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Abstract

It is known that no one statistical test by itself can give conclusive evidence for the presence or absence of quantum
chaos within a given system. For this reason a range of detailed tests, namely the nearest neighbour spacing distribu-
tion, covariance of adjacent spacings, spectral rigidity, correlation-hole method and inverse participation ratio have
been applied to the quasienergies and quasieigenstates of a periodically kicked particle in a 1-D infinite potential well.
The results are compared with the predictions of random matrix theory for various kick strengths in order to search for
signatures of quantum chaos within this system.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Investigation of non-analytic systems began with the kicked harmonic oscillator, which describes a charged particle
moving in a magnetic field [1–9, and references therein]. However it is difficult to study quasienergies, Floquet states and
the long time diffusion of this model [10–12], as its phase space is unbounded in position and momentum and cannot be
reduced to a cylinder, as in the case of the kicked rotor [13]. For this reason Hu et al. [13] introduced the model of a
kicked particle in an infinite potential well, which is bound in position. The quasieigenstates of this model showed quite
different behaviour from that of the kicked rotator, in that they were found to be power-law localized, which was traced
back to the structure of the evolution matrix [13]. The level statistics of the quasienergies displayed a smooth transition
from a Poisson to a Wigner distribution for a fixed dimension of the floquet matrix [13].

In [14], a discontinuous generalization of the standard map, which arises naturally as the dynamics of a periodically
kicked particle in an infinite potential well, was examined. The quantum dynamics of this system were also investigated
[15] with particular emphasis on the localization properties of the quasieigenstates. The eigenstates were found to be
more localized in the regular or mixed regimes of the classical system and delocalized in the chaotic regimes which
are characterized by a log-normal distribution of the participation ratios. In the regular case the nearest neighbour spac-
ing distribution of the quasienergies showed good agreement with the Poisson distribution [15]. In highly chaotic
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regimes the spacing did not show the RMT predicted Wigner distribution as was claimed in [13]. The authors concluded
that while the spacing is not sensitive to classical chaos, the distribution of participation ratios of the eigenstates was
found to be a good measure to distinguish chaotic quantum systems from regular ones [15].

In [16], Borgonovi introduced the discontinuous perturbed twist map which is an approximation of the stadium map
[17]. The classical and quantum properties of this map were investigated and different localization regimes were found.
Jie et al. [18] generalized these results where the power-law localization of the quasieigenstates in momentum space is
found to be a universal feature of non-analytic systems, as opposed to the exponential localization of the quasieigenstates
of the kicked rotor [19]. With increasing perturbation strength a transition from perturbative localization to pseudo-inte-
grable system, to dynamical localization and to complete extension of the quasieigenstates was observed [18].

In this work a more extensive numerical investigation of the quasieigenvalues and quasieigenstates is presented than
in previous studies. The evolution matrix of the system is derived in Section 2. In Section 3 the quasienergy level sta-
tistics are investigated with particular emphasis on the nearest neighbour spacing distribution, covariance of adjacent
spacings, spectral rigidity and the correlation-hole method. These results are compared with the predictions of random
matrix theory. The quasieigenstate statistics are discussed in Section 4 with particular emphasis on the structure of the
quasieigenstates and the inverse participation ratio.
2. The evolution matrix

The Hamiltonian of the kicked particle in a 1-dimensional infinite potential well [13] is defined as
bH ¼ bP 2

2m
þ V 0ðqÞ þ k cosðqþ aÞ

X1
n¼�1

dðt � nT Þ ð1Þ
where
V 0ðqÞ ¼
0; 0 < q < p

1; otherwise

�

a = 1 is a phase shift introduced to break the parity symmetry of the well, T = 1 is the period of the kick and k is the
kick strength. The evolution operator of the system is given by [13]
bU ¼ exp
�ibP 2T

