxi-

mated using combinations of polynomial and exponential functions,

whose powers and coefficients are estimated via e.g. modelling Heier

(2014) or identification Simani and Castaldi (2014) approaches.

Wind turbine high–fidelity simulators, which were described for

example in Odgaard and Johnson (2013), consider white noise added

to all measurements. This relies on the assumption that noisy sensor

signals should represent more realistic scenarios. However, this is not

the case, as a realistic simulation would require an accurate knowl-

edge of each sensor and its measurement reliability. To the best of

the authors’ knowledge, all main measurements acquired from the

wind turbine process (rotor and generator speed, pitch angle, gener-

ator torque), are virtually noise–free or affected by very weak noise.

3.3. Wave energy device models

Since PTO systems for wave energy converters are quite non-

standard, the focus here will be on the hydrodynamic part of the WEC

model, though modelling aspects concerning the generator/converter

system from Section 3.2 are also relevant.
Mathematical models of wave-energy devices, as in the wind en-

rgy case, are required for a variety of purposes:

1. Assessment of power production

2. Assessment of loading forces under extreme sea conditions

3. Simulation of device motion, including evaluating the effective-

ness of control strategies

4. For use as a basis for model-based control design.

Mathematical models for wave–energy devices should, ideally,

ncompass the water/device (hydrodynamic) interactions and the

TO system, and may also include a model for connection to an

lectrical grid, thus presenting a total ‘wave-to-wire’ model Josset,

abarit, and Clement (2007). While the PTO and grid (or possibly

ther downstream energy consumers, such as reverse osmosis units)

ay be modelled using more traditional physical lumped-parameter

odelling methodologies, the determination of the hydrodynamic

odel for a WEC, or array of WECs, is nontrivial. A variety of mod-

lling methodologies are available, most of which involve the solution

o partial differential equations across a numerical mesh.

Among the possible hydrodynamic solvers with the highest fi-

elity are algorithms based on smooth particle hydrodynamics (SPH)

leary, Prakash, Ha, Stokes, and Scott (2007) or computational fluid

ynamics (CFD) Agamloh, Wallace, and von Jouanne (2008). Such

pproaches can articulate the full range of nonlinear hydrodynamic

orces in three dimensions. However, given the significant computa-

ional overhead of such approaches (typically a second of simulation

ime takes around an hour of computation time), they are not ideal

ither as a basis for model-based control design, nor as a simulation

ool to evaluate the effectiveness of various control designs. However,

FD models have been used to develop simpler parametric models,

hich can provide a basis for control design and simulation Davidson,

iorgi, and Ringwood (2013).

The remainder of this section is primarily devoted to the develop-

ent of hydrodynamic models. An outline of a possible PTO system

s shown in Fig. 11, and shows the possible inclusion of mechanical,

ydraulic, and electrical components. In many cases, for example for

he SeaBased device Trapanese (2008), the WEC is directly coupled to

linear generator, eliminating the hydraulic components. Given the

any potential changes of energy form evident from Fig. 11, bond

raphs have been shown to be a powerful tool in providing a sys-

ematic graphical procedure to determine mathematical models for

ave-energy PTO systems Bacelli, Gilloteaux, and Ringwood (2008),

r complete wave-energy systems Hals (2010).

.3.1. Linear models and cummins’ equation

Consider a single–body floating system oscillating in heave,

chematically depicted in Fig. 12. Energy is extracted from the relative

otion with the sea bottom, through a generic PTO mechanism. The

xternal forces acting on the WEC are the excitation from the waves

nd the control force produced by the PTO, namely fex(t) and fu(t).

dditional hydrodynamic and hydrostatic forces, which arise due to

he motion of the body in the water, are the radiation force fr(t), the

iffraction force fd(t), the viscous force fv(t), and the buoyancy force

(t) Falnes (2002).
b
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Fig. 12. One–degree–of–freedom floating system for wave-energy conversion. The

lower side of the PTO is anchored to the sea bed, which provides an absolute refer-

ence for device motion.
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The radiation force fr(t) is a damping/inertial force associated due

o the fact that device motion, resulting in the production of radiated

aves, is affected by the surrounding fluid. Such radiation forces are

resent even in the absence of incident waves and can be estimated

sing free response tests. The diffraction (or scattering) force fd(t) de-

cribes the force experienced by the device when scattering incident

aves, and is independent of the device motion. The viscous damping

orce fv(t) is a nonlinear force, and becomes significant with increased

evice velocity. It is particularly relevant where the body surface con-

ains discontinuities (such as flanges), which result in the creation of

ortices. Finally, the buoyancy force is related to the deflection of the

evice from its equilibrium (still water) position and is a balance be-

ween the Archimedes buoyancy force and the gravity force.

The equation of motion, following Newton’s second law and

here a superposition of forces is assumed, in one degree of freedom

s:

v̇(t) = fm(t) + fr(t) + fd(t) + fv(t) + fb(t) + fex(t) + fu(t) (16)

here v(t) is the heaving velocity and M is the WEC mass.

With the assumptions associated with linear potential theory

alnes (2002), namely that the fluid is irrotational, incompressible,

nd inviscid; the WEC body has a small cross-sectional area (or equiv-

lently, the wave elevation is constant across the whole body); and

he body experiences small oscillations (so that the wetted surface

rea is nearly constant); the equation of motion simplifies to

fex + fd(t) =
∫ +∞

−∞
hex(τ )η(t − τ)dτ (17)

fr(t) = −
∫ t

0

hr(τ )v(t − τ)dτ − m∞v̇(t) (18)

fb(t) = −ρgSw

∫ t

0

v(τ )dτ = −Kbx(t) (19)

fv(t) = 0 (20)

In (17), the excitation (and diffraction) force is related to the in-

ident wave free surface elevation η(t) through the excitation kernel

unction hex(t). The expression (18) expresses the radiation force as a

inear convolution of the radiation kernel hr(t) with the device oscil-

ation velocity v(t). Note that hex(t) and hr(t) effectively describe the

mpulse responses in excitation force and radiation force to impulses

n free surface elevation and device motion, respectively. Added mass,

enoted by m∞ in (18), reflects an effective increase in the device in-

rtia since an accelerating floating body moves some volume of the

urrounding fluid. In general, added mass is a frequency-dependent
uantity but is often approximated by its infinite frequency asymp-

ote m∞.

