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Abstract

Control of an experimental in-line pH process
exhibiting varying nonlirearity and deadtime
is described. A radial basis function (RBF)
artificial neural network is used to model the
nonlinear  dynamics of the  process.
Accommodation of the varying process
deadtime in the neural model is achieved by
the gencration of a feed-forward signal, for
input to the neural network, from a
downstream pH measurement. The feed-
forward signal is derived from a variable dclay
model based on process knowledge and a flow
measurement. The neural model is then used
to realise a predictive control scheme for the
process. Development of the neural process
model is described and results are presented to
illustrate the performance of the neural
predictive control scheme which is tested as a
regulator at different setpoints.

1. Introduction
An in-linc pH process is an alternative
approach to the control of pH where the
influent stream is treated in the pipcline as
opposed to the more commonly used method
of using a continuous stirred tank reactor
(CSTR). In-line control of pH offcrs potential
benefits and savings in both capital and
investment compared to the conventional
CSTR approach [1}. As well as the familiar
strong nonlinearity associated with pH
processes, due to the pH titration curve, in-line
neutralisation combines several other difficult
process characteristics, such as small process
capacitance and flow dependant transport lags.
Also, as well as measurement noise, the lack
of mechanical mixing in an in-line pH process
introduces a further degree of uncertainty
associated with the process measurements.
The combined effect of all of these features
make the in-line pH process a difficult and
testing environment for control strategies.

The functional

nonlinear approximation

properties  of artificial neural networks,
together with their other associated features
such as their abilities to learn by example and
to generalise sensibly to novel inputs, makes
them an appealing technique for nonlinear
system identification. A neural network can be
trained to represent the input-output dynamics
of a nonlinear process using cxamples of
process data. This is particularly relevant to
chemical processes, where it is often not
practical to develop a reliable analytic process
model, but where historic process data is often
available. Development of a neural network
process model  subsequently enables a
nonlinear control scheme to be realised.

Predictive control is becoming increasingly
popular in the chemical process industries
because of its relcvant and appealing features,
such as the ability to accommodate input and
output constraints and to handle process
deadtimes and multi-variable systems in a
straight forward manner, which are not easily
achieved by other control strategies. Like other
model based control strategies, the success of a
predictive control scheme is largely dependant
on the validity of the process model. Many
chemical processes are highly nonlinear, and
conscquently predictive control based on linear
process  models can  result  in poor
performance. Consequently, predictive control
has been extended to accommodate nonlincar
process madels including neural networks [2].

This paper describes the development of a
neural network model of a bench scale in-line
pH process and the subsequent incorporation
of the neural model in a predictive control
strategy. On-line control results are presented
for pH regulation in the presence of load
disturbances.

2. The In-Line pH Process
The experiments described here were
performed on a bench scale rig shown in
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Fig.l. A wastewater stream of variable flow
and pH s produced by merging an acidic feed
stream (0.05 M solution of acetic acid), which
is pumped at a constant flowrate (Fpooq), With
an alkaline strcam (0.1 M ammonium
hydroxide), whose flowrate (Fy) is variable.
The resulting stream passes through a coil of
tubing. which serves to mix the two strcams,
and then enters the tubular reactor. The pH of
the influent to the tubular reactor is measured
at pHy. Only the total flowrate (Fyyy,) through
the tubular reactor is measured, the component
flowrates Fpoeq and Fy are not. The stream
exiting the tubular reactor is therefore of
varying pH and flowrate. In closed loop, the
objective is to regulate the pH of this strcam
(pHy) by manipulating the flow (Fy) of
neutralising reagent (0.1 M acetic acid). The
process flowrates allow for setpoints of pH 5 to
pH 7 to be physically realisable.
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Fig.1 The In-Line pH Process

The pHy probe is located close to the
neutralising reactor Tee so as to keep the
process deadtime as small as possible. The
neutralising reactor consists of the Tee
junction together with the tubing connccting it
to the pHy probe housing. and its small size
can result in a particularly noisy pHy signal
since the Fy, and Fy streams will not be well
mixed. For this rcason another pH
measurement (pH3) is taken downstream of
pHy for averaging purposes, after the
neutralising  reactor effluent has  passed
through a further coil of tubing to facilitate
mixing. The bench scale rig also includes a
CSTR at the exit of the in-line system which
provides a bulk product pH mecasurement
(pH4) but is not considered for control
purposes at present. All [lowrates are set by
peristaltic pumps which, together with the pH
meters, are inferfaced with a PC for data
acquisition and closed loop control.

