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ABSTRACf 

The dynamic end-point positioning problem for robotic manipulators is considered. A 

review of the current approaches to the problem is presented with a critical examination 

of each technique. A close inspection of the structure of a typical manipulator model is 

performed to investigate the suitability of the various control approaches. In particular, 

the PUMA 5 60 Industrial Manipulator is considered. The advantages and disadvantages of 

various techniques, including linear and non-linear, fixed and adaptive methods are given 

and a current approach, based on non-linear self-tuning theory is presented. An attempt 

is made to give some appreciation of the relative computational complexity of various 

algorithms and a number of possible hardware architectures for control are discussed. 

Finally, conclusions regarding the choice of dynamic control algorithms for manipulators 

are drawn. 

1. INTRQDUCTIQN 

CutTently, the area of robotics poses some of the most challenging problems to the 

control design engineer. In these days where efficiency in manufacture is so important 

and improvements in tolerances and standards is a constant requirement, it is desireable 

to improve both the speed and accuracy of robotic manipulators. 

The cun·ent range of manipulator-type robots contain either revolute joints, prismatic 

joints, or a combination of both. A review of the manipulators available would confirm 

that they fall into a number of 'standard' configurations i.e. although a good variety of 

manipulators are available, many have similar geometrical structures [1]. Examples of 

common structures are those of the Puma (revolute) and the Stanford (revolute and 
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prismatic) manipulators. 
I 
I · ! · ·· I 

The perfonnaoce of a manipulator-type robot is Influenced by a number of 

r dexterity is largely a function of the physical design, aod the speed aod precision of the 

end-effector movement depend both on the hardware , employed (servomotors and 

electroilic hardware) aod the software used to drive it. The mechaoical design necessary 

to achieve dexterity, however, results in a system with complex dynamic properties. :ro 
• 

realize, the full potential of the robot, the control system must compensate · for all the 
' 

dynamic interactions between different sections of the maoipulator aod provide the 

potential for high speed accurate movement of the end-effector position. Since the 

physical structure of maoipulators cannot be improved upon by aoy large extent, the 

main perfonnaoce improvements must be achieved by advaoced controller software. 

In this paper, the various facets of the robot control problem are outlined with a 

detailed examination of the dynamic control element. In Section 2, a mathematical model 

. which represents the dynamic interactions in a typical manipulator is described with 

emphasis on the structural components which present such a difficult control problem, 

· · The structure of maoipulator controllers aod applicable control theory is documented 

; briefly in Sections 3 aod 4 respectively. A brief review of cun-ent approaches to the 

dynamic control problem is presented in Section 5, which looks at both adaptive aod 

non-adaptive schemes. In Section 6, a particular solution, based on non-linear self-tuning 

techniques, is given in algorithmic fonn. Since two of the limiting factors in manipulator 

control to date have been the computational complexity of the algorithms and tile 

availability of powerful processing hardware, these aspects are discussed in Section 7. 

Finally, conclusions are drawn in Section 8. 

2. A TYPICAL ROBOT MODEL 

A dynamic model, which relates joint positions, velocities aod accelerations to servomotor 

input voltages is given. This model con-esponds to a robot with revolute joints only aod, 

in the spirit of the paper, concentrates on the end effector positioning problem. For this 

reason, the model focusses on the three principal degrees of freedom, with the tool 

l
i orie·n· ta. tio.n dyn .. am .. ics omitted. The model is .very simply extended, however, to 
-~uch dynamics. __ A typical example of the type of robot under consideration is the 

560, shown in outline in Fig.!. 
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Figure 1: PUMA 560 
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The model is given [2] as: 

Vj = 

where: 

Li 3 
l: D· ·¥[· ' 1 I J J kt J= 

Rt 3 
+ "" l:Dt·l!· 

kt . 1 J J J= 

Li 3 
+ "" l: illjllj 

kt J=l 

+ 

3 3 

3 3 
+ 2 l: l: Ctjkl!jqk 

j =lk=l 

3 3 
+ l: l: Cijkqjl!k 

j =lk=l 

+ l: l: Cijkqjqk + Iail!i + Htqi + Ot 
j =lk=l 

3 3 . 
+ l: l: Ctjkqjqk +Hill! + Gl + QjNtql (1) 

j =lk=l 

qi, qi, 111 -joint i position, velocity and acceleration 
Vj -voltage input to servomotor I 

Dt i • Dt j yffective and coupling inertias for joint 

lai rotational inertia of servomotor I 

Ci j j • Cijk centripedal and cor lol is forces for joint 

Oi gravity loading for joint I 

Hi " friction coefficient for joint I 

Nt drive gear ratio for joint i 
ki, Qi - servomotor i torque and voltage constants 
Rt, Lt armature resistance and Inductance of motor 
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(Tii~''(j;,''o'and'c terms may be expanded as: 

= 
3 ·- liTp 13Tp 
:1: trace - Jp 

p=i liqj dqi 

3 
= :1: trace 

max( I ,j ,k) 

Note that: 

1g1 = 9.81 m/s2 

Prp is the centre of mass of link p w.r.t. co-ordinate frame p. 

: :':d :~ 

j 
i 

I 
(2) 

I 
(3) 

i 
: 
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(5) 

J p is the Pseudo Inertial Matrix [2], containing inertias about axes of co-ordinate frame 

_ p and components of link centres of mass w.r.t. co-ordinate frame p. 