The buoyancy force fb(t) in (19) models the hydrostatic equilib-

ium, related to the heaving position through a linear coefficient that

epends on the gravity acceleration g, the water density ρ , and the

urface area of the body cut by the mean water level Sw. Note the

oncausality of the expression for the excitation force in (17), where

ex(t) �= 0 for t ≤ 0 Falnes (2002). The expression in (16), excluding

he mooring force fm(t) and the viscous damping force fv(t) results in

he widely used Cummins’ equation Cummins (1962):

(M + m∞)v̇(t) +
∫ +∞

0

hr(τ )v(t − τ)dτ + Kbx(t)

=
∫ t

−∞
hex(τ )η(t − τ)dτ. (21)

hich provides a linear integro-differential model for the motion of a

EC in response to variation in free-surface elevation η(t), excluding

he applied resisting PTO force, fu(t).

To focus on the control problem, the mooring force fm(t) is omitted

rom the following analysis, while the viscous damping force fv(t) is

iscussed in the next subsection. Typically, hex(t) and hr(t) are calcu-

ated numerically using boundary-element potential methods such

s WAMIT WAMIT (2002), which performs the calculations in the

requency domain, or ACHIL3D Clement (2009), where time-domain

alculations are used. The relation (21) can also be used to model

ultibody systems Bacelli and Ringwood (2013c) or arrays of devices

acelli and Ringwood (2013b), with the modification that M, m∞, K,

nd the hydrodynamic parameters represented by hex(t) and hr(t), all

ncrease in dimension accordingly.

.3.2. Radiation damping approximations

Typically, for both simulation and control applications, the radia-

ion damping convolution term in (18) is replaced by a closed form

finite order) equivalent. This replacement has several advantages.

he integro–differential equation in (21) is replaced by a higher or-

er differential equation, making analysis more straightforward, the

esulting finite-order dynamical system is faster to simulate, and the

losed-form dynamical equation can be used as a basis for model-

ased control design.

In general, hr(t) (and its Fourier transform, Hr(ω)) are nonpara-

etric in form, being the result of a numerical calculation on a

istributed system. Approximations can be determined in either

he time or frequency domain, depending on the manner in which

r(t)↔Hr(ω) was determined, and the intended (time/frequency do-

ain) use of the finite–order approximation. For example, WAMIT

2002) uses a frequency-domain analysis to determine Hr(ω) di-

ectly and approximations based on WAMIT data are usually based

n frequency-domain error criteria. In such a case, state-space forms

erez and Fossen (2007) or transfer function forms McCabe, Brad-

haw, and Widden (2005) may be determined using frequency–

omain identification Levy (1959).

Alternatively, if hr(t) is directly produced, for example from a

ime-domain code such as ACHIL3D Clement (2009), time–domain

mpulse-response fitting can be employed, typically using the

ethod in Prony (1795). In general, an order 4–10 linear approxima-

ion to hr(t) is used, for both time- and frequency-domain approaches.

n some cases a second-order approximation is adequate and has the

dded advantage of giving a pole pair, which has a strong connection

ith the radiation damping transient response. Taghipour, Perez, and

oan (2008) provides an overview of, and background to, the calcula-

ions of finite-order approximations to hr(t)↔Hr(ω). Taghipour et al.

2008) also considers finite-order approximation to the excitation

orce kernel hex(t) (with Fourier transform Fex(ω)), as does McCabe

t al. (2005).
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3.4. Comparison of wind and wave device models

There is a stark contrast in the modelling focus within the wind

and wave communities. For wind turbines, the static relationship

between the optimal rotation speed, pitch angle and incident wind

speed is well understood and is enumerated for each wind turbine.

In the wave energy case, there is a complex dynamic relationship

between the free surface elevation and the device motion. As a re-

sult, models for wind turbines focus more on the turbine mechanics,

rather than the aerodynamics. In the wave energy case, considerable

effort is expended on accurately modelling the hydrodynamics of the

system and, in contrast, there are a relatively small amount of stud-

ies with modelling the PTO section, which forms part of the lower

control loop in Fig. 5. No doubt, one of the reasons for such a lack

of generic PTO models is the lack of convergence or standardisation

of PTO systems for wave energy devices, which may be appreciated

from the possibilities articulated in Fig. 11. In addition, few devices

have reached the stage of full scale prototype and, in many of those

cases, most attention is focussed on the physical (device and PTO)

design, with the control aspects receiving secondary attention.

On notable comparative feature, but contrasting in specific num-

ber, is the overall theoretical maximum percentage of energy which

can be usefully converted from wind and wave systems. The well-

known Betz limit Betz and Randall (1966) for wind turbines, which

limits the converted power to 60%, contrasts with the 50%, ob-

tained under optimal control conditions (shown in Section 4.3 Falnes

(2002)) for wave energy devices.

4. Control strategies

While Section 3 focusses mainly on energy conversion system

modelling and Section 1 has recalled the classical control problem of

regulation of some variable to a desired value, and indeed such prob-

lems are encountered in both wind and ocean energy applications,

there is a broader set of problems which can also be addressed by

control system technology. The purpose of this section is to present

this broad problem definition and examine how this problem may

be addressed, or broken down into smaller parts which may be more

easily solved.

4.1. Background to strategy development (objectives and

available tools)

In the case of both wind and wave energy, the general prob-

lem is to maximise energy capture, subject to grid and environmen-

tal constraints. However, we might modify the objective of energy

capture maximisation to that of maximisation of economic return

Costello, Teillant, and Ringwood (2012), which requires a balance

to be achieved between maximising energy capture and minimis-

ing wear on components. However, the move to an economic perfor-

mance function also requires the accurate articulation of capital and

operational costs, which is quite onerous for the relatively immature

field of ocean energy, and significantly complicates the optimisation

problem. Instead, for the current analysis, in order to retain a focus on

the fundamental control issues, this section is focussed on the prob-

lem of energy capture maximisation.

There are two broad approaches, which may be taken to solve the

energy maximisation problem:

1. Overall extremum seeking control Pao and Johnson (2011), with

little use of a detailed model of the system;

2. Determination of an optimal setpoint for the system, which gives

maximum energy capture, followed by a regulator to make sure

this setpoint is achieved Bossanyi and Hassan (2000).

