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This paper describes the application of time-series modelling techniques to electricity 
consumption data for a particular power board. Modelling is performed on total 
consumption, the data being available on a weekly basis with exact measurements 
for approximately the past 11 years. Both unJorced and forced models are 
considered. An initial data analysis is performed to ascertain the influence of 
temperature and rainfall inputs on the model, and later on, a spectral analysis is used 
to investigate the.frequency components present in the time-series data. A signtficant 
component of the determination of time-series models is the selection of an appropriate 
model order. Both low and high order models are evaluated, and their properties 
compared. For the unforced case, both AR (autoregressive) and ARMA 
(autoregressive moving average) models are considered. For the forced case, these 
model structures are extended to include ARX and ARMAX models which have one 
or more exogenous inputs. Such models are further extended by considering the 
possibility of predicting the inputs to the models, when a forecasting approach is 
required. Simulation results are provided for all cases together with a measure of 
the prediction accuracy. Comparisons are made for the various model structures, as 
well as models based on short and long data records and models wlhich are driven 
with an external noise sequence or merely releasedfrom appropriate initial conditions. 
K~worh: Forecasting; Time series; Electricity consumption 

Modelling of electricity consumption using the time- 
series approach has received considerable exposure in 
the literature. A significant part of the reason for the 
growing interest in energy modelling is the constant 
rise in fuel prices. Energy utilities need to make their 
operation as efficient as possible, in order to offer 
electricity at affordable prices. To meet this objective, 
it is important to be able to tailor supply to demand 
as well as possible, and some method of consumption 
forecasting is necessary in order to predict future 
supply requirements. 

This paper presents a case study,on the total retail 
weekly electrical energy supplied by one particular 
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power board. For reasons of confidentiality, the power 
board is not named, and all data have been detrended 
of zero and first-order components. A variety of model 
structures are considered, and models are identified 
under a variety of conditions, for example, different 
length data records, different model orders and 
different driving functions. For the particular situation 
being considered, the only inputs for which data were 
available were rainfall and temperature. 

The MATLAB package [ 31 (with the Identification 
Toolbox [2] ) was used to evaluate the models and 
MATLAB macros written to perform the predictions 
for the various model types. 

The paper is organized as follows. First the 
(detrended ) data are presented and cross-correlated 
with prospective inputs to determine the significance 
of the inputs. Then unforced models for electricity 
consumption are identified, with significant attention 
paid to model order selection, length of data record 
and the determination of suitable initial conditions for 
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Figure 1. Complete detrended data record. 

the models. In the next section, forced models are 
considered and then we attempt to produce (AR) 
models for the inputs, allowing the forced models to 
be used for forecasting. In the next section there is an 
in-depth discussion of the results and an overall 
comparison of the models and techniques used. 
Finally, we draw conclusions from the analysis and 
make some recommendations based on the experiences 
with this particular case study. 

Data preparation 

Weekly consumption data are available from 1980 to 
1991, a total of 543 points. The data are detrended to 
remove constant and first order components. This 
helps to ensure that the identification algorithms can 
produce parameter estimates which are unbiased. The 
complete detrended data record is shown in Figure 1. 
Note the cyclic variations in the data. These occur not 
only because of annual temperature profile variations, 
but also because of the cyclical consumption patterns 
of seasonal industries. The first 491 data points will be 
used for system identification and the remaining 52 
(corresponding to a year’s duration) used for 
validation purposes. The objective for the current 
exercise is to produce a projection or forecast of future 
weekly consumption a year in advance. If inputs to 
the system are considered, then scenario testing is 
possible, ie the effect of certain (perhaps known) 
variations in some input variable on the electricity 
consumption may be examined. If it is required to do 
forecasting with a model which has deterministic 
inputs, then future values for the inputs must be 
available. Where future values are not available, it 
may be possible to estimate them, by generating a 
model for the input. Such a situation is examined in 
the section on prediction of temperature inputs. 
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The two inputs which are available for the current 
analysis are average temperature and rainfall. Since 
average temperature is available on a daily basis, a 
daily heating degree day (UK Department of Energy 
[ 51) (HDD) figure may be evaluated and accumulated 
to provide a weekly HDD figure. The base 
temperature used in the HDD calculations is 18 “C. 
Obviously, HDD variations have a significant 
influence on the consumption pattern and this is 
verified by the cross-correlation function shown 
in Figure 2. 