· Tpis a transformation matrix used to transform a point described w.r.t. link p 

co-ordinates to base co-ordinates. 

For example, given a point Pr described with reference to link p co-ordinates, the same 

point in base co-ordinates is given by: 

, 

r = TpPr (6) 

and the velocity of point r by: 

dr p 13Tp 
= :1: - <!j Pr 

dt j =1 liqj 
(7) 

The above equations Indicate the complexity of the robot equations, but a superficial 

analysis is sufficient to indicate that the model is multivariable, nonlinear and possibly 

time varying [3]. In addition, the PUMA 560, like most other manipulators has a certain 

amount of redundancy associated with it - not only is there a large degree of freedom 

in how the end point is attained, but there are, in general, a number of possible 
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combinations of final joint angles which will achieve a desired steady-state end effector 

position. The redundancy problem, however, which is a result of the non-uniqueness of 

the inverse kinematic solution, will not be treated in any depth in the current analysis. 

Equation (1) describes the relationships between the voltages applied to the servomotors 

and the various joint angles, angle velocities and acceleratiops. Note that the equation for 

joint I contains tenns Involving the other joints as well. This Indicates the multivariable 

nature of the system. The degree of crosscoupling is very significant, not only due • to 

the variables q, q and (j for other joints appearing In the equation for joint i, but also a 

result of the matrices G, D and C (see equations (2) -> (4)) which are either directly 

dependent on the variables corresponding to other links or indirectly, via the 

transfonnation matrices. 

i 
The nonlinearity of the system is evident fmm equation (1) due to the product of 

variables and again indirectly due to the dependance of the matrices G, D and C on the 

operating point (i.e. nominal value of the system variables) . 

. Given a fixed load, the parameters of the manipulator arc constant, and if accurate 

measurements of the system variables are available, the dynamic behaviour of U1e system 

is entirely predictable from the above equations, In addition, the system is time invariant 

in the sense that given a particular operating point: 

where 
X(tJ) = (q(tJ) q(tJ) (j(tl)) 

q(t)T = (qJ(t) q2(t) q3(t)) 

(8) 

(9) 

the dynamics of the system will be exactly 'the same at time t2 as they were at time · t1 

so long as: 

However, changes in the system load (which, in general, is unmeasurable, unless known 

in advance) will cause yariations in the G, D and C matrices (see equations (2) -> (4)) 

due to the variation in 'the effective mass of link 3 (the outetmost link) and the centre 

of mass of link 3. These parameters are reflected directly in the mp, Prp and Jp terms. 

The time-varying nature of a system is the single most important reason for the 

~--i~clusion of ada~tion In the corresponding controller. 
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3. MANIPULATOR CONTROL SYSTEMS 

i 

Robot ·controllers can be viewed as hierarchical control systems (see Fig.2) where the 

i wider aspects of the system behaviour are dealt with by the upper levels, with the speed 

requirements increasing as one progresses downwards throu!li\ the levels. 

1 TASK 
RECOGNITION 

J 
2 STRATEGIC 
DECOMPOSITION 

OF TASK 
,J 

3 TACTICAL 
DISTRIBUTION 

OF SUB-TASKS 
,L, 

4 ONE DEGREE 
OF F/:([[DOM 
CONTROLLER 

Figure 2• Hiero.rchico.l 
Mo.nlpulo. tor Controller 

• ·The four levels most commotily 

encountered [3] are: 

(a) Level 1 - which recognises the 

obstacles in the operating space 

and makes decisions on how the 

required task is to be 

accomplished. 

(b) Level 2 - which devides the 

desired motion (from (a)) into 

elementary movements. 

(c) Level 3 - which distributes the 

elementary movements to each 

degree of freedom of the robot. 

(d) Level 4 - which executes the 

required movement of each degree 

of freedom. 
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Figure 3: Genero.l Mo.nipulo. tor Dyno.Mic Controller 
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"in· the current analysis, the emphasis will be placed on level 4 with some consideration 

' given to level 3. Fig. 3 shows a flexible structure for the dynamic control of: a 

manipulator. I 
I 
' 

4. DYNAMIC CQNTROL LAWS 
I 

The past 25 years have seen major developments in the variety and sophistication of 

! dynamic control algorithms. Some of these developments have been prompted ',by 

particular application requirements (e.g. adaptive control was a solution to problems 

encountered in aircraft autopilot design) and others due to consistant attempts to improve 

the perfonnance of control algorithms, A major factor which paralleled this development 

was the advent of the microprocessor and the availability of cheap computing power. 

The two most significant achievements over this period were the development of sound 

adaptive/self-tuning methods (for a survey see [4]) and tile conception of robust control 

design techniques [5][6). 

Dynamic control strategies may be classified as follows: 

Adaptive I non-adaptive - in an adaptive system, the controller parameters may be 

varied in accordance with some auxiliary measurement (e.g, the system output) or 

adjusted using some design criteria based on an identified process model. 

Linear I non-linear - in a linear controller the control signal is always a linear 

function of the system output or error signal. 

Robust I non-robust - using a robust controller fonnulation, the system may be 

made optimally insensitive to variations in the plant parameters or disturbances. 

Scalar I Multlvaria~le - in a multivariable controller, the value of a single control 
' 

signal is detennined from a combination of the system outputs. 