4�h

 !
exp

�ik cosðqþ aÞ
�h

� �
exp

�ibP 2T
4�h

 !
ð2Þ
Since this Floquet operator, bU , is unitary, it satisfies the eigenvalue equation,
bU jWfi ¼ e�ixn jWfi ð3Þ
where xn is the quasienergy and Wf the Floquet state (quasieigenstate). The above eigensystem may be solved by diag-
onalizing a matrix representation of bU . The eigenstates of the unperturbed Hamiltonian H0 were taken as the basis
states for the U matrix [13],
H 0jwni ¼ Enjwni ð4Þ
where En is the nth energy eigenvalue. jwni are the eigenfunctions of the Hamiltonian H0 given by [20]:
hqjwni ¼
ffiffiffi
1

a

r
sin

npq
2a

� �
; En ¼

�h2n2p2

8ma2
ð5Þ
where n = 1,2,3 . . . ,N. The particle is restricted between 0 and p (2a = p is the width of the well). Since En = P2/2m, and
setting mass m = 1 gives P2 = �h2n2. Substituting this into Eq. (2) yields
bU ðT Þ ¼ exp
�i�hðn2 þ m2ÞT

4

� �
exp

�ik cosðqþ aÞ
�h

� �
ð6Þ
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The evolution matrix U is then calculated as
Table
Variou

m

c

1 + X
X
Covar
U nm ¼ hwnjU jwmi ¼
2

p
e
�i�hðn2þm2ÞT

4

Z p

0

sinðnqÞ sinðmqÞe
�ik cosðqþaÞ

�h

� �h i
dq

¼ C
Z p

0

e
�ik cosðqþaÞ

�h ðcosððn� mÞqÞ � cosððnþ mÞqÞÞdq ð7Þ
where the constant C ¼ 1
p e
�i�hðn2þm2ÞT

4 . Letting z = � k/�h, the integral reduces to
Z p

0

cosðbqÞeiz cosðqþaÞdq; where b ¼ nþ m or b ¼ n� m ð8Þ
Employing the Bessel function Jn(z) through the identity
eiz cosðqþaÞ ¼
X1
l¼0

eli
lJ lðzÞ cosðlðqþ aÞÞ ð9Þ
where e0 = 1; and el = 2 for l P 1 [21], the integral is evaluated by expanding as a series
Z p

0

cosðbqÞ
X1
l¼0

eli
lJ lðzÞ cosðlðqþ aÞÞ

" #
dq ¼

X1
l¼0

eli
lJ lðzÞ

Z p

0

cosðbqÞ cosðlðqþ aÞÞdq ð10Þ
The analytical result for the matrix elements of U are thus as follows:
U nm ¼ C
Z p

0

cosðbqÞeiz cosðqþaÞdq

¼ C pibJ bðzÞ cosðbaÞ � 4
X1
l¼2;4

ilJ lðzÞ sinðlaÞ l

l2 � b2

� �" #
for b odd

þ C pibJbðzÞ cosðbaÞ � 4
X1
l¼1;3

ilJ lðzÞ sinðlaÞ l

l2 � b2

� �" #
for b even ð11Þ
3. Quasienergy level statistics

Diagonalization of the evolution matrix gives a set of quasienergies that can be compared with the predictions of
RMT. Due to the overall symmetry properties of the evolution matrix, the results of the statistical tests are compared
with the circular orthogonal ensemble (COE) predictions of RMT [22]. In the limit of large N these statistics are the
same as predicted for the Gaussian orthogonal ensembles (GOE) [22]. In our present study we have used, as in [13],
a matrix dimension of N = 1024.

3.1. Rescaling of the quasienergy levels

Before studying the various level statistics, the quasieigenvalues were rescaled by applying two transformations: (i)
the phases of the eigenvalues were rescaled to ReðxnÞ N

2p and (ii) a linear transformation was applied using the fitting
parameters given in Table 1. This results in an average level density (global) of 1 for the rescaled xn.
1
s curve fitting parameters of the quasienergy statistics

k

0.1 5 25 50

0.98 0.99 0.92 0.86
8.40 �0.30 1.94 �2.91
1.07 1.10 1.40 1.75
0.07 0.10 0.40 0.75

iance of adjacent spacings 0.07 0.032 �0.06 �0.10
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3.2. Nearest neighbour spacing distribution

The nearest neighbour spacing (NNS) distribution, P(s), is defined as the probability density for two neighbouring
levels xn and xn+1 to be separated by a distance s on the rescaled scale. It is a short-range spectral fluctuation measure,
i.e. only correlations between eigenvalues which are separated by a few other eigenvalues are involved. Using the
rescaled quasienergies the NNS distributions were calculated and are shown in Fig. 1. The Wigner and Poisson distri-
butions represent the extreme cases of classical behaviour i.e. regular (Poisson) and chaotic (Wigner). The smooth tran-
sition observed in [13] from Poisson at small k to Wigner at large k is clearly seen. Such a transition was only observed
in [15] for relaxed convergence criterion.