Rainfall is considered by some to psychologically 
influence people to turn on heaters, but the 
cross-correlation function in Figure 3 does not 
indicate that this is the case for the current situation. 

Based on Figures 2 and 3, HDD18 or average 
weekly temperature will be the only input to be given 
further consideration. It may also be noted that some 
predictions were performed using actual rainfall data; 
however, no discernible improvement in the prediction 
was obtained by using this extra input. 

Unforced models 

In this section, AR and ARMA models for electricity 
consumption will be identified. The structure of these 
models is as follows: 

AR: A(q)y(t) = e(t) (1) 

ARMA: A(q)y(t) = C(q)e(t) (2) 

where 

A(q) = 1 + a,q-1 + . . + anaq-“‘I (3) 

C(q) = cg + c,q-’ + + C,,q-nc (4) 
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Figure 2. Cross-correlation of HDD18 with consumption. 
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Figure 3. Cross-correlation of rainfall with consumption. 

4 -’ is the delay operator and e(t) is a white noise 
sequence. In the case of the AR model, a prediction 
may still be obtained even if no driving noise sequence 
is used by running the model from non-zero initial 
conditions. Indeed, for all models, it is important that 
appropriate initial conditions (corresponding to 
previous actual consumption) are used, so that the 
correct starting point is achieved. For the ARMA case, 
omission of e(t) defaults to the AR model. 

To set up the identification problem, the orders of 
the A and C polynomials (na and nc) must be 
determined. To assist with this choice, the loss function 
is plotted for different values of na and nb. The loss 
function provides a measure of the mean square 
difference between the model output and the actual 
consumption for a particular model structure, for zero 
initial conditions. The loss function is plotted in Figure 
4 for the AR term. 

The objective is to pick polynomial orders which 

are sufficient to describe the system. From Figure 4, 
note how the loss function for the AR term decreases 
rapidly until order 10 is reached. No significant 
improvement is apparent until order 24 is reached ; na 

equal to 10 would therefore seem to be one possible 
choice. Another possible choice is order 53. This has 
the added significance of corresponding to a year’s 
duration, coinciding with the natural cycle in the data. 
A popular criterion to use in model order selection is 
Akaike’s information theoretic criterion (AIC) 
(Ljung Cl]), which is order weighted (ie it penalizes 
higher orders). Selection under this criterion returns 
an order of 53. Setting na = 10 gives a selection 
of 7 for nc (nc must be < = na) and if nu = 53, then 
nc = 17 is a suitable choice. 

For comparison purposes, both low order and 
higher order AR models are evaluated. A least squares 
technique (Soderstrom and Stoica [4]) is used to 
perform the system identification. The parameter 
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Figure 4. Model order selection for AR term. 
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Figure 5. Predictions from initial condition driven AR models. Key: ~ 
Actual, --- order 53 model, ... order 10 model. 

values for the 10th order are as shown in Table 1. The 
bottom row in Table 1 give the standard deviation of 
the estimates. Predictions from both 10th and 53rd 
order AR models are now evaluated and compared 
against the actual consumption for the validation 
period of 52 weeks. For systems modelled with AR 

models, 

A(q) = 40 (5) 

where the term e(r) represents the modelling error, 

that is, the difference between the data and the model 
prediction, A (q)y( t). When, as here, the sequence e(t) 
is a white noise sequence, it is entirely unpredictable. 
Consequently, there is no modelling advantage in 
using a white noise driving sequence, e(r), in 
conjunction with the AR term A(q)y(t), in making 
predictions. Accordingly, Figure 5 shows the predictions 
obtained by releasing the model from initial conditions 
only. 