Given the nature of a robot model (as outlined in Section 2) it would seem appropriate 

that the controller should be multivariable (to account for the interactions) and either 

robust or self-adaptive to cater for the varying/non-linear nature of the system. 

l)rifortunately, robust design techniques for non-linear systems have not yet been 

No 
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i ca~v~i~p~d. although designs based on linearised system models may be able to cope with 

the parameter variation due to the nonlinearity. In the case of the robot, apart from the 

difficultyofcoming up with a meaningful lincarised model, the severity of the 

nonlinearity is probably too great for such a design to cope with. It is possible, 

however, to have a self-tuning version of a robust contr\)1ler and such algorithms are 

now beginning to appear in the literature [7]. The benefit of such a scheme is that the 

adaptor makes the necessary compensation for the parameter variation, with the robust 

element giving the insensitivity to unmodcllcd dynamics. Such algolithms, however, arc 

highly, complex. 
I 

5. APPROACHES TO MANIPULATOR CONTROL 

One of the simplest forms of dynamic manipulator control (and the most popular one in 

commercial manipulator contro11ers) is fixed gain linear feedback. Schemes employing 

PID structures are reported in [8] (documenting the Puma 560 controller) and [9]. Luo 

et a! [10] adopt an optimisation approach (Linear Quadratic) to the determination of the 

P, I and D parameters. In [11], a PID controller is replaced with another simple linear 

controller of the lead-lag type. Fu et a! [8], however, report that such simple controllers 

do not perform well under varying speeds and payloads and that the Puma arm moves 

with noticeable vibration at low speeds (using the Unimate controller). 

A more complex non-adaptive control law is given by the linear optimal control solution 

[3]. However, most researchers combine the kinematic and dynamic problem in the 

optimisation framework [12][13], resulting in an optimal path planning type of solution. 

The use of optimal control techniques for the dynamic problem alone using a 

conventional quadratic cost function is not likely to be a successful solution since, 

depending on cost func!ion weights, optimal controllers can be very highly tuned to a 

nominal plant and could: not cater for nonlinear effects and load variations. 

An alternative approach is the computed torque method [8], which, using an accurate 

model of the system, dynamically evaluates the torque required by each servo to track a 

desired trajectory. Such schemes are widely reported [14], [15]. Computed torque 

algorithms have the advantages of feedforward control in that improved transient response 

over feedback systems is possible. Feedforward algorithms, however, are very sensitive to 
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'unmodelled dynamics, which may result from modelling inaccuracies or dynamic load 

variation. Linear position and velocity feedback is normally employed to compensate for 

this [16). I 

Gu and Loh [17) use non-linear. feedback to parameterise, the system in terms of an 

"imaginary" linear robot model. A PD type control law is then used to control the 

modified system. This method can becompared with the computed torque technique ' In 

which nonlinear compensation (an inverse dynamic model of the system) is placed in the 

feec(forward path. However, despite a number of seemingly successful computed torque 

implementations, Leahy et a! [15) conclude that 'computed torque perf01mance is 

unacceptable as a real-time gross motion controller', 

The bulk of the recent literature on dynamic manipulator control has concentrated on 

adaptive systems. The simplest form of adaptive technique uses a gain scheduling 

technique to switch In different controller (e.g. PID) parameters in response to different 

. operating conditions (positions, velocities and acceleratlons)[4), Once commissioned, 

however, these schemes do not have the capability for further adaptation and hence 

cannot adjust for load variations. One further problem is the initial derivation of the 

relationship between the parameters and the operating conditions. One teclmique for 

automatically deriving P, I and D parameters is described In [18]. 

Linear adaptive regulators [19][20] attempt to fit a linear autoregressive model to the 

input/output data obtained from the robot. .A set of control design equations are then 

used to transform the plant model parameters to controller parameters. Such adaptive 

schemes are very flexible, in that a wide variety of both Identification and controller 

design methods exist, resulting in a large number of possible combinations. A scheme 

which uses extended least squares identification with an LQG controller fonnulation is 

documented in [21]. However, methods based on linear models carry the assumption that 

the model coefficients vary slowly compared to the system variables (q, (J, il). Modem 
I 

manipulators move so fast that the effective Inertia at a given joint may change by up 

to 300% in a fraction of a second [22], thus very fast sampling rates In conjunction 

with fast-converging Identification algorithms should be used. 

, An adaptive scheme with a very strong intuitive apppeal consists of an adaptive 

feedforward (computed torque) where the robot model and payload parameters are 

· identified on-line. To account for model inaccuracies and the poor disturbance rejection 



properties of open-loop control, a linear feedback scheme using PD compensators 

used. Such schemes are reported in [22], [23] and [24]. 

I ' 

may 'be 

I 
I 

Liu [25] draws an interesting comparison between two methods which both contain 

nonlinear feedforward, but one having constant PD fccdbac~ while the other identifies a 

1 

2nd order ARMA model and applies variational optimal control. No significant difference 

between the results is noted. A similar study Is perfonned by Lee and Chung [26), who 

conclude that, for all of the cases examined, the adaptive controller was superior both in 

trajectory tracking and the final position errors. 

A popular adaptive method which has been used sucessfully with many other types of 

dynamic system is Model Reference Adaptive Control (MRAC). In this philosophy, an 

updating mechanism Is used In conjunction with the controller parameters such that the 

overall system has a response similar to a "reference" model (with a desired response). 