Approach 1 is attractive from the point of view of the lack of re-

quirement for a detailed model, but may have dynamic performance
imitations in convergence rates and may have difficulty finding a

lobal maximum over a non–convex performance surface. For ex-

mple, in wind turbines, this issue is important when the system is

orking below the rated wind speed, as recalled in Section 4.2. On

he other hand, in a wave energy application, the controller may not

onverge to the appropriate setting before the instantaneous wave

requency changes.

Interestingly, a common framework for both wind and wave en-

rgy may be adopted for the item 2, as shown in Fig. 5. The particu-

ars for wind and wave control solutions are detailed in Sections 4.2

nd 4.3, respectively. For the standard feedback regulation part of

ig. 5, any one of the techniques mentioned in Section 1 can be cho-

en, based on the particular system description, the level of control fi-

elity required and the appetite for computational complexity. Since

oth wind turbine and wave energy device dynamics are relatively

low (with the possible exception of the electronic power converter

ection), there is much scope for the implementation of complex con-

rol strategies.

.2. Control strategies for wind turbines

In the case of a wind turbine, optimal blade pitch, β , and rotor ve-

ocity (via the tip/speed ratio, λ) are set based on the incident wind

ow velocity, in order to maximise the power coefficient, CQ. The

anipulated variable for the pitch control is the power to the pitch

ctuators (voltage and/or current). For torque control, the generator

xcitation is used as a control actuator. It is worth noting that the

elationship between β , λ, and CQ is specific to each wind turbine,

nd must be determined for each particular case. However, this rela-

ionship is then fixed, though some slight variation may occur due,

or example, to component wear or installation errors. Note also that

hen a wind turbine reaches its rated power (i.e. above the rated

ind speed), the turbine needs to be ‘depowered’ in order to avoid

xceeding any rated specifications. In this situation, it is not required

o maximise power conversion (i.e. the wind power that can be con-

erted into electric energy) and, for variable pitch turbines, blade

itch can be adjusted in order to limit power converted.

As already remarked in Section 3.2, in the wind area there have

een a number of IFAC and IEEE publications, sessions and special is-

ues starting from 2011, based also on competition studies, address-

ng basic and advanced wind turbine control issues, e.g. Odgaard and

toustrup (2011), Diaz-Guerra, Adegas, and Stoustrup (2012), Biegel,

adjidian, Spudic, Rantzer, and Stoustrup (2013), Pao and Johnson

2011), Adegas and Stoustrup (2012), Odgaard and Odgaard (2012).

On the other hand, previous investigations e.g. Muljadi and

utterfield (1999), Leithead and Connor (2000), Bossanyi and Hassan

2000), Bianchi et al. (2007) have shown that linear, time–invariant

ethods provide good closed–loop results when observing local

ehaviour. A natural choice for controller design covering the entire

perating envelope is therefore to design linear controllers along

chosen operating trajectory and then to interconnect them in an

ppropriate way in order to get a control formulation for the entire

perating region. This approach is denoted as gain scheduling and

n Cutululis, Ceanga, Hansen, and Sorensen (2006) this is done by

nterpolating the outputs of a set of local controllers (either by

inear interpolation or by switching). Alternatively, parameters of

he controller are updated according to a pre–specified function

f a measured/estimated variable Leithead and Connor (2000).

systematic way of designing such parameter–dependent con-

rollers is within the framework of LPV systems, already recalled in

ection 3.2. In this case, the model is represented by a linear model

t all operating conditions and a controller with similar parameter

ependency is synthesised to guarantee a certain performance

pecification for all possible parameter values within a specified set.

major difference to classical gain scheduling is that it is possible

o take into account that the scheduling parameters can vary in time
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Fig. 13. Example of power coefficient curve.
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stergaard et al. (2009). Other controllers with different structures,

.g. linear quadratic, and repetitive model predictive, to mention a

ew more Adegas and Stoustrup (2012), Diaz-Guerra et al. (2012),

degas and Stoustrup (2011), were also designed and applied to wind

urbine systems.

After these considerations, control systems for wind turbines

eem now well developed Bianchi et al. (2007) and the fundamental

ontrol strategies are sketched below, in order to provide the readers

basic research review.

The primary Region 2 control objective for a variable–speed wind

urbine is to maximise the power coefficient, and in particular the CQ

ap in (13). The relationship between CQ and the tip–speed ratio λ is

turbine–specific nonlinear function. CQ also depends on the blade

itch angle in a nonlinear way, and these relationships have the same

asic shape for most modern wind turbines. An example of CQ surface

s shown in Fig. 13 for a generic wind turbine.

As shown in Fig. 13, the turbine will operate at its highest aerody-

amic efficiency point, Cmax, at a certain pitch angle and tip–speed ra-

io. The pitch angle is easy to control, and can be reliably maintained

t the optimal efficiency point. However, the tip–speed ratio depends

n the incoming wind speed v and therefore is constantly changing.

hus, the Region 2 control is primarily concerned with varying the

urbine speed to track the wind speed. When this approach is used,

he controller structure for partial load operation follows the sequen-

ial optimal calculation and regulation shown in Fig. 5.

On utility–scale wind turbines, Region 3 control is typically per-

ormed via a separate pitch control loop. In the Region 3, the pri-

ary objective is to limit the turbine power so that safe electrical

nd mechanical loads are not exceeded. Power limitation is achieved

y pitching the blades or by yawing the turbine out of the wind, both

f which can reduce the aerodynamic torque below what is theoret-

cally available from an increase in wind speed. In the Region 3, the

itch control loop regulates the rotor speed ωr (at the turbine ‘rated

peed’) so that the turbine operates at its rated power.

In this way, the overall strategy of the wind turbine controller is

o use two different controllers for the partial load region and the

ull load region. When the wind speed is below the rated value, the

ontrol system should maintain the pitch angle at its optimal value

nd control the generator torque in order to achieve the optimal tip–

peed ratio (switch to Region 2).