The dynamics of the in-line process are
dominated by nonlinearity and deadtime. The
shape of the familiar neutralisation curve
associated with pH depends on the
concentrations and strengths of the different
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chemical species in the system. For this single
acid’ single basc system the gain at pH 7 can
be more than 40 times greater than that at pH
5. In this process the pH titration curve is not
stationary because the concentrations of both
the influent species vary as Fy changes. This
holds if the titration curve abscissa is the
neutralisation reagent flowrate (Fp), orif it is
the ratio of neutralisation reagent flowrate to
influent flowrate (Fy/Fy,,) as is commonly
used. In addition, the variations in Fy. and
hence the total flowrate through the tubular
reactor (Fy,p), result in a variable transport
delay between pHy and pHj.

3. Neural Network Process Model
Development

3.1. Neural Network Architecture

The neural architecture adopted for identifying
the nonlinear pH process dynamics was a
radial basis function (RBF) network which
have been successfully used for nonlinear
modelling (c.g. {3]. {4]). The RBF nctwork
was chosen because linear algorithms can be
used in the training strategy, such as least
squares. The RBF network therefore has an
advantage of fast convergence properties
compared to alternative networks, such as the
multi-layer perceptron, which utilise nonlinear
learning algorithms. For this reason, RBF
networks have the potential for on-line
lcarning and adaptation to track process time
variations which is a further research area in
this work.

The input/output mapping for the RBF
network used was of the form

y- gw,.¢,.<|pr—c,-1|) o

where

®(z) =2’ log, z @

x is the input vector, ¢; are the centre vectors,
w; are the weights connecting the centres to
the network output, ne is the number of
centres, ¢(*) is the thin plate spline function.
Several other nonlinear basis functions have
been proposed for ¢(*), but the choice does not
seem to be crucial to the approximation
capabilities of an RBF network. The mapping
accuracy of the network was found to be
sensitive to the scaling of the data, with best
results obtained by scaling all data to (0,100)
and distributing the centre positions uniformly
in this range.



3.2 Neural Nevwork Maodel Structure

A ncural network can Jearn a static nonhinear
function by ftraining it with data which is
representative of the function. Dynamics must
be incorporated into the network if it is fo be
used as a dynamic model. Recurrent neural
networks do this directly by introducing
dynamics into the network neurons. A more
cominon approach is to represent the process
dynamics by a nonlinear difference equation,
and the NARX (Nonlinear Auto Regressive
eXogenous; {5]) model structure is widely used
for this purpose. The multi-input, single
output NARX model structure used was of the
form

c(’) = f["l(t _kl)v"'vul(’_kl - R, +1),...
u,(t-k,),...u,{t-k,-n, +1),.. (3)
y(t—l),...,y(t-n},)]+e(t)

where uj...upy are the process inputs, y is the
process output, e is the equation error, kq..ky,
are the model deadtimes (k =2 1) and f[*] is a
nonlinear function to be identified. The
network is trained to provide a one step ahead
prediction of the process output, §(1).

Alter training the network can be used on-line
to predict future process responses based on
known. or estimated, future inputs. This is
required in the predictive control scheme
where the control action is determined based
on future process responses over a receding
horizon. Long range prediction is achieved by
replacing the [uture unknown process outputs
with the network predictions, y, at each time
step. To predict N steps ahead at time 1, the
network makes N separatc one step ahcad
predictions

§(1+i)=f[u1(t—-k]+i) ..... u(t=—ky—n,+i+1),..

w (t=k, +i)u, 1=k, —n, +i+1),..
FU+i=Dee Gt +imn, )]

.N 4
Hence, for an N step ahead prediction the
nctwork is recurred N-1 times. This feeding
back of the network output to input can result
in an accumulation of the prediction errors
and consequently poor multi step ahead
prediction accuracy [6]. Often, a network
which performs well as a one step ahead
predictor can perform poorly as a multi step
abead predictor . This accumulation of one
step ahead prediction errors is reduced by
making a correction to the feedback y by

i=1,..

adding the process/model mismatch to it |7].
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3.3. Compensation of Variable Deadtime

The pH of the influeat to the ncutralisation
reactor can be approximated by a delayed pHj
mcasurement since the tubular reactor acts as
a transportation delay. Hence, pHj can be used
as a feedforward input to the neural network
process model. Feeding forward pHj through
a pure time delay does not produce a pH signal
which is in phase with the neutralisation
reactor influent pH since the tubular reactor's
transportation delay changes as its throughput
(Fiub) changes. Three methods have been
investigated and compared for representing
this variable time delay in a neural network
model [8]. The approach adopted in the ncural
predictive controller described is to represent
the variable deadtime using a transport lag
volume array (TLVA). This technique was

observed to provide satisfactory nctwork
performance in  the comparative tests
performed.