Han et a! [27) propose a non-linear reference model which Includes identification of an 

unknown load and a nonlinear controller. Linear reference models are specified in [28) 

and [29). Lim and Eslami [28) use position and velocity feedback and position 

fecdforward to achieve an overall multivariable state-space model which is stable and 

controllable. Seraji [29], on the other hand, uses single joint feedback (PD) and 

feedforward (q, q, lj) controllers, with a disturbance tertn accounting for the interacting 

forces. The reference model is specified in tenns of a resonant frequency and damping 

factor. 

Two similar adaptive schemes are presented by Liu et a! [30] and Lee and Chung [26] 

which use a combination of nonlinear feedforward and linear feedback, both 

multivariable. A dynamic robot model is used to detertnine nominal torques which 

compensate for interaction forces along a nominal trajectory. Llnearised perturbation (or 

incremental) models are then detennined about the nominal trajectory upon which linear 

feedback schemes are based. It is claimed that the perturbation models take account of 

dynamic interaction. The linear feedback scheme In [30] is based on a generalised 

minimum variance (implicit) control law, whereas in [26) least squares is used to 

explicitly identify a model upon which a one-step ahead optimal control signal is 

calculated. 

Other approaches to the dynamic robot control problem include the application of 

singular perturbation methods [31] and the treatment of a robot as a variable structure 
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, system [8)[32). The latter methodology is interesting in that an accurate model of the 

system is not required - the bounds of the model parameters are sufficient to constrUct 

the controller. Furthermore, the controller forces the manipulator into a sliding mode, 

where the Interactions among the joints are completely eliminated. However, the 

controller produces a discontinuous signal which changes si&n rapidly which may produce 

"chattering". 

An area of control systems which has received much attention recently is intelligent 

control or the application of A.I. techniques to controllers. In some of these techrtiques, 

it is not necessary to have an accurate system model and In other cases it is not even 

necessary to know the structure of the model. In [33], a learning algorithm Is used to 

reproduce the relationship between sensor outputs and system command variables both for 

repetitive and non-repetitive tasks. No a priori knowledge of the system is required. (34) 

specifies an impulse response model type where the closed loop behaviour is defined by 

the reference tarjectory. Control computation is perf01med using a model predictive 

. heuristic procedure. Another iterative learning control method is described in [35], where 

a linear state-space model of the system is used, the coefficients of the system matrices 

assumed to be periodic functions of time. Bondi et al [36) also present an iterative 

leaming method, but follow a sttict mathematical argument. 

r • • ."· r" . ' ' ' . ' 

6. A NON-LINEAR $ELF-TUNING APPROACH 

A solution to the dynamic manipulator control problem is considered, where single loop 

non-linear quadratic gaussian (NLQG) compensators are employed [37]. Leahy et al [15], 

having performed a range of tests ·on a Puma robot, conclude that the effects of Coriolls 

and centrl pedal forces are negligable, which comprise some of the main potential 

interaction effects in a . multi-link robot (see equations (1) and (4)). For decentrallsed 

(single-loop) control, Seraji [29) proposes the following model decomposition: 

( 10) 
where 

3 .. 

j ____ -

= .~ ffiij(8)8j(t) + Ci(8,S) + gi(8) + hi(B) 
j=l 
j¢i 

(11) 

I 

with the obvious identification of terms from equation· (1). eli is the effective disturbance 

No 
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i ·io joint i due to coupling effects. Note that equation (10) is written in tenns of a 

torque input, there being a first-order relationship between voltage (as in eq (1)) and 

torque 1inputs. ·.. · 
i 

In the 'current approach, the objective is to apply non-linear quadratic gaussian control to 

each individual joint (eq (10)) and reject the disturbance in eq (11). Two model 

structures are considered, which are both non-linear extensions of the basic discrete-time 

ARMAX model: 

A(z-l)y(k) = B(z•l)x(k) + C(z•l)S(k) (12) 

where A, B and C are scalar nth order polynomials in the delay operator (z·1 ), y is the 

system output, s is a white noise sequence and x is an intennediate system input, 

where:·. 

x(k) = £0 + u(k) + f1u2(k) + ...... + fmum(k) (13) 

i for a Hammerstein Plant [38], and 
':,'· 
I. 

I 
1 where 

x(k) = uT Bm u (14) 

(15) 
and 

uT = (u(k) u(k·l) .... u(k-m)) 

Poo Pol 
o P11 
0 0 

Porn 
P1m 
P2m 

•• 0 ••••••••• ~ ••• 

0 0 .... Prom 

for a Volterra type plant [39]. 

(16) 

A third order ARMAX model (n = 3) is used, from considerations of equation (1). 

Leahy et ai [15] recommend the consideration of actuator dynamics, including inertias. 

Since the system equations are linear in the parameters (39], the parameters of these 

models may be identified using recursive Extended Least Squares (RELS) in a 2 stage 

procedure for the Hammerstein model (n+m parameters) and a 3 stage algorithm for the 

Volterra model (n+[m/2][m+l] parameters). 

In RELS, a disturbance model (the C polynomial coefficients) is identified, allowing 

disturbance compensation to be perfonned, if desired. Also note that in equation (13) the 

f0 parameter corresponds to an external (uncontrolled) d.c. input, for example a gravity 
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l !enn (s~e equation (11)). Leahy et al [15) report that gravity forces are significant and 

should 'be modelled. 