This means that if enough trials are taken, the 
average of the responses due to a driving noise 

Table 1. Parameter values and standard deviations for the 10th order model. 

a1 a2 a3 a4 05 a6 07 a8 a9 alo 

-0.6088 -0.1674 - 0.2564 -0.003! 0.0166 0.0545 -0.0077 -0.0174 0.0399 0.1156 
0.0452 0.0535 0.0540 0.0553 0.0552 0.0553 0.0560 0.0550 0.0544 0.0463 

ENERGY ECONOMICS October 1993 



Forecasting weekly electricity consumption: J. V. Ringwood et al 

x106 

0 10 20 30 

Week number 

40 50 ii0 

Figure 6. Predictions from ARMA models. Key: ~ Actual, ~~~ nc= 1, ... 
nc = 20. 

sequence will be the same as that obtained from initial 
conditions alone. The response obtained from a single 
trial will deviate from yic, but the deviation will be 
purely random, offering no improvement to the 
prediction. 

Some comments on the AR models are pertinent at 
this point. It is clear from Figure 5 that the 53rd order 
model produces superior predictions to the 10th order 
model. This may be attributed to two factors: 

(i) The higher order model has the increased 
complexity required to provide the many 
inflections in the consumption profile. 

(ii) The higher order model is initialized with the 
full previous year’s consumption profile. 

The extra computational burden (identification and 
simulation) associated with the higher order model is 
not important, since real-time operation is not 
required. 

The possibility of using ARMA models is now 
examined. Based on the foregoing analysis, it would 
seem reasonable to retain a 53rd order AR term. 
Unfortunately, plotting the loss function for a white 
noise driving sequence does not indicate any 
outstanding choices for the order of the MA term, and 
the AIC suggests an order of 1. Due to this uncertainty, 
a number of ARMA models will be evaluated and their 
predictions compared. The following orders for the 
MA term will be examined: 1, 5, 10, 20, 32 and 53, 
covering the available range. Note that order zero 
corresponds to an AR model. 

The results for nc = 1 (dashed line), nc = 20 (dotted 
line), and the actual consumption (solid line) are 
shown in Figure 6. Since the system is now subject to 
a stochastic input, these predictions are evaluated as 
an average of 100 trials with different driving noise 

sequences. From observation, little benefit seems to 
be obtained from use of the higher order MA terms. 
This is verified in the quantitative comparisons in the 
section analysing the results, where it is confirmed 
that, of the orders tested, nc = 1 gives the best 
predictions. The ARMA predictions, however, do not 
offer any improvement over the AR results. 

Forced models 

In this section, models with deterministic (and 
possibly stochastic, as well) inputs will be considered. 
The objective of these models is to include information 
on certain variables which are known to have a strong 
influence on electricity consumption. While AR and 
ARMA models can only forecast the ‘predictable’ (or 
regular) variations in consumption, models with 
deterministic inputs have the capacity to show some 
‘unpredictable’ variations in consumption, where the 
unpredictability is somehow reflected in the input 
signals. This property is especially useful in scenario 
testing, where the effects of global warming (for 
example) can be analysed in advance. In many cases, 
of course, future values for these external inputs will 
not be available. This situation is addressed to some 
degree in the section on prediction of temperature 
inputs, where the benefit of attempting to predict the 
unknown future input values is examined. Two model 
structures will be used: 

ARX : A(q)y(t) = B(q)u(t) + e(t) (6) 

ARMAX: A(q)y(t) = B(q)u(t) + C(q)e(t) 

(7) 
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Figure 7. Order selection for B(q) polynomial. Key: * * * HDD input, + + + 
Average temperature input. 

-2 
0 10 20 30 30 50 ( 

Week number 

Figure 8. Predictions from HDD ARX models. Key: ~ Actual, --- nh=2, 

nb=23. 

where 

B(q) = b, + b,q_’ + . + b,,q_“b (8) 

As with the unforced models, e(t) can be either 
omitted or retained. From the analysis in the previous 
section, it is seen that no advantage is to be gained in 
including e (t ) in the ARX model. A non-zero e (t ) will 
be used in the ARMAX model, since setting e (t ) equal 
to zero would result in a default to the ARX model. 

The first step in evaluating the ARX and ARMAX 
models is to select orders for the polynomials A(q), 
B (q ) and C (q ). The order of the A (q ) polynomial will 
be retained at 53 for this analysis. This choice was 
well justified in the section on unforced models, and 
similar model orders will allow a more meaningful 
comparison of the performance of the forced models 
with the unforced models. The order of the C 
polynomial as determined in that section will also be 
retained for comparison purposes. The order of the B 
polynomial still remains to be determined. 