In reality a system has usually a mixture of both regular and chaotic characteristics and the Brody distribution
[23–26] is used to investigate this:
Pðx;XÞ ¼ aðXÞ � ðXþ 1Þ � xX � e�aðXÞ�xXþ1

; aðXÞ ¼ C
Xþ 2

Xþ 1

� �Xþ1

ð12Þ
In order to obtain the Brody parameter X, a graph of ln(ln[(1 � P(s))�1]) versus ln(s) is plotted and X is found from its
slope of (1 + X) [27,26] where P(s) is the cumulative spacing distribution,
PðsÞ ¼
Z s

0

P ðxÞdx � 1� e�aðXÞ�sXþ1 ð13Þ
Fig. 1 shows P(s) and ln(ln[(1 � P(s))�1]) versus ln(s). The resulting (1 + X) and hence X are given in Table 1. The
value of X for small k indicates behaviour very close to Poissonian (X = 0). The value of X for large k is more Wigner-
like level repulsion (X = 1). The value of X for intermediate k is indicative of intermediate level statistics i.e. the Brody
distribution. Note the depression of P(s) for k = 0.1 and 5 for s! 0, observed also in [12].

3.3. Covariance of adjacent spacings

Another test for possible GOE behaviour is the covariance of adjacent spacings [28,22]:
covðsn; snþ1Þ ¼
PN

n¼1ðsn � hsniÞðsnþ1 � hsnþ1iÞPN
n¼1ðsn � hsniÞ2

� � PN
n¼1ðsnþ1 � hsnþ1iÞ2

� �h i1=2
ð14Þ
This is sensitive to correlations between levels Ei and Ei+2 (s is measured on the rescaled ‘energy’ scale) and is predicted
by GOE theory to have the value �0.27 [29]. The Poisson value is 0 i.e. no correlations. Table 1 shows that as k in-
creases the value becomes closer to that predicted by RMT, but even for k = 50 the value is still significantly different
from the RMT prediction.

3.4. Spectral rigidity

The spectral rigidity D3(L) is used to distinguish classically chaotic behaviour from regular behaviour in the semi-
classical limit. D3(L) [30] is defined for the interval [a,a + L] in the sequence {xi} as
M3ða; LÞ ¼
1

L
min

A;B

Z aþL

a
½nðxÞ � ðAxþ BÞ�2dx ð15Þ
where n(x) is the cumulative number of ‘states’ of the sequence {xi} [31,32]. For a regular quantum system the energy
levels are distributed randomly and without correlation. A random sequence of uncorrelated levels has a soft character
(linear dependence on L i.e. D3(L) = L/15). In contrast the energy levels of a chaotic quantum system exhibit strong
correlations owing to the repulsion between the random matrix eigenvalues. A random matrix spectrum has a rigid
character (a logarithmic dependence on L, i.e. for L� 1, D3ðLÞ ¼ 1

p2 ðlnð2pLÞ þ cþ 1� 5
4
� p2

8
Þ for GOE matrices, where

c is Euler’s constant) [22,33,34]. The difference between the two spectra is most pronounced in the D3(L) statistic since
this involves correlations between many levels i.e. they test for long-range spectral fluctuations.

The spectral rigidity is shown in Fig. 2 (for L = 0! 50), where hi indicates spectral averaging [31,32]. It is seen from
these figures that for small k (k = 0.1 and 5), the spectrum follows the Poisson prediction for a limited range of L

(L � 10) and then the spectrum becomes less rigid than a Poisson spectrum. This less than Poisson rigidity is due to
matrix truncation. As k increases the spectrum undergoes a transition and at large k = 50 follows the GOE prediction
for L 6 15. For L > 15 and k = 50, the spectrum follows that of an uncorrelated Wigner spectrum which was found
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Fig. 1. P(s), P(s) and ln(ln(1 � P(s))�1), as kick strength is increased from k = 0.1 to 50. The Poissonian distribution (dash–dot), the
Wigner distribution (solid) and the Brody distribution (dash) are also shown.
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Fig. 2. Spectral rigidity D3(L) and the GOE predictions, Wigner (solid), Poisson (dash–dot), uncorrelated Wigner (dot), as kick
strength is increased from k = 0.1 to 50.
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numerically to be equal to D3(L) = L/[55 � (210/L)] for L > 15 [35]. This intermediate behaviour between Poisson and
GOE is suggestive, classically, of a mixed phase space of regular and chaotic behaviour [36].