; I 

' The Volterra model, due to its extra complexity, provides a more flexible model (it 

incorporates a 2nd order 

nonlinearity. 

Hammerstcin model) and a greater degree of dynamic 

The solution to the NLQG problell). for Hammerstein and Volterra plants is documented 

in [37). To illustrate the type of computations involved, one pass through the self·tunihg 

algorithm for a Hammerstein plant is outlined here as: 

(a) Perfonn one recursion of the RELS algorithm to give updated estimates for the A, 

B and C polynomial coefficients and the fo -> fm nonlinear parameters. 

(b) Detennine the controller parameters by solving for the spectral factor D from: 

D D* = B B* Q + A A' R (17) 

and computing the G and H polynomial coefficients from the diophantine equation: 

A H + B G = D C 

where A, B and C in eq (12) are given from step (a), and 

weighting matrices in the quadratic cost.functlon: 

J = E ( Q e2(k) + R u2(k)) 

(18) 

Q and R are 

(19) 

where E( ) denotes the expectation operator and e(k) is the angle error in the 

system (desired angle minus actual angle). 

(c) Update the signal x)k) using: 

x(k) = G(z-l)/H(z-1) e(k) (20) 

(d) Compute the optimal control signal u(k) as the minimum magnitude root of the 

equation: 

(21) 
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Note that the weighting matrix Q may be dynamical, an integral tenn ensuring Ulal the 

system has zero steady-state error. Note also that, since the Q and R matrices app~ar 

directly in the update equations (equation (17)), they may be varied during the 

movement of the robot arm along desired trajectory. This allows for the possibility of 

energy saving (large R => small control signals) during tl1c, early part of the movement, 

with more accurate control (larger Q) as the end point is reached. 

: 
Simulation results are reported in [21) for a linear version of the above algorithm (Le. 

LQG) used with a Puma 560 robot model. Initial simulation experiences with the 

nonlinear version seem to be a considerable improvement. 

7. COMPUTATIONAL CONSIDERATIONS 

. In addition to the difficulty of controlling the complex dynamics of a manipulator, the 

speed of response of the dynamics places great demands on a real-time control system. 

The benefits of digital control are well known (e.g. flexibility, ease of implementation of 

complex algorithms, accuracy), but to successfully implement a digital control scheme, It 

must be possible to perform all of the control computations with the sampling period 

appropriate to a particular manipulator. This may Include inverse kinematics, recursive 

computation of the Newton-Euler equations, system identification and adaptive controller 

calculations. Fortunately, cheap, high-performance processing power is available In the 

form of general-purpose microprocessors (Jll''s) and support chips (floating point units 

(FPU's), memory management units (MMU's) and interrupt control units (ICU's)), 

dedicated digital signal processing (DSP) chips and a host of array and parallel 

processing machines. 

As a typical example, consider the Puma robot - Nigam and Lee [ 40) found the natural 

resonant frequency of the Puma 560 to be 15 Hz, thus a sampling frequency of 300Hz 

was chosen, giving a sampling period of about 3mS. Current practice in the commercial 

Unimate Puma controller involves a loop sampling period of 0.875 mS with new 

position setpolnts being provided every 28 mS [8) (otherwise joints jerk erratically when 

l~~~~-[~1~~ -- .. 
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7.'1"Algorithm complexity 

j 

, A meaSure of the complexity of a control algorithm, and one which determines the 
I 

: hardware requirements, is the number of additions and multiplications required per 

' sampling period. Given the nature of the control problem, it, is assumed that all numbers 
' 

; are in floating point format. It is necessary to distinguish between additions and 
I 

' multiplications due to the vastly different computational time involved for each on 
' machines such as general purpose J.I.P's. 

A reasonable amount of documentation is available in the computational aspects of the 

computed torque technique. In addition, research has been undertaken in fonnulating 

efficient computational algorithms for evaluating manipulator dynamics [42][43]. Nigam 

and Lee [ 40) estimate the number of operations for computed torque to be 662( +) and 

792(x) for 6 joint control using the Newton-Euler equations. In contrast, for the 

Lagrange-Euler formulation, the number of operations soared to 78000(+) and 102000(x). 

Liu and Chen [44) implement a computed torque scheme on the Stanford manipulator 

and achieve a 3.3mS sampling period (unlng a 68020/68881 combination). Significantly, 

they claim that this is less complicated than a Puma implementation due to the 

Stanford's prismatic joint. The same authors evaluate an adaptive feedback controller 

(with inverse dynamic fcedforward) as documented in [25) but no extra computational 

information is provided (apart from the inverse dynamic section), other than to Sity that 

an extra 68020/68881 combination is required for each adaptive joint controller. Seraji 

[29) compares computations required for control of p joints using multivariable (5n2 + n 

adaptive gains) and decentralised (6n gains) versions of his adaptive algoritlun (see 

Section 5). 

• Lee and Chung [26) provide details of the computations involved in an adaptive 

feedforward (computed torque) and linear adaptive scheme (see Section 5) as: 

Section Mults. Adds. 

N-E eqtns. 117n - 24 103n - 21 
RLS (!.D.) 30n2+5n+1 30n2+3n-1 
Control 8n3+2n2+39 8n3-n2-n+18 

Total 8n3+32n2+5n+40 8n3+29n2+2n+17 
i 
'For a three joint manipulator this works out at 559(x) and 500(+). For six joints the 
1 total is 2950(x) and 2801 ( +) for comparison with Nigam and Lee [ 40) above. 