At low wind speeds, i.e. in partial load operation, variable–speed

ontrol is implemented to track the optimum point on the CQ–surface

or maximising the power output, which corresponds to the λopt

alue. The speed of the generator is controlled by regulating the de-

anded torque Tg, d on the generator through the generator torque

ontroller. In partial load operation it is chosen to operate the wind

urbine at β = 0o, since the maximum power coefficient is obtained
 i
t this pitch angle:

g, d = 1

2
ρ π R2 R3

n3
g λ3

opt

Cmax ω2
g(t) − dS

(
1

n2
g

+ 1

)
ωg(t) (22)

ith ng is the gear–ratio of the gearbox connecting the rotor shaft

ith the electric generator/converter, R is the rotor radius, and ωg(t)

he electric generator/converter speed Johnson, Pao, Balas, and Fin-

ersh (2006). The advantage of this approach is that only the mea-

urement of the rotor or generator speed is required.

On the other hand, for high wind speeds, i.e. in full load operation,

he desired operation of the wind turbine is to keep the rotor speed

nd the generated power at constant values. The main idea is to use

he pitch system to control the efficiency of the aerodynamics, while

pplying the rated generator torque. However, in order to improve

racking of the power reference and cancel steady–state errors on the

utput power, a power controller is also introduced.

With reference to the speed controller, it is implemented as a PI

ontroller that is able to track the speed reference and cancel possi-

le steady–state errors on the generator speed. The speed controller

ransfer function Ds(s) has the form:

s(s) = Kps

(
1 + 1

Tis

1

s

)
(23)

here Kps is the PI proportional gain and Tis is the reset rate of the

ntegrator.

The power controller is implemented in order to cancel possible

teady–state errors in the output power. This suggests using slow in-

egral control for the power controller, as this will eventually cancel

teady–state errors on the output power without interfering with the

peed controller. However, it may be beneficial to make the power

ontroller faster to improve accuracy in the tracking of the rated

ower. The power controller is realized as a PI controller, whose

ransfer function Dp(s) has the standard form:

p(s) = Kpp

(
1 + 1

Tip

1

s

)
(24)

here Kpp is the proportional gain of the PI regulator, whilst Tip is the

eset rate of the integrator.

Note finally that speed and power control can be coupled. How-

ver, as shown in Odgaard et al. (2013), they can be considered as

ecoupled, as their dynamics are different. However, more advanced

ontrol techniques can exploit multivariable (or decoupling) control,

s addressed in Bianchi et al. (2007), Pao and Johnson (2011). It is

orth noting that, from the previous considerations, the research is-

ues of wind turbine control may seem very mature. However, the

atest generation of giant offshore wind turbines present new dynam-

cs and control issues.. Moreover, new wind turbine solutions, which
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Fig. 14. Impedance matching problem for wave energy device.
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use further wind turbine state information from the sensing sys-

tem, have been suggested, also within EU projects, see e.g. Plumley,

Leithead, Jamieson, Bossanyi, and Graham (2014), Chatzopoulos and

Leithead (2010). This improved state information is used to control

the wind turbine blades and at the same time reducing the design

bearing fatigue and extreme structural loads that are affecting the

structure of the wind turbine Valencia-Palomo, Rossiter, and Lopez-

Estrada (2014), Khan, Valencia-Palomo, Rossiter, Jones, and Gond-

halekar (2014). This control problem will be solved in a multivariable

way, by optimising the conflicting control objectives of power opti-

misation while keeping the different loads below the design require-

ments. The control goal is to ensure that the controller will guarantee

that extreme load requirements are not violated during eventually

emergency stops of the wind turbine, as well as during severe wind

gusts. The interesting challenge is to be able to use the rotor system

to control the turbine, so that in effect the rotor performs like a ‘high

level’ sensor. In other words the goal is to be able to use the rotor

itself (along with the enhanced sensor set) to make the control sys-

tem perform well. A part of this challenge is to ensure that real–time

compensation of loading and gust disturbances is put into effect in

a suitable time window, taking account of the close spectral content

of the disturbance and control. This becomes a very significant chal-

lenge for very large rotor wind turbines (>10 MW) as the required

control and disturbance bandwidths become close, a problem simi-

lar to the structural filtering and control used in high performance

combat aircraft Shi and Patton (2015).

4.3. Control strategies for wave energy devices

As demonstrated in Fig. 5 the control problem first requires an

optimum velocity profile to be calculated and this is then followed

by controlling the PTO force. As documented in Section 3.4, there is

significant focus on the hydrodynamic modelling aspects and this is

also reflected in the balance of control studies devoted to the higher-

level and lower-level depicted in Fig. 5. As a result, the focus here

is mainly on hydrodynamic control (in Section 4.3.1), though some

comments about lower level PTO control are given in Section 4.3.2.

4.3.1. Velocity profile calculation

Ignoring system constraints for the moment, a start can be made

on the energy maximisation problem by considering the force-to-

velocity model of a WEC, which is obtained from (21) in the frequency

domain Falnes (2002) as:

V(ω)

Fex(ω) + Fu(ω)
= 1

Zi(ω)
(25)

where Zi(ω) is termed the intrinsic impedance of the system. In (25),

V(ω), Fex(ω), and Fu(ω) represent the Fourier transform of the veloc-

ity v(t), excitation force fex(t), and control force fPTO(t), respectively.

Unless stated otherwise, the Fourier transform of time-domain sig-

nals or functions will be denoted by the corresponding capital letter,

namely X(ω) � F
{

x(t)
}

.

The intrinsic impedance Zi(ω) of the model in (25) is specified as

(see Falnes (2002) for the full derivation):

Zi(ω) = Br(ω) + jω
[

M + Ma(ω) − Kb

ω2

]
(26)

where Br(ω) is the radiation resistance (real and even) and Ma(ω)

is the frequency–dependent added mass, often replaced by its high-

frequency asymptote m∞.

The model in (25) allows the derivation of conditions for optimal

energy absorption and the intuitive design of the energy–maximising

controller in the frequency–domain: Falnes (2002) as:

ZPTO(ω) = Z∗(ω), (27)
i
here ( )∗ denotes the complex conjugate. The choice of ZPTO as in (27)

s referred to as complex conjugate control, but many (especially elec-

rical) engineers will recognise this choice of ZPTO as the solution to

he impedance–matching problem represented by Fig. 14. In Fig. 14,

e represents the wave excitation force, while Zi defines the relation-

hip between this force and the device velocity, as determined by the

EC dynamics (see (26)). Under condition (27), maximum power is

ransferred from the device to the load, defined by ZPTO, which is a

ell-known result for AC circuits.