Two possible (and mutually exclusive) inputs are 
available - heating degree day (HDD) data 
(accumulated over a week) or weekly average 
temperature. The effect of using both inputs will be 
examined. 

Figure 7 shows the variation in loss function for an 
ARX model with increasing nb for the HDD (*) and 
the average temperature ( + ) inputs. Both plots are 
similar in profile, with the loss function being 
significantly lower for the HDD input. This gives an 
initial indication that HDD is the superior input to 
use. Choice of nb, however, is not quite as 
straightforward. 

Two possibilities which will be examined are nb = 2 
and nb = 23. Unfortunately, application of AIC 
returns a value of nb = 60 which is unusable, since nb 
must be less than na. Figure 8 shows the predictions 
from the HDD ARX models. The result from the 
model with the 2nd order B(q) polynomial is given 
by the dashed line and that from the 23rd order B(q) 
given by the dotted line. The solid line indicates the 
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Figure 9. Comparative results from HDD and average temperature inputs. 
Key: ~ Actual, --~ HDD input, Average temperature input. 
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Figure 10. Comparative results for ARMAX and ARX models. Key: 
Actual, --- ARMAX model, ARX model. 

actual consumption for that period. From observation, 
it would appear that the 2nd order B(q) polynomial 
performs slightly better than the 23rd order one (see 
the section on analysis of results). This, combined with 
the issue of increased complexity, are grounds for 
discarding the higher order choice at this stage. 

Note that a similar result was obtained by 
comparing low and high order predictions from the 
average temperature input. Figure 9 compares the 
predictions for HDD and average temperature ARX 
models with 2nd order B(q) polynomials. The HDD 
model performs slightly better than the average 
temperature model (again see section on analysis of 
results), confirming the initial indications from 
Figure 7. 

superior when stochastic models are used. The 
predictions from this model are shown in Figure 10 
(dashed line) with the predictions from the HDD ARX 
model (with nb = 2) (dotted line) and the actual 
consumption (solid line) shown for comparative 
purposes. From the plot, it is seen that there is little 
difference between the predictions from the ARX and 
ARMAX models, the ARMAX being slightly better. 
This will be confirmed by the quantitative comparison 
in the results section. Note that the ARMAX 
prediction was evaluated as the average over 
100 trials using different random noise inputs. 

Prediction of temperature inputs 

Finally an ARMAX model is considered. From From the sections on unforced and forced models, it 
previous model order analysis in this and the previous was seen that notable improvement in the quality of 
section, the model orders will be chosen as: na = 53, the predictions is possible when appropriate input 
nb = 2 and nc = 1. The model parameters are signals are used. However, the difficulty of providing 
identified using a prediction error method, which is future values of input signals makes ARX and 
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Figure 11. Model order selection for HDD and average temperature models. 
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Figure 12. Prediction of detrended HDD input. Key: ~ Actual, ~~~ HDD 
model, AT27 model, -. - AT52 model. 

ARMAX models difficult to use for forecasting 

purposes. In an effort to retain the effectiveness of 
these models and extend their use to the forecasting 
situation, this section will examine if any benefit is 
obtained from using models for the inputs (ie 
predicting the inputs). This analysis will be restricted 
to temperature inputs, since this is the limit of data 
availability. 

Application of the AIC returns orders of 27 and 52 
for the average temperature and HDD models 
respectively. However, considering that the loss 
function profiles are very similar and the use of 
different model orders would make a direct comparison 
difficult, both model orders will be chosen as 52. 

From the section on forced models, it may be 
concluded that the most effective temperature input 
is HDD. However, due to the truncations inherent in 
HDD data (no negative values are allowed), it may 
be more beneficial to predict average temperature and 
then convert to HDD values. Therefore, AR models 
for both HDD and average temperature will be 
determined. Figure 11 shows the variation in loss 
function for various orders of HDD (* ) and average 
temperature ( +, scaled up by a factor of 35 for 
comparison) models. 