_/'}_(/ .. .. 
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For the proposed algorithm (Section 6), using a third order dynamic model (A, B and 

C) and a fourth order nonlinearity, the number of computations per joint is: 

Section Mul t s. Adds. 

RELS(A,B,C) 1162 900 
RLS (f0 ->f4) 157 100 
Solve (17) 1512 1512 * 
Solve (18) 266 165 
Solve (21) 91 63 * 

Total 3188 2740 

Note that the calculations marked (*) arc iterative • an average number of required 

iterations is used. 

7,2 Computational Hardware Options 

Computational hardware for a robot controller must be capable of pcrfonning all of the 

functions indicated in Fig.2. The upper two layers of this robot controller must be 

performed in sequence and, in general, will be perfonned by a single processor. The 

lower two layers (but principally the bottom one) implement the dynamic control. This 

can be perfonned using a distributed system (decentralised control) or a single processor, 

A wide variety of schemes are reported in the literature. Probably the simplest is that 

used in the commercial Unimate Puma robot controller [8]. Tills consists of a central 

LSI-11 processor (DEC PDP-11/23) with six Rockwell 6503 (8·bit !!P's) as the 

individual joint controllers. Another approach [45] replaces the Unimate controller with an 

80286-based Intel System 310. While providing more flexability (the user is not tied to 

VAL II), this modification would seem to provide little improvement, if any, in 

computational power. Seraji [29] replaces the Unimate controller with a I! VAX which 

implements all 4 layers ~f Fig.2 on the three major joints. Two alternative architectures 

for a Puma are reported in [41] • (a) a SIERA [46] system, based around multiple 

68000-based single board computers, a custom developed Annstrong multiprocessor system 

and two SUN 3/260 computers and (b) a TUNIS [47] system, consisting of one ZP1632 

master processor board and up to four similar slave boards. The ZP1623 is based on 

Nat. Semi's 32000 chip set comprising 32016 CPU, MMU, ICU and FPU. 
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An architecture which is very much tailored to the control algorithm is proposed by Liu 

and Chen [44) who use 1 ~-tP for inverse kinematics and path planning, 2 ~J,P's for the 

Inverse dynamics (feedforward) and one IJ,P per joint to implement the adaptive 

controllers. The IJ,P's used are either 80286/80287 or 68020/68881 (68020/68881 Is 

preferred) combinations. 

As a departure from the more traditional computing architectures, Khosla and Kanade 

[14) consider the use of a Marinco array processor in conjunction with a 68000-based 

system plus TMS320 controllers for each joint. This would appear to be one of the 

most powerful processor arrangement and indicates the difficulty of im plemcnting the 

computed torque technique. A sampling period of 2mS was achieved in this application. 

Another application which implements a dynamic robot model [40] applies pipelining 

techniques. Normally, in feedback controllers, pipelining is not possible since the control 

input must be evalued based on the current error in the system. In tills case (a 

feedforward situation), the setpoints are known in advance from the path-planning stage, 

so the current control input is based on a setpoint received a number of steps (sampling 

periods) previously. In this example, six stages of pipelinlng are used, deriving maximum 

benefit from the serial nature of the Newton-Euler equations of motion. The pipeline 

implementation uses either 80286 or 68020 ~-tP's, although a number of other 

architectures are considered, all the way up to a ($60,000) Floating Point Systems 

AP-120B array processor coupled to a VAX! 

The approach used in conjunction with the algorithm presented in Section 6 is a 20MHz 

80386/80387 IBM PC/AT together with one NBC !J,PD77230 - based signal processing 

board for each individual joint controller. The IJ,PD77230 is designed specifically for 32 

bit floating point calculations and is rated at 150 nS for a floating point multiply/ 

accumulate. A reasonable sampling rate should be achievable, since the computations for 

the given algorithm shout~ take an estimated 0.889 mS. 
, 

Considering the type of calculations common to all classes of dynamic robot controllers, 

it would seem that signal processing type hardware dedicated to floating point 

calculations is most suitable. The processing of arrays would also seem to be an integral 

part of most controller calculations (e.g. computing robot dynamics, identification, etc.) 

but the addition of most array processors would be highly uneconomic [40). However, 

one device from Intel which has recently been announced is the i860 [48], which has a 
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RISC-based architecture and 1 000 000 transistors. The significant feature of this chip is 

the provision of vector processing capability at only $750 (for a 33MHz version). In 

addition, all of the floating point instructions are implemented in a single cycle. It's 

overall performance has been rated at about half of a CRA Y ·I and would seem to be 

ideally suited to robot control applications. 

8. CONCLUSIONS 

A number of approaches to the dynamic robot control problem have been researched. 

Though a wide variety of algorithms are available offering a range of 

complexity/performance tradeoffs, most still have to find their way into industrial 

practice. Klafter et a! [42] comment that 'robots currently being produced are perceived 

(by the companies) to be "good enough" for the applications of today'. They also 

comment that it is fortunate that universities have not been as shortsighted! 