In the limit of large L (L P 50), the D3(L) statistic cannot be explained and seems to be caused by large scale fluc-
tuations of the cumulative level density. Experiments on quantum billiards for which ensembles of eigenvalues can be
generated, have shown that when drawing only a single matrix from the ensemble, the D3(L) statistic fluctuates consid-
erably around the GOE prediction [37]. However taking the average over the ensemble reduces these fluctuations and
the D3(L) statistic follows closely that predicted by RMT. When dealing with a unique matrix U, spectral averaging, h i,
is performed to lessen the effects of these fluctuations. Another form of averaging, which may reduce fluctuations still
further, is to average over a number of matrices with slightly different k (Dk� k). This method was used in [19], for
investigating the statistical properties of the quantum kicked rotor on a torus.
3.5. Correlation-hole method

Leviandier et al. [38] developed the correlation-hole method for the analysis of long-range correlations. The properly
smoothed Fourier transform C(t) of the spectral autocorrelation function maps the long-range correlations onto scales
in Fourier space (time domain), i.e. C(t) can be written as the Fourier transform of the autocorrelation function of a
spectrum I(x) on the rescaled scale x [39]:
CðtÞ ¼
Z þ1

�1
AðrÞe2pirt dr ð16Þ
where AðrÞ ¼
Rþ1
�1 IðR� r

2
ÞIðRþ r

2
ÞdR is the autocorrelation function of I(x). In the case of a ‘stick’ spectrum of equal

amplitudes SðEÞ ¼
P

mdðE � EmÞ then [39]:
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Fig. 3. Spectral form factor jC(t)j2, averaged spectral form factor hjC(t)j2i and the GOE predictions (dash), as kick strength is
increased from k = 0.1 to 50.
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jCðtÞj2 ¼
X

j;k

e2piðEj�Ek Þt

�����
�����
2

ð17Þ
The ensemble average can be simulated by applying a smoothing procedure to the experimental decay function jC(t)j2
[39]. The most appropriate procedure, known as ‘full Gaussian smoothing’, is a convolution of jC(t)j2 with a Gaussian
[39]. Hence, one has to compare the smoothed result to the function
hjCðtÞj2i ¼
Z þ1

�1
jCðt0Þj2 1ffiffiffiffiffiffiffiffiffiffi

2pr2
t

p exp
�ðt � t0Þ2

2r2
t

 !
dt0 ð18Þ
where the variance was chosen to depend on the time as rt = t/5. The theoretical hjC(t)j2i is given by [39]
hjCðtÞj2i ¼ N 2 sinðpNtÞ
pNt

� �2

þ N � Nb2ðtÞ ð19Þ
where b2(t) is the two-level form factor [22,34] and N is the number of levels in the spectrum. Chaotic dynamics causes a
suppression of the Fourier transform Eq. (17) near the origin, a so-called ‘correlation hole’. For cases intermediate be-
tween fully chaotic and regular systems, the correlation hole is less deep and/or abrupt. In particular a Poisson spectrum
should show no correlation hole [38,40,26].

The jFourier transformj2, jC(t)j2 and hjC(t)j2i of the rescaled quasienergies is shown in Fig. 3. The theoretical
hjC(t)j2i shown in the figures was also Gaussian smoothed. No correlation hole is present for small k indicating regular
dynamics. As k increases a correlation hole appears which increases in size as k becomes larger. This hole can indicate
the presence of quantum chaos. However it should be noted that false correlation holes can arise even for regular
systems [41], for example, in uncorrelated Wigner spectra. The appearance of the correlation hole as k increases is
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Fig. 5. Inverse participation ratio nr as a function of n and the probability distribution of the inverse participation ratios for various k.
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consistent with the behaviour found for hD3(L)i since small t corresponds to large correlation lengths L in hD3(L)i. The
presence of highly oscillatory small time behaviour in hjC(t)j2i may indicate the effect of non-universal behaviour in the
hD3(L)i statistic. This however may have its origin in the finite resolution and/or the rescaling procedure associated with
missing energy levels [41].
4. Quasieigenstate statistics