In the TLVA method, the deadtime is

compensated by representing the transport of
fluid trough the tubular reactor by an array of
Jagged pH; values, with each array element
representing a unit volume. The technique
makes use of process knowledge regarding the
volume of the tubular reactor. At each sample
interval a number of array elements (Ny),
corresponding to the volume of influent fo the
tubular reactor since the previous sample, is
calculated as N, = (Fmb(t).AT)/vol, where
AT = sample time and vol = a unit volume. A
feedforward signal, pHygp, is calculated as the
mcan value of the last N, elements of the
delay array. All array elements are now shifted
forward Ny places, corresponding to the
reactor throughput since the last sample.
Finally, the current value of the delayed
variable, pH1(1), is copied 10 the first Ny array
elements.

3.4. Process Excitation Signal

Process input-output data for network training
was collected in open loop by applying an
excitation signal to the process input. F5. A
random amplitude signal (RAS) has been
widely used to provide suitable excitation for
nonlinear system identification. A
conventional RAS consists of a uniformly
distributed random input bounded by the
limits of the process input operatling range.
However, when a highly nonlinear process,
such as a pH process, is excited using a RAS,
little output data is generated in the high gain



region leading 1o poor predictions from a
network trained with this data. One practical
way of improving the quality of the training
data, and consequently the network prediction
accuracy, is to force the process output
through the high gain region on cach clock
pulse [9]. Hence, this ‘forced” RAS s
uniformly distributed above and below some
threshold which, for the in-line pH process,
was chosen to be the steady state for the high
gain region,

3.5. Sample Time Selection

Appropriate selection of a data sample time is
an important aspect for the reliability of an
identified process model. In this work, several
neural models were identified with data
collected at different sample times. It was
generally observed that faster sample times
gave improved network performance in terms
of the mean square error (MSE) on test data.
However, further investigation showed that
whilst some of the networks exhibited small
prediction errors, they failed to adequately
model the cause and effect relationship
between the manipulated variable and the
process output. This aspect is important since
a predictive controller utilising one of these
models would adjust the manipulated variable
in the wrong direction, as suggested by the
model, in order to affect the control.

A sample time of 2 secs. was chosen for the
identification of the in-line pH process. This
was sclected on the basis of the 95% process
step response times, which range from 15 to
70 seconds, and the manipulated variable
deadtime, which is also flow dependant, and
was estimated to range from 3 to 4 seconds,
Hence, for the model to predict the process
response to a change in the manipulated
variable it must be recurred at least once,
eqn.(4). Model validation tests confirmed that
a model employing a 2 scc. sample time was
capable of adequate nctwork predictions and
could also accurately predict the correct
direction of the process output trajectory to
step changes in the manipulated variable. This
accuracy deteriorated for smaller sample
intervals, which required more than one
recursion to predict over the manipulated
variable deadtime, as it did for longer sample
intervals, where the model could predict the
direction of the process output in one step.

3.6. Selection of the Neural Network Model
Inputs
When a neural network is configured to
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represent a NARX madel. the determination of
the model orders and delay in the NARX
model, ny g My Kiees Ky Ry in eqn.(3),
is equivalent to determining the input node
assignments for the ncural network. There are
no cstablished procedures for determining the
size of the NARX model required for an
individua} problem. It is generally recognised
that a parsimonious neural network is
desirable because over paramcterisation leads
to an unnecessarily large network, with

subsequent increased computational
overheads, and can also degrade a neural
network's generalisation abilities.

Determination: of a suitable NARX model
structure can be simplificd by sctting nyq = ..
= n, where n is termed the order
of the model. When a suitable model order has
been chosen the individual n, and n; values
can then be (urther adjusted if necessary,

Eflypy =10

Sclecting the model order may be guided by
knowledge of the process, however it is usually
necessary to test networks with different model
orders to establish the best NARX model
structure. Scveral statistical metrics  from
linear system identification, such as Akaike's
Final Prediction Error Criterion (AFPE), can
be employed to assist the sclection of a
parsimonious model structure [10]. The AFPE
attempts to penalise marginal reductions in the
mean squared prediction error of a model
which occur from increasing the model order.
Thus, the trade off between model size and
accuracy is clarificd by comparing the AFPE
for different network models.

From knowlcedge of the process operation, a
RBF neural network was configured as a
NARX model to predict the process output,
pH>(t), based on lagged values of pHa. Fy,
Fiub- and pHyq. Forced RASs were applied to
Fi1 and F2 to obtain identification data,
sampled at 2 sec. intervals, for training and
testing different neural network process
models. The model deadtime for the
manipulated variable, Fy, in all of the trained
networks was 2 samples, corresponding to the
known delay for the process. Based on some
preliminary results, the model deadtime for
Fiub was selected as 1 sample. The TLVA
effectively removes the varying process
deadtime from the feedforward signal pHyyy,
hence a delay of 1 sample was uscd for this
signal. This small delay is mainly due to the
dynamics of the pHy measurement sensor
which are not insignificant for the process at
the sample time used.