The most significant classification of controller algorithms seems to be that of centralised 

or decentralised control. Centralised would seem to offer better perfmmance (since cross 

coupling terms are directly compensated) but with greater computational burden (n2 

computations as opposed to 3n for a 3 joint controller). It has been seen, though, that 

hardware should no longer be a limiting factor. However, the deccntralised scheme 

naturally possesses better integrity characteristics, since an crraneous joint angle 

measurement will affect only that joint and not be propagated to others. 

The chosen method for control should therefore depend on a number of factors, not least 

the nature of the application itself. For applications where the payload is constant (e.g. 

welding, spray painting, grinding/deburring), a control technique with fixed parameters 

may suffice (assuming effects due to wear and manufacturing tolerances are not too 

significant). On the other hand, for applications with varying loads (e.g. parts 

handling/transfer, assembl~ or sorting operations) or where the load itself posesses 

significant dynamics, a self-tuning/adaptive controller may be required. 



J, V. Ringwood 

ACI\NOWLEOOEMENT 
The author wishes to acknowledge the support of the EC under the Science Stimulation 

Programme. Cooperation with our partners at the Industrial Control Unit at the University 

of Strathclyde, particularly Ms. S. Carr, Prof. M.J. Grimble and Dr. M.A. Johnson is 

also acknowledged. 

REFERENCES 

1. Klafter, R.D., Chmielewski, T.A. and Negin, M. "Robotic engineering • an 

integrated approach", Prectice-Hall, 1989. 

2. Anderson, G. "Modelling and simulation of a Puma 560 manipulator for control 

system appraisal", M.Eng. Thesis, School of Electronic Engineering, NIHE, 1988. 

3. Vukobratovit, M. and Stoldt, D. "Scientific fundamentals of robotics 2 - Control of 

manipulation robots", Springer-Verlag, 1982. 

4. Astrom, K.J. "Theory and applications of adaptive control - a smvcy", Automatica, 

Vo1.19, No.5, 1983. 

5. Kwakemaak, H. "A polynomial approach to minimax frequency domain optimization 

of multivariable feedback systems", Int. J. Contr. Vo1.44, No.1, 1986. 

6. Zames, G. "Feedback and optimal sensitivity: Model reference transformations, 

multiplicative seminorms, and approximate inverses", IEEE Trans. Aut. Corltr. 

Vol.AC-26, No.4, 1981. 

7. Grimble, M.J. and Fairbairn, N.A. "The F-iteration approach to wo control", Proc. 

8. 

9. 

IFAC Symp. on Adaptive Systems in Control and Signal Processing, Glasgow, April 

1t.l89. 

Fu, K.S., Gonzalez, R.C. and Lee, C. "Robotics - control, sensing, vision and 

intelligence", McGraw-Hill, 1987. 
I 

McCloy, D. and Harris, M. "Robotics - An introduction", Open University Press, 

1986. 

10. Luo, G.L. and Sari dis, G.N. "L-Q design of PID controllers for robot arms", 

IEEE Journal of Robotics and Automation, Vol.RA-1, No.3, Sept 1985. 

11. Chen, Y. "Replacing a PID controller by a lead-lag compensator for a robot -

a frequency response approach", IEEE Trans. Rob. and Auto., Vol.RA-5, No.2, April 

1989. 



J, V. Ringwood 

12. Allon, A. and Langholz, G. "A study of controllability and time-optimal 

control of a robot model with drive train compliances and actuator dynamics", IEEE 

Trans. Auto. Cont., Vol.AC-33, No.9, Sept. 1988. 

13. Chen, Y.C. "On the structure of the time-optimal controls for robotic 

manipulators", IEEE Trans. Auto. Cont., Vol.AC-34, No.\. Jan. 1989. 

14. Khosla, P.K. and Kanade, T. "Real-time implementation and evaluation of computed 

torque scheme", IEEE Trans. Rob. and Auto., Vol.RA-5, No.2, April 1989. 

15. Leahy, M.B., Valavanis, K.P. and Saridis, G.N. "Evaluation of dynamic 

models for PUMA robot control", IEEE Trans. Rob. and Auto., Vol.RA-5, No.2, 

April 1989. 

16. Khosla, P.K. and Kanade, T. "Experimental evaluation of nonlinear feedback 

and feedforward control schemes for manipulators", Robotics Research, Vo1.7, No.1, 

Feb. 1988. 

17. Gu, Y.L. and Loh, N.K. "Dynamic modelling and control by using an 

imaginary robot model", IEEE Jour. of Robotics and Automation, Vol.4, No.5, Oct. 

1988. 

18. Chen, Y. "Parameter fme-tuning for robots", IEEE Control Systems Magazine, 

Vo1.9, No.2, Feb. 1989. 

19. Walters, R.G. and Bayoumi, M.M. "Application of a self­

placement regulator to an industrial manipulator", Proc. 21st IEEE 

Orlando, Florida, Dec. 1982. 

20. Koivo, A.J. "Force-position-velocity control with self- tuning 

manipulators", IEEE Conf. Robotics and Automation, San Francisco, CA, 

tuning pole 

CDC, Vol.l, 

for robotic 

1986. 

21. Carr, S., Anderson, G.,Grimble, M.J. and Ringwood, J.V. "An LQG approach 

to self-tuning control with application to robotics", Proc. lEE Inti. Workshop on 

Robot Control, Oxford, U.K., April 1988. 

22. Craig, J.J., Hsu, P. and Sastry, S.S. "Adaptive control of mechanical 

manipulators", Robotics Research, Vo1.6, No.2, Sum. 1987. 