Figure 12 shows the actual (solid line ) and predicted 
HDD from the HDD model (dashed line) and the 
27th (dotted line) and 52nd (mixed line) order 
average temperature models. Detrended HDD is 
evaluated from the average temperature models by 
predicting detrended average temperature, retrending 
the prediction, conversion to HDD (with a suitable 
base temperature) and finally detrending the HDD 
data. 

One difficulty, however, exists with the conversion 
of weekly average temperature values to HDD figures. 
HDD is evaluated on a daily basis, with the weekly 
value being the cumulative sum of the seven daily 
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Table 2. The mean square fit for different temperature models. 

Prediction AT model (27) AT model (52) HDD model HDD model (T) 

MSF 9.2738 9.0235 9.1147 8.7757 

values. Daily HDD can be approximately evaluated prediction is compared in Table 2. The mean square 
as : fit is evaluated as: 

HDDbase temp = average temp - base temp MSF = norm(yp - y)/Jm (10) 

if HDDt,ase temp < 0, HDDi,,s, temp = 0 (9) where yp is the predicted value of the variable y. 
The ARMAX model will now be used to evaluate 

a prediction of consumption using the best predicted 
HDD input, which comes from the truncated version 
of the HDD model output. The consumption 
prediction is shown in Figure 13 (dashed line), with 
the actual consumption (solid line) and the prediction 
from the ARMAX model with actual HDD input 
(dotted line) shown for comparison. No significant 
degradation in prediction is observed when the 
predicted HDD input is used. This result is quantified 
in the following section, along with the result for an 
ARMAX model with a predicted average temperature 
input. This section will attempt to present quantitative 
comparative results for the various models and also 
examine the spectral properties of the estimates. In 
addition, some attention will be devoted to looking 
at the effects ofdifferent length identification sequences 
and a recursive analysis to examine the consumption 
data for stationarity. 

Note the non-linear relationship between HDD and 
average temperature. It is easy to see that if HDD is 
accumulated over a week and an attempt is made to 
evaluate weekly HDD using the above relationship, 
where the average temperature value in the above 
equation is a weekly one, then a discrepancy will exist 
between the two weekly HDD values, due to the 
non-linearity. 

One point which arises is that while many 
discontinuities may exist with daily HDD data (a 
significant number of zero elements), it is less likely 
that weekly HDD data will contain very many zeros, 
ie it is not too likely that daily HDD will be zero 
for a full week. This may mean that weekly HDD may 
be reasonably straightforward to model, with no 
recourse required to an average temperature (AT) 
model. 

Note from Figure 12 that the prediction from the 
HDD model is not restricted in its minimum value. 
An improved prediction may be obtained by 
retrending the sequence, truncating the lower values 
at zero and subsequently retrending the truncated 
sequence. The mean square fit (MSF) for each, 

Table 3 examines the mean square fit (MSF, as 
given in Equation (10)) for the various predictions 
obtained. It would appear that the best model, using 
the MSF as a criterion, is the ARMAX model with 
actual HDD input (model 12). However, if a forecast 

30 

Week number 

Figure 13. Output of ARMAX model with predicted HDD input. Key: 
Actual consumption, ---Predicted HDD input, ... Actual HDD input. 
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Table 3. The mean square fit for the various predictions obtained. 

Model type 

(1) AR 
(2) AR 
(3) ARMA 
(4) ARMA 
(5) ARMA 
(6) ARMA 
(7) ARMA 
(8) ARMA 
(9) ARX 

(10) ARX 
(11) ARX 
(12) ARMAX 
(13) ARMAX 
(14) ARMAX 
(15) ARMAX 

“a 

10 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 

nb nc 

2 
23 

2 
2 
2 
2 
2 

1 
5 

10 
20 
32 
53 

Input 

Actual HDD 
Actual HDD 
Actual AT 
Actual HDD 
Predicted HDD 
Actual AT 
Predicted AT 

MSF 

7.1361e + 05 
4.3271e + 05 
4.3912e + 05 
4.8173e + 05 
4.9043e + 05 
8.8201e + 05 
5.25621~ + 05 
6.1490e + 05 
3.8394e + 05 
4.4403e + 05 
4.0834e + 05 
3.7842e + 05 
4.2771e + 05 
3.9682e + 05 
4.3224~1 + 05 

Normabed frequency 

Figure 14. Spectral measures of data and predictions. Key: __ Actual, - 
Model 2, ... Model 5, -.- Model 9. 

is required (ie the future values of the input are not 
available), then the best option would seem to be the 
ARMAX with predicted HDD input (model 13), 
closely followed by the AR model (model 2). 