The result in (27) has a number of important implications:

• The result is frequency dependent, implying that there is a differ-

ent optimal impedance for each frequency, which raises the ques-

tion of how to specify for irregular seas containing a mixture of

frequencies;

• Since hr(t) is causal, hc(t) = F−1(ZPTO(ω)) is anticausal, requiring

future knowledge of the excitation force. While this knowledge

is straightforward for the monochromatic case (single sinusoid),

it is more problematic for irregular seas. However, some solutions

are available, including those documented in Fusco and Ringwood

(2010);

• Since force and velocity can have opposite signs in Fig. 14, the PTO

may need to supply power for some parts of the sinusoidal cycle,

which is akin to reactive power in electrical power systems. Such

a phenomenon places particular demands on PTO systems, not

only in terms of the need to facilitate bidirectional power flow, but

also that the peak reactive power can be significantly greater than

active power Shek, Macpherson, and Mueller (2008), Zurkinden,

Guerinel, Alves, and Damkilde (2013). The optimal passive PTO is

provided by RPTO = |Zi(ω)|, which avoids the need for the PTO to

supply power, but results in a suboptimal control;

• The optimal control in (27) takes no account of physical con-

straints in the WEC/PTO, where there are likely to be limitations

on displacement or relative displacement, and the PTO force, and

there may be external constraints imposed by electrical grid reg-

ulations;

• The maximum theoretical power recovered in an oscillating wave

energy device is 50%, which represents the optimal matched con-

dition in Fig. 14. Under such a condition, equal power is dissipated

in the PTO and wave radiation, noting that a good wave energy

absorber is also a good radiator Falnes (2002).

The condition in (27) can alternatively be expressed in terms of an

ptimal velocity profile as:

opt(ω) = Fex(ω)/(2 Ri(ω)), (28)

here Ri = 1/2 (Zi + Z∗
i
) is the real part of Zi. The condition in (28)

s a condition on the amplitude of Vopt(ω), with the restriction that
opt(t) be in phase with fex(t), since Ri is a real (and even) function.

his phase condition, considered separately, forms the basis for some
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Fig. 15. Proposed control architecture for the simple controller. The EKF effectively tracks the wave frequency and amplitude as in (29), while the 1/H(t) block provides an adaptive

feedforward gain to determine the optimal velocity profile.
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imple WEC phase control strategies, such as latching Budal and Falnes

1975), Babarit, Duclos, and Clement (2004).

While the complex conjugate control resulting from the impedance

atching problem provides the conceptual framework for optimal

EC control calculations, its implementation is not straightforward,

or the reasons mentioned above. As a result, many alternatives

ave been proposed, many based on complex conjugate control,

ith the aim of being more suitable for implementation or real-time

alculation.

A simple development of the basic condition in (27) is suggested

n Fusco and Ringwood (2013), which carries the assumption that

ex(t) is a narrow-banded harmonic process, defined by time-varying

mplitude A(t), frequency ω(t), and phase ϕ(t) as:

fex(t) = A(t) cos (ω(t)t + ϕ(t)) (29)

he optimal reference velocity can then be generated from the adap-

ive law

re f (t) = 1

H(t)
fex(t),

1

H(t)
= 1

2Ri(ω̂)
(30)

here the value of the constant H(t) is calculated from the curve

/2B(ω), based on a real–time instantaneous estimate of the peak

requency of the wave excitation force. An on-line estimate of the

requency ω̂ and amplitude Â is obtained with the extended Kalman

lter (EKF) Quine, Uhlmann, and Durrant-Whyte (1995). Based on the

arrow-banded assumption of (29), the excitation force can be ex-

ressed in complex notation as:

fex(t) = �
{

Aejϕejωt
}
, F̂ex � Aejϕ (31)

here F̂ex is the complex amplitude of fex(t), denoting fex(t) as a single

inusoid with amplitude A and phase ϕ.

As a consequence of the proportional reference–generation law in

30), the complex amplitude of the velocity V̂ and position Û can be

xpressed as:

ˆ = A

H
ejϕ (32)

ˆ = V̂

jω
= A

jωH
ejϕ (33)

uppose that the vertical excursion of the WEC is limited to ± Ulim

rom equilibrium. From (33), the position constraint can be written

s an equivalent velocity constraint:

ˆ = V̂

jω
≤ Ulim ⇔ |V̂ | ≤ ωUlim (34)
nd an upper bound for the variable gain, 1/H, involving the ampli-

ude and frequency of the excitation, can be derived from (32) as:

1

H
≤ ωUlim

A
(35)

he reference generation strategy, based on (28), (30), and (35) can

herefore be modulated to keep the amplitude of the velocity within

he bound specified in (34). A real–time estimate of the frequency ω̂
nd amplitude Â of the excitation, can be obtained through the EKF

udal and Falnes (1982), Fusco and Ringwood (2010) and the feedfor-

ard gain 1
H(t)

adjusted according to:

1

H(t)
=

⎧⎪⎨
⎪⎩

1

2Ri(ω̂)
, if

ω̂Ulim

Â
>

1

2Ri(ω̂)

ωUlim

Â
, otherwise

(36)

ccording to (36), when in the unconstrained region, the velocity is

uned to the optimal amplitude given by complex–conjugate control,

s in (28). Otherwise, the maximum allowed velocity (lower than the

ptimal) is imposed, while keeping the velocity in phase with the ex-

itation force. The control structure is illustrated in Fig. 15.

Other control architectures have also been proposed, including,

or example, those based on numerical optimisation. Though the per-

ormance function to be maximised is somewhat non-traditional,

amely:

(T, fpto) =
∫ T

0

fpto(t) v(t) dt (37)

here fPTO is the PTO force and v(t) the velocity profile of the device,

number of control methods having their origins in mainstream con-

rol have been customised for use in a wave energy context. These in-

lude model predictive control Hals, Falnes, and Moan (2011), Cretel,

ightbody, Thomas, and Lewis (2011), Brekken (2011), Richter, Ma-

aña, Sawodny, and Brekken (2013a), Li and Belmont (2014) and a

umerical optimisation method using a pseudo-spectral parameteri-

ation Garcia-Rosa et al. (2015a). A reasonably comprehensive review

f control strategies for WECs is given in Ringwood et al. (2014).