Neural networks with different model orders,
N o= Ofp = MF2 = npHi = npH2, were
compared using the AFPE criterion to choose
an initial value for n, Fig.2. This indicated
n=2 as an appropriate model configuration.
The model orders were then individually fine
tuned to observe if a smaller network could be
obtained without significant loss of prediction
accuracy. The final network configuration
chosen was npyp, = 1, nF2 = 2, npHi = 1 and
npH2= 2.

0.1
0.08
W 0.06 —
<00de— o
0.02
O i
] 2 3 4 5

Mode! Order, n

Fig.2 Selection of neural network model order
using AFPE

3. Predictive Control of the In-Line pH
Process

In predictive control the control inputs are
determined by minimisation of a performance
index based on evaluating the effects of
different inputs on predictions of the process
output up to a fixed horizon. The predictions
of the process output are obtained by using a
dynamic process model, in this case the
identified ncural network model described in
the previous section. In this application to the
in-line pH process, the predictive control
scheme naturally takes account of the effects
of future process disturbances by the use of the
fecedforward signal pHygr in the neural
network model. Thus, the control scheme can
apply early compensation to the process
disturbances reducing their effect which is a
desirable atiribute.

The predictive control scheme is illustrated in
Fig.3. The controller, C, computes the control
input. u(t), using an iterative optimisation
algorithm to minimise the following cost
function at each sampling instant, t:

t+ N2
J(N1,N2,Nu) = Z[r(i)— ST +
t=t+ N1
24+ Nu (5)

A Z[u(i) ~u(i 1T

i=f
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where 1 is a modilicd process setpoint, v s
the neural network model predicted output, u
is the process input, N1 and N2 define the
prediction horizon, Nu is the control horizon
and A is a control weighting factor. A suitable
choice for N1 is to make it equal to the process
delay between the manipulated variable and
the process output, k in eqn.(3). N2 is then set
to define the prediction horizon beyond this
point. The purpose of the weighting factor, A,
is to penalise large changes in the manipulated
variable, the severity of the penalty is set by
the value of A.

Differences between the process and model
that occur in practice are compensated by error
feedback as shown in Fig.3. The low pass filter
improves the robustness of the scheme by
attenuating the effects of random disturbances,
and the filtered error is also used to correct the
predictions from the neural network model as
described in section 3.2. Often, pHy oscillates
around the setpoint, particularly for setpoints
near the high gain region (pH 7). The
uncertain effects of mixing in the pipeline and
asymmelry of the pH nonlinearity around the
setpoint can result in an offset in the
downstream pH, measured at pHj. Hence,
there is an additional feedback path for a
filtered pHy signal to reduce the offset at pHy
from the required set point.

Fig.3 Necural Network Predictive Control
Scheme for the In-line pH Process

The predictive control scheme was tested as a
regulator for setpoints between pH 5 and pH 7
for a variety of disturbances in Fy, and pHj.
A control horizon of Nu=0 was used as this
significantly  reduced  the amount  of
computation required by the nonlinear
optimiser to find a minimum of the cost
function, cqn.(5). Fig.4 shows on-line results
for regulation at a setpoint of pH 6 with N1=2,
N2=3 and A=0. After initialisation of the
control algorithm pH; is maintained within +
1.2 pH units of the setpoint. The erratic nature
of pHj, caused by the close vicinity of the
measurement probe to the neutralising
injection point (section 2), is evident in the
figure. The effect of the control action is



however. more evident in the downstream pH3
measurement by which time the chemicals are
better mixed. This signal is much less erratic
than pHy, due to the averaging effect of the
improved mixing, and shows improved control
of the effluent pH within £ 0.5 pH units from
the sctpoint. The quality of the control was
obscrved to deteriorate at higher set points,
where the process gain is at it maximum, with
pH3 maintained within = 1 pH units for the
maximum setpoint of pH 7.

Fig.4 On-line results for predictive control of
the in-line pH process

Increasing A from O had the expected effect of
smoothing the control input, Fy, and thus,
reducing the {luctuations in pHo. However,
making A too large caused the control input to
saturate, Increasing the prediction horizon,
N2, also had the effect of reducing the control
clfort and prediction horizons between 3 and 5
gave satisfactory control over the range of
setpoints tested. The control weighting factor,
A, nceded to be tuned separately to obtain the
best results for each prediction horizon.

6. CONCLUSIONS

The development and performance of a neural
network predictive control scheme for an in-
line pH process was described. The process
exhibits significant nonlinearity, which is time
variani, and variations in deadtime. A method
for compensating the variable process delay in
a ncural network model was described and
results demonstrating regulatory control of the
process in the presence of load disturbances
were presented. The performance of other
ncural nctwork control strategies for the
process and application of the controllers to a
pilot-scale in-line pH process are currently
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under investigation.
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