23. Slotine, J.E. and l:i, W. "Adaptive manipulator control: A case study", IEEE 
' Trans. Auto. Cont., Vol.AC-33, No.ll, Nov. 1988. 

24. Slotine,J.E. and Li, W. "On the adaptive control of robot manipulators", 

Robotics Research, Vol.6, No.3, Fall 1987. 

25. Liu, C.H. "A comparison of controller design and simulation for an industrial 

manipulator", IEEE Trans. Ind. Electron., Vol.IE-33, No.I, Feb. 1986. 

26. Lee, C.S.G. and Chung, M.J. "Adaptive perturbation control with feedforward 

compensation for robot manipulators", Simulation, Vo1.44, No.3, 1985. 



J.V. Ringwood 

27. Han, J-Y., Hemami, H. and Yurkovitch, S. "Nonlinear adaptive control of an 

N-link robot with unknown load", Robotics Research, Vol.6, No.3, Fall 1987. 

28. Lim, K.Y. and Eslami, M. "Robust adaptive controller designs for robot 

manipulator systems", IEEE Jour. of Robotics and Automation, Vol.RA-3, No.I, Feb, 

1987. 

29. Seraji, H. "Decentralised adaptive control of manipulators: Theory, simulation 

and experimentation", IEEE Trans. on Robotics and Automation, Voi.AC-5, No.2, 

April 1989. 

30. Liu, M.H., Chang, W.S. and Zhang, L.Q. "Multivariable self-tuning control of 

redundant manipulators", IEEE Jour. of Robotics and Automation, Vol.RA-4, No.5, 

Oct. 1988. 

31. Siciliano, B. and Book, W.J. "A singular perturbation approach to control of 

lightweight flexible manipulators", Robotics Research, Vol.?, No.4, August 1988. 

32. Hashimoto, H, Maruyama, K and Harashima, F. "A microprocessor-based robot 

manipulator control with sliding mode", IRRR Trans. Ind. Electron., Vol.IE-34, No.1, 

Feb. 1987. 

33. Miller, W.T. "Sensor-based control of robotic manipulators using a general learning 

algorithm", IEEE Jour. of Robotics and Automation, Voi.RA-3, No.2, April 1987, 

34. Kaynak, 0., Melancon, P and Rajagopalan, V. "Model predictive huetistic control of 

a position setvo system in robotics application", IEEE Jour. of Robotics and 

Automation, Vol.RA-3, No.5, Oct. 1987. 

35. Oh, S.R., Bien, Z. and Suh, I.H. "An iterative learning control method with 

application for the robot manipulator",. IEEE Jour. of Robotics and Automation, 

Vol.RA-4, No.5, Oct. 1988. 

36. Bondi, P., Casalino, G. and Gambardella, L. "On the iterative leaming control 

theory for robotic manipulators", IEEE Jour. of Robotics and Automation, Voi.RA-4, 

No.1, Feb. 1988. 

37. Carr, S. and Grimble, M.J. "Nonlinear quadratic gaussian 

Research Report ICU/228/0ctober 1988, Industrial Control 

Strathclyde. 
) 

self-tuning control", 

Unit, University of 

38. Anbumani, K., Sarma, I.G. and Patnaik, L.M. "Self-tuning control of nonlinear 

systams characterised by Hammerstein models, Proc. 8th IFAC World Congress, 

Kyoto, Japan, 1981. 

39. Haber, R. and Keviczky, L. "Nonlinear structures for system identification", 

Periodica Politechnica, Vo1.18, No.4, 1974. 



J.V. Ringwood 

40. Nigam, R. and Lee, C.S.G. "A multiprocessor-based controller for the control of 

mechanical manipulators", IEEE Jour. of Robotics and Automation, Vol.RA-1, No.4, 

Dec. 1985. 

41. Goldenberg, A.A. and Chan, L. "An approach to real-time control of robots 

in task space. Application to control of PUMA 560 without VAL-II", IEEE Trans. 

Ind. Electron, Vol.IE-35, No.2, May 1988. 

42. Kanade, T.K., Khosla, P.K. and Tanaka, N. "Real-time control of the CMU 

direct-drive ann II using customised inverse dynamics", Proc 23rd CDC, Las Vegas, 

1984. 

43. Burdick, J.W. "An algorithm for generation of efficient manipulator dynamic 

equations", Proc. IEEE Int. Conf. Robotics and Automation, San Francisco, 1986. 

44. Liu, C. and Chen, Y. "Multi-microprocessor-based cartesian space control 

techniques for a mechanical manipulator", IEEE Jour. of Robotics and Automation, 

Vol.RA-2, No.2, June 1986. 

45. Bihn, D.O. and Hsia, T.C.S. "Universal six-joint robot controller", IEEE 

Control Systems Magazine, Vol.8, No.I, Feb 1988. 

46. Kazanzides, P., Wast!, H. and Wolovich, W.A. "A multiprocessor system for 

real-time robotic control: design and applications", Proc. IEEE Int. Conf. Robotics 

and Automation, 1987. 

47. Penny, D. "Control of the PUMA robot without VAL", Univ. Toronto, RAL 

Tech. Rep., April 1985. 

48. Perry, T.S. "Intel's secret Is out", IEEE Spectrum, Vol.26, No.4, April !989. 