One of the significant challenges in wave energy control is that of

he assumption of model linearity. Many hydrodynamic models are

inearised around the SWL. This follows a relative normal practice in

raditional control, but is somewhat less valid in the case of wave en-

rgy, where the general objective is to exaggerate the device motion,

ather than drive the system to an equilibrium point. More recently,

ontrol algorithms for WECs have begun to emerge which deal with

arious nonlinear aspects, including:
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• Nonlinear hydrodynamic restoring force Richter, na, Sawodny, and

Brekken (2013b);

• Viscous drag resulting from relatively high body/fluid motions

Bacelli and Ringwood (2014);

• Non-ideal PTO effects ao and Henriques (2015), Genest, Bonnefoy,

Clément, and Babarit (2014), Bacelli and Ringwood (2014).

However, controllers dealing with fully nonlinear hydrodynamics

(for example, incorporating nonlinear dynamic Froude–Krylov forces)

have yet to be developed.

4.3.2. PTO force control

Given the range of PTO control inputs as shown in Fig. 11 and the

wide variety of PTO systems employed on prototype WECs, there is

little convergence on PTO control system design. However, PTO con-

trol represents a traditional tracking control problem, to which a wide

variety of conventional control strategies can be employed.

A number of studies have documented lower-loop control strate-

gies for WEC PTO systems, including solutions based on Internal

Model Control (IMC) Fusco and Ringwood (2013), ao, Mendes, Valério,

and Costa (2007) and Proportional–Integral–Plus (PIP) control Taylor,

Stables, Cross, Gunn, and Aggidis (2009). A robust control strategy,

using a passivity–based controller, is presented in Fusco and Ring-

wood (2014). In some cases an integrated high/low-level controller is

employed as, for example in Falcão (2007), for a two-body WEC with

a hydraulic PTO system.

4.4. Comparisons and contrasts of wind and wave control systems

Given the more mature development of wind turbines, consider-

ably more attention has been focussed on the wind turbine control

problem, resulting in refined control systems which can undertake a

variety of functions, including:

• Optimal set–point generation;

• Turbine speed and torque control (setpoint following);

• Supervisory control of the turbine, considering the different oper-

ation requirements under the various scenarios in Fig. 2.

In addition, various advanced strategies, such as fault tolerant con-

trol, have also been developed for wind turbines, as articulated in

Section 5.1.

It is clear that various ‘levels’ of control are required in both ocean

energy and wind turbine applications. There is a top level of super-

visory control which assesses the incident energy resource and may

curtail the operation of the device in the face of extreme conditions.

Such curtailment may be requirement in order to preserve the device

integrity, ensure safe operation, or be required by legislation, as in

the case of wind turbines. This is the case when wind turbines work

in full load conditions, i.e. above the rated wind speed. On the other

hand, they are designed to operate in the energy capture mode, i.e.

below the rated wind speed. This working condition is similar to the

WECs, where maximum–energy transfer is required. However, wave

energy devices will frequently encounter sea states which are out-

side their normal operational envelope and some supervisory strat-

egy may be necessary to ensure that device integrity is retained.

Such supervisory control is important, and it can represent an im-

portant issue also for the safety of wind turbines, as briefly outlined

in Section 5.1.

Finally, one control aspect which is contrasting between wind and

wave applications is the relative benefit of controlling an array of de-

vices in a co-ordinated way. For wind farms, only destructive inter-

ference occurs between neighbouring turbines due to wind shadow

effects. For wave energy device farms, however, both constructive and

destructive interference may occur. The optimal operation of both

wind and wave farms is a significant function of the farm layout,

which depends on the land topography and the wind direction prob-

ability distribution. However, in the wave energy case, for a given
evice layout, co-ordinated control of device motions may optimise

onstructive device interference (since each moving device radiates

aves), resulting in potential gains of up to 20% in captured energy

acelli et al. (2013a), Bacelli and Ringwood (2013a). It has also been

hown that, for the wave energy case, that there is significant inter-

ction between the control system employed and the optimal WEC

rray layout, from and energy capture perspective Garcia-Rosa et al.

2015a).

It is worth noting that, with reference to wind farms, the turbines

re usually positioned to minimise down–wind interaction, so the

nteraction effects are minimal. This means that the distributed and

e–centralised control of farms is mainly a subject of electrical load

alancing rather than distributed aspects of aero–mechanical rotor

ontrol. However, some recent studies have been performed in or-

er to decouple the interaction effects among the wind turbines of

wind farm Simani, Farsoni, Castaldi, and Mimmo (2015b), Simani,

arsoni, and Castaldi (2015a). The situation with arrays of wave en-

rgy converters is different, where the interaction between relatively

lose WECs (point absorbers, etc)in an array can be considered to be

ignificant. Oscillating WECs generate radiation waves covering a sig-

ificant area, with resulting possibilities for both positive and nega-

ive reinforcement of the incident wave excitation, for any particular

evice.

To this end, wave energy arrays need to be carefully laid out, but

entralised (global) array control algorithms can play a significant

art in maximising the benefit of mutual radiation effects Bacelli,

. Balitsky, and Ringwood (2013b), Bacelli and Ringwood (2013d),

here a complete model of the hydrodynamic interactions is avail-

ble. It has also been shown that there is significant interaction be-

ween the optimal WEC array layout problem and the global WEC

rray control problem i.e. the optimal WEC array layout depends on

he WEC array control strategy employed Garcia-Rosa, Costello, Dias,

nd Ringwood (2015b).

. Towards the future

The variability of the power produced from renewable sources and

ts uncontrollable nature negatively affects their effectiveness in re-

ucing the requirement for thermal plants (it reduces their capacity

redit) and makes them a less attractive and a potentially more ex-

ensive alternative. Wind and wave energy, however, offer important

nd significant energy resources and can be of major assistance in

itigating climate change, so it is imperative that maximum effort

e devoted to refining the technology (including control technology)

sed to convert these resources to a useful and economic form.