The quasieigenstates show behaviour quite different from that of the kicked rotor. In the kicked rotor, the quasie-
igenstates are exponentially localized in momentum space [42,43,18]. In this model the quasieigenstates are power-law
localized [13], for small k values, as shown in Fig. 4. It is clearly seen that the localized states gradually transit to
extended ones as k increases.

4.1. Structure of the quasieigenstates

The power-law type localization is universal for non-analytic systems just like the exponential localization in analytic
models [18]. In the kicked rotor the eigenstates are exponentially localized in the momentum space. For non-analytic
systems, for a small perturbation (k = 0.1), i.e. in the perturbative regime, the envelope of a Floquet state, jWfi, in
momentum representation can be fitted by the Lorentzian-like function
jWf j2 ’
1

1þ 4jn� ncjc
ð20Þ
where nc is the centre of the peak and c is a fitting parameter [18]. The power-law localization is clearly demonstrated in
Fig. 4 for k = 0.1, where the power exponent c � 5.5. For k = 5, the tails of the Floquet states are found to decay, on aver-
age, as a power-law with power exponent c � 3.6. A similar study was undertaken in [15]. The results indicate that for large
kick strengths, the ‘well converged’ states exhibit strong fluctuations in the basis but appear to have exponential tails.

4.2. Inverse participation ratio nr

To give a quantitative description of the localization phenomenon in non-analytic systems, the quasieigenstates are
characterized by their inverse participation ratio as defined in [44],
nr ¼
P

njWf j2P
njWf j4

ð21Þ
The behaviour of the inverse participation ratio for different values of k corresponding to the localized and delocal-
ized regimes are shown in Fig. 5.

For small k it is seen that nr = 1 for all quasieigenstates n. This is expected since all quasieigenstates are localized.
For large k (k = 25), there is a spread in the nr and a shift of the average nr to 	80, indicating that the states are becom-
ing more extended. The maximum value for nr for a uniform probability distribution is given by N, where N = 512 is
the matrix dimension. Therefore as states get more extended, nr approaches N. In this work, in contrast with [44], all
quasieigenstates, including asymmetric states, were included in the calculation of nr, which may lead to a lower value of
maximum nr. Also shown in Fig. 5 is the statistical distribution of the inverse participation ratios P(nr) for localized
states as well as extended states. In the localized regime the distribution is very narrow and the sharp peaks correspond
to an accumulation of eigenstates with approximately the same value of nr. In contrast the mixed regime is character-
ized by a much broader distribution in nr, with a shift in the average value of nr.
5. Conclusion

The aim of the present paper was to find signatures of chaos at the quantum level for the model of a periodically
kicked particle in an infinite potential well. Expanding the evolution matrix in a suitable basis produces a set of qua-
sienergy levels and Floquet states that could statistically be compared with the predictions of random matrix theory.
Owing to the symmetry properties of the evolution matrix these statistics are compared with the circular orthogonal
ensembles, which approach the Gaussian orthogonal ensembles as N!1.
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In [13], a transition was observed in the level spacing distribution from Poisson to Wigner as the perturbation was
increased. However a large number of statistical tests are required in order to draw any decisive conclusions when
searching for chaos at the quantum level. Here, a thorough investigation of the quasienergy level statistics has been
performed. As k increased, a spectral transition from Poisson (regular) to Wigner (chaotic) was observed in the nearest
neighbour spacing distribution; the D3 statistic changed from that of a Poisson spectrum to an uncorrelated Wigner
spectrum; and a correlation hole appeared. These results are characteristic of a classically mixed phase space containing
chaotic and regular regions. This is in agreement with the classical phase space discussed in [45]. Lack of agreement
between some of the quasienergy level tests and the predictions of random matrix theory can be attributed to the system
never being fully ergodic and also to the finite size effects of U. The eigenstates were characterized by the inverse par-
ticipation ratio. The Floquet states were found to be power-law localized for small k and extended for large k.
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