The MSF provides a time domain fit criterion. 
Further insight into the quality of predictions from 
the various models may be obtained by taking the 
analysis into the frequency domain. Figure 14 shows 
the power spectra for the actual data (solid) and 
models 2 (dashed), 5 (dotted) and 9 (mixed line). 
Note the appearance of a dominant low frequency 
component corresponding to the annual cycle in 
electricity consumption. It is seen that this component 
is faithfully reproduced by the models represented in 
Figure 14. 

A further analysis was undertaken to examine the 
effect of using different length identification sequences. 
An AR model (order 53) was evaluated for eight 
different cases, ranging from use of (the most recent) 
two years’ identification data (104 points) to nine 

years’ data (468 points). The (time domain) mean 
square fit was then evaluated for each of the model 
outputs and is plotted in Figure 15. This would seem 
to indicate that three years of data is the realistic 
minimum data length for the current case. Finally, a 
recursive identification test is performed to examine 
‘for drift etc in the model parameters. A forgetting 
factor of 0.9 was used to allow variation in the 
parameters. Figure 16 shows the variation in the first 
four parameters of a 53rd order AR model. No 
apparent drift in the parameter estimates is observed. 

Conclusions 

For the case under consideration, time-series analysis 
has been shown to be a viable and useful tool in the 
modelling of electrical energy consumption. For the 
best case observed (model 12), the mean percentage 
error in the consumption estimates over a year was 
2.3% for the retrended data. 

294 ENERGY ECONOMICS October 1993 



Forecasting weekly electricity consumption. J. V. Ringwood et al 

5.4 
xl05 

5.2 

5 
z 

!$ 4.8 

B 
5 4.6 

zz 
4.4 

4.2 

L ,-’ 

$ # 
x * 

t 
* 

4 
2 3 4 5 6 7 8 

Number of years data used 

Figure 15. Effect of different length identification sequences. 
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Figure 16. Recursive parameter calculations. Key: ~ Parameter 1, ~~- 
Parameter 2, ... Parameter 3, ~ .- Parameter 4. 

Within the availability of data, a reasonable variety 
of model types and orders were investigated. The 
ARMAX model generally proved best, with the AR 
model doing surprisingly well, considering its 
simplicity. Both from intuitive (annual cycle) and 
analytical (AIC) reasoning, an order of 53 was found 
most suitable for the AR term. In general, little benefit 
seemed to be obtained in adding a coloured noise 
model, since the predictions from the AR model were 
superior to the ARMA case, and although the 
ARMAX model was slightly better than the ARX one, 
the difference was not great. The use of the external 
input (HDD or average temperature) improved the 
prediction, and in cases where future values of the 
input are not available (corresponding to the 
forecasting case), it would still seem to be best to use 
an ARMAX model with a predicted HDD input. For 
a well behaved (almost periodic) input such as HDD 

or average temperature, it would seem to be 
straightforward to estimate future values of the input. 
This may not be the case with other inputs eg 
production data. 

It would appear that three years’ data is sufficient 
to estimate a good weekly model. No significant 
advantage was seen to be gained in the current 
example of using extra data. However, no disadvantage 
was noted, either, since no appreciable drift in the 
model parameters with time was observed. Note that 
the detrending operation tends to remove the lower 
frequency components at the start (dc and linear 
components are removed). The model then concen- 
trates on relatively high frequency components 
remaining in the detrended data, with the predicted 
data from the model being subsequently retrended to 
reinstate the correct low frequency variations. 

Overall, the benefits of time-series modelling for this 
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particular example are clear. Good predictions may References 
be obtained even without procuring external input 
data, with a mean percentage error of only 2.7% for ’ 
the AR model. This follows a straightforward 2 
procedure of detrending, identification, simulation 
and subsequent retrending, using only consumption 3 
data. With appropriate software, this exercise may be 
completed in approximately five minutes, giving good 4 
predictions of weekly consumption a year in advance. 5 
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