This paper focusses on the analysis and the comparison between

he two resources, considering also the variability of the power ex-

raction when wind or wave offshore farms are adopted, with respect

o the exploitation of the renewable resources. It can be noted that, in

ome cases, wave systems where the predominant (from an energy

oint of view) part is composed of large swell systems, generated

y remote wind systems, have little correlation with the local wind

onditions. This means that the two resources can appear at different

imes and, if considered together, their integration in combined

arms allows a more reliable, less variable and more predictable

lectrical power production Babarit et al. (2006), Fusco et al. (2010).

he reliability is improved thanks to a significant reduction of the pe-

iods of null or very low power production (which is a problem with

ind farms). The variability and predictability improvements derive

rom the smoothing effect due to the integration of poorly correlated

iversified sources. To this end, a number of combined offshore

ind/wave platforms have also been proposed Soulard, Babarit,

orgarino, Wyns, and Harismendy (2013). Combined wind/wave

nstallations also have the significant benefit of sharing electrical and

ivil engineering infrastructure. This may help to reduce overall costs,
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Fig. 16. Structure of the active and passive fault–tolerant control systems.
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hough it is also likely that there is some compromise in the level of

ptimality of the individual wind or wave resources, in such cases.

On the other hand, in some other cases, the combination of wind

nd waves does not appear to be an attractive solution, due to a

imited wave energy resource, which is strongly correlated to the

ocal wind conditions Fusco et al. (2010). The conclusion is, then,

hat the potential benefits of the integration of wind and wave re-

ources, where the climate of the location is appropriate, are too im-

ortant to be neglected. This paper attempts to highlight the quan-

ification of these benefits, particularly from a raw resource assess-

ent point of view. With wave energy technology becoming more

ature, it should be possible to develop a more complete analysis

here these benefits are integrated, together with the actual costs

f the different wave and wind technologies, in a global functional,

hose optimisation should lead to a proper dimensioning and design

f offshore combined farms, given the energy climate of a particular

ocation.

Note finally that, as the world’s power supply depends to an every

reater extent on renewable resources, it is consequently and increas-

ngly important that these are as reliable and predictable as possible,

o that effective economic dispatch can be performed. So-called Fault

olerant Control (FTC) Blanke et al. (2006) can play a substantial part

n increasing reliability of modern wind turbines and wave energy

evices. This is especially true for remote marine locations, where

ccess and weather windows make regular and immediate mainte-

ance problematic, and FTC can significantly increase energy conver-

ion productivity by providing some level of energy supply during

ertain fault conditions.

Benchmark models for wind turbine and wind farm fault detec-

ion and isolation, and FTC have previously been proposed Odgaard

nd Stoustrup (2013), Odgaard and Stoustrup (2014). Based on this

enchmarks, an international competitions on wind turbine fault

iagnosis and FTC were announced Odgaard and Odgaard (2012),

dgaard and Shafiei (2014). Under these considerations, Section 5.1

ummarises advanced methods that show potential for wind turbine

ault diagnosis and FTC. In addition, as they highlighted good perfor-

ance, these approaches are also relevant for industrial usage. This

eans that the wind turbine controller can continue operation as in

he fault–free case.

In contrast, however, there have been few studies which com-

are either different modelling or different control strategies for

ECs. This is a significant limitation in making an assessment of true

rogress in the state-of-the-art. While there are a wide variety of

EC concepts, and different WECs may benefit from different cus-

omised modelling and control solutions, some benchmark compar-

sons are necessary. Some progress, in this regard, is being made with

he recent COER hydrodynamic modelling competition Garcia-Rosa

t al. (2015b), which provided a benchmark data set from tank testing
 a
f a WEC-like device, while a WEC control benchmark competition is

urrently in the early stages of organisation.

However, while FTC (and associated benchmark problems) are be-

oming popular in wind turbine control research, wave energy sys-

ems lag far behind, in spite of perhaps a greater imperative for fault-

olerant systems, due to more severe access limitations. However, the

enchmark problems and FTC solutions developed in the wind en-

rgy research community can provide a useful model that the wave

ommunity can learn from.

.1. Advanced methods in wind turbine control

Over the last decade, many studies have been carried out on wind

urbine fault diagnosis, with the most relevant including Gong and

iao (2013), , Estima, and Cardoso (2013). In addition, the FTC prob-

em for wind turbines was recently analysed with reference to an off-

hore wind turbine benchmark e.g. in Odgaard et al. (2013). In gen-

ral, FTC methods are classified into two types, i.e. Passive Fault Tol-

rant Control (PFTC) scheme and Active Fault Tolerant Control (AFTC)

cheme Mahmoud et al. (2003). In PFTC, controllers are fixed and are

esigned to be robust against a class of presumed faults. In contrast

o PFTC, AFTC reacts to the system component failures actively by re-

onfiguring control actions so that the stability and acceptable per-

ormance of the entire system can be maintained. Therefore, the term

sustainable’ is used to characterise wind turbine control, and it rep-

esents a challenging task.

In order to outline and compare the controllers developed using

ctive and passive fault–tolerant design approaches, they should be

erived using the same procedures in the fault–free case. In this way,

ny differences in their performance or design complexity would be

aused only by the fault tolerance approach, rather than the under-

ying control solutions Bianchi et al. (2007), Galdi, Piccolo, and Siano

2008).

The two FTC solutions have different structures as shown in

ig. 16. Note that only AFTC relies on a fault diagnosis algorithm

FDD). This represents the main difference between the two control

chemes.

The main connection between AFTC and PFTC schemes is that an

FTC relies on a fault diagnosis system, which provides information

bout the faults f to the controller. In the considered case, the Fault

etection and Diagnosis (FDD) system contains the estimation of

he unknown input (fault) affecting the system under control. The

nowledge of the fault f allows the AFTC to reconfigure the current

tate of the system. On the other hand, the FDD is able to improve

he controller performance in fault–free conditions, since it can

ompensate modelling errors, uncertainty and disturbances. On

he other hand, the PFTC scheme does not rely on a fault diagnosis

lgorithm, but is designed to be robust towards any possible faults.
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This is accomplished by designing a controller that is optimised for

the fault–free situation, while satisfying some graceful degradation

requirements in the faulty cases. However, with respect to the robust

control design, the PFTC strategy provides reliable controllers that

guarantee the same performance with no risk of false fault detection

or reconfigurations.

Clearly, the issues addressed by such FTC schemes for wind tur-

bines are no less relevant for wave energy applications. In fact, the is-

sue is likely to be even more manifest where wave energy devices are

located far offshore (the location of the greatest wave energy) and ac-

cess for maintenance and repair may be difficult Odgaard (2012). Such

an issue is, of course, also relevant for those wind turbines located

offshore though, in such cases, preference is usually given to sites

which present relatively shallow water depth. However, recent de-

velopments in floating wind and wave platforms Soulard et al. (2013)

may present composite challenges, but they are not considered in this

paper.

5.2. Overall economic considerations

While control systems are ostensibly added in order to maximise

power capture, care must be taken that such control systems have no

adverse effect on the system. Though raw wind and wave energy are

essentially free, the systems to convert this raw energy are not and,

ultimately, the receipts from energy sales are balanced to some extent

by significant capital and operational costs. In the offshore environ-

ment, it is estimated that capital and operational costs are in roughly

equal proportion.

One important aspect in this economic perspective is to consider

if the addition of a control system may drive the system more ag-

gressively in an attempt to increase energy capture, perhaps lead-

ing to shortened device lifetimes. While the addition of control to

a wind turbine is likely to be relatively benign, the use of motion–

exaggerating control for a reciprocating wave energy device can have

a dramatic effect on device motion. Consequently, the balance be-

tween increased energy capture (income) and increased device wear

(cost) needs to be carefully considered. Is also known, for example,

that the use of reactive control, where some energy from the grid

side is used to exaggerate device motion (capturing more net energy

overall) in WEC control brings significantly increased requirements in

system power capacity Shek, Macpherson, Mueller, and Xiang (2007).

While potentially effecting more aggressive device motion, there

are some redeeming features of control which may help the designer

in practical applications. For example, physical constraints can be ex-

plicitly included in many control formulations, resulting in a control

action that respects (and is optimal within) the physical system con-

straints. In addition, for both wind turbines and WECs, most optimal

control formulations allow some explicit trade-off between control

action and the main objective (e.g. setpoint tracking, energy maximi-

sation, etc), which provides a design handle on the level of aggressive-

ness of the control. Control science also provides a body of knowledge

relating to the design of control systems which are tolerant (in some

respect, but usually with reduced performance) to system, actuator

or sensor faults or malfunctions, as described in Section 5.1.

It has also been shown that there is often significant interaction

between the optimal (uncontrolled) device design and the control

system used to optimise its behaviour. For example in the wave en-

ergy context, where controllers are effectively used to extend the

bandwidth of WECs so they can operate effectively across a wide

variety of sea conditions, the uncontrolled (open loop) device res-

onant frequency should be carefully placed, so that the controller

can take maximum advantage Garcia-Rosa and Ringwood, 2015. For

example, latching control Babarit and Clement (2006) can extend

the WEC frequency response in the direction of lower frequencies,

suggesting that the (uncontrolled) resonant frequency of the WEC

should be small. This has a double benefit in ensuring an optimal
EC/controller combination, while also requiring a smaller device,

ith potentially lower capital costs.

In the wind turbine case, significant advances in turbine control

ave led to a situation where turbine developers are providing pro-

ressively less control power, so that control energy consumption

s minimised. However, this reaction, in turn, leads to highly non-

inear control action, since the control signals are regularly saturat-

ng, increasing the control challenge still further Leithead and Connor

2000).

. Conclusion

The motivation for this paper came from the need to have an

verview about the main challenges of modelling and control for

ind turbines and wave energy devices. In order to present com-

on and different requirements over power conversion efficiency (i.e.

he renewable source power that can be converted into electric en-

rgy, the work focussed on commonalities and contrasts for these two

elds.

Therefore, the analysis of the commonalities and the contrasts be-

ween these two fields was mainly performed according the items

elow:

• System model purpose;

• Renewable resource descriptions;

• Control strategy development.

On the basis of these items, the following considerations have

een finally outlined. On one hand, wind turbine systems seem rel-

tively mature from the modelling point of view, whilst wave en-

rgy devices still present challenging modelling issues. This remark

s valid for medium size wind turbines: large rotor installations can

rive challenging and complex modelling and control issues.

Both wind turbine and wave energy control systems can share a

ommon structure. In addition to these components, a further level

f supervisory control is required to correctly select the control strat-

gy appropriate to the model of operation, usually dictated by the

revalent wind or wave resource measure. For the wind turbine case,

uch operational modes are well defined, as articulated in terms of

he various sections of the power curve. However, though the over-

ll number of operational modes may be lower, wave devices also

ave a cut–in power level below which energy conversion is not

conomic/possible, a main power production region where energy

onversion should be maximised, a region where energy conversion

ust be curtailed due to the capacity of (for example) electrical com-

onents and, finally, a survival mode where energy production is

bandoned and system motion configured to avoid potential struc-

ural damage. The means by which survivability is managed in the

ave case is not as straightforward as in wind, due to the wide variety

f wave devices and the difficulty of finding an orientation or config-

ration which avoids the destructive influence of high wave energy

uxes.

Despite the differences in relative maturity of wind and wave en-

rgy, both share many fundamental principles, including the fact that

nly a fraction of the raw wind (60%) and wave (50%) resources can

e usefully converted, at best. These limitations relate to basic aero-

ynamic (wind) and hydrodynamic (wave) considerations.

In general, both wave and wind energy conversion systems require

high degree of availability, as it significantly affects the final en-

rgy cost. Moreover, these systems have highly nonlinear dynamics,

ith stochastic inputs, in the form of wind and wave driving forces.

uitable control methods should provide the optimisation of the en-

rgy conversion efficiency over wider than normally expected work-

ng conditions. Moreover, it was shown that proper mathematical de-

criptions were necessary to capture the complete behaviour of the

ystems under consideration, thus providing an important impact on

he control design itself.
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On the basis of these considerations, it seems that the considered

wo domains can be only partially compared. The modelling of these

ystems is quite different, but the control principle (if limited to the

ind turbine partial load condition) is similar. Also the intermittent

esources that drive them are, in many cases, uncorrelated, leading

o the advantageous combination of both technologies. However, the

echnological challenge, from a modelling and control perspective,

oupled with the high cost of offshore deployment and maintenance,

elps to explain why wind turbines are now commonplace, whilst

ave energy devices are not.
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