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Abstract

Using the configuration interaction Hartree—-Fock method, the even and odd Hamiltonian
matrices of Sm IX are studied in the /s and jj coupling schemes. Sm IX is isoelectronic with
Xe but because of 4f orbital contraction, and the near degeneracy of 4f and 5p binding
energies, the lowest configuration is a mixture of states with differing numbers of 4f and 5p
electrons. Diagonalization of the Hamiltonian results in a set of eigenvalues and eignvectors
which are characterized using various statistical tests of random matrix theory.

PACS numbers: 05.45.Mt, 31.10.4z, 31.15.—p

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Random matrix theory (RMT) was developed by Wigner
[1, 2] to model the statistical distributions of eigenvalues
and eigenfunctions (EFs) of complex many-body quantum
systems. Initially, applications of RMT were confined
to nuclear physics where the theory was successful in
describing the spectral fluctuation properties of atomic nuclei.
Rosenzweig and Porter [3] analysed spectra of neutral atoms
which constituted the first application of RMT outside the
field of nuclear physics and provided the first strong evidence
for the universal applicability of RMT.

However, RMT was found to be quite limited as it
can only give a proper description of a system locally in a
restricted region of the energy spectra. New approaches in
RMT have been developed by imposing internal structure
on random matrices. One such approach is band random
matrices (BRMs) [4-8], where the basis states are ordered in
such a way that a Hamiltonian matrix has a band of nonzero
matrix elements H;; interconnecting the states within the band
|i — j| < b around a main diagonal. Inside the band, the
matrix elements are assumed to be random and independent,
and outside the band, matrix elements are set to zero.

In an atomic system, the Hamiltonian matrix can be
viewed as H = Hy+ V, where H can be described as a banded
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matrix with a leading diagonal with monotonically increasing
values, plus random and independent off-diagonal elements
inside a band of size b—a Wigner BRM (WBRM) [1, 2]. The
basis states of H are many-particle eigenstates of the mean
field Hy, and are composed of non-interacting single-particle
states (eigenstates of the same J”, angular momentum and
parity only, constitute a given spectrum). When the pertur-
bation (configuration interaction (CI)) is switched on, the un-
perturbed many-particle states are coupled together and form
compound atomic states [9], with properties analogous to
nuclear compound states, due to the large density of states and
the small average level spacing (D). This coupling therefore
gives rise to correlations between the eigenvector components
C;; of H, and to correlations between the energy eigenvalues
of H, with the degree of correlation depending on the size of
the band, b, of V and on the size of the matrix elements of
V. Thus the application of V can give rise to different types
of energy level statistics. The ratio of the typical off-diagonal
matrix element to the average level spacing V /D defines the
perturbative (V /D < 1) or non-perturbative (V/D > 1) and
possibly chaotic character of the mixing states [14].
Flambaum et al [9-13], Gribakin et al [14, 15] and
Zelevinsky et al [16] have done pioneering work in this
area, producing a realistic model of a quantum chaotic
system by characterizing the spectrum and eigenstates of the
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lowest states with J” =4~ of the rare-earth atom Ce. These
studies were extended to include praseodymium J* = % by
Cummings et al [17, 18], where the Hamiltonian and coupling
matrices, energy eigenvalues and dipole moments of Pr I were
also investigated, with possible multifractal behaviour found
in several rare-earth elements including Ce [19].

Of particular interest however is the situation in more
highly ionized, heavier rare-earth ions that contain 4f and 5p
electrons in their ground configurations. In stages past six or
seven times ionized there is a near degeneracy in the binding
energies of 4f and 5p electrons resulting from the tendency
of levels to regroup according to principal quantum numbers
with increasing ionization. Initially, in the neutral lanthanides,
4f electrons are more weakly bound than either the 5p or 5s,
but by the 15th ion stage lie lower than both [20, 21]. Such
behaviour gives rise to the so-called hyperalkali ions where
4f%5p5525d becomes 4f!*5s along the Pm isoelectronic
sequence [22-24]. At intermediate stages, where the 5p and
4f energies are very close, there is a vast increase in the
number of available levels due to the appearance of a whole
range of configurations based on variable 4f/5p/5s occupancy
lying well below the ionization limit. There is in this region, a
complete breakdown of the single-particle approximation and
these configurations are so highly mixed that single-electron
labels are no longer appropriate. In fact, the configurations
mix to form ‘superconfigurations’.

In an earlier work on this problem, it was shown that
along the Xe I sequence, the various (4f5p)° configurations are
closest in Sm IX [25]. Experimentally, no lines are observed
either in the spectrum of this series or adjacent ions, so that
in fact the emission from a samarium plasma containing ion
stages from VI to XIV consists of a pure continuum extending
from 3 to 200 nm [26]. From a theoretical analysis of some
of the level distributions in this and adjacent ions, it was
found that the level spacings followed a Wigner distribution
and possessed many of the attributes associated with the
emergence of chaotic behaviour. In the present work, we
repeat some of these tests for a more extensive basis set
and perform a range of additional tests for the presence of
chaos. Because of the enormous level densities encountered,
the resulting number of transitions is so great that in many
cases, the line spacing is less than the linewidth of individual
lines so that the emission appears continuous on all length
scales, unless one is dealing with an isolated ion or a small
number of ions for a limited time.

In order to extend on our previous work [27], detailed
calculations were performed with the Cowan suite of atomic
codes [28], using the configuration interaction Hartree—Fock
(HFCI) method. For the J =0 — J =1 transitions, the con-
figurations considered are given in table 1. These were chosen
as they lie closest in energy. From a single-configuration
calculation, the lowest configuration is 5s>5p*4f2. Excitation
of 5p-5d or 5s-5p requires essentially the same energy.
Because of memory constraints we omitted ‘correlations’
in the form of additional high-lying configurations, though
to some extent such interactions are implicitly allowed for
through the scaling of Slater—Condon parameters used in
these calculations. From a comparison between our calcu-
lated values and experimentally observed energies of 4f—5d
transitions in Ag I-like Sm XVI, the accuracy of the present
calculations is inferred to be better than 1% [29].

Table 1. The even and odd configurations of Sm IX.

Even 0Odd
Configurations 5s25p*af?  5525p4f?5d
5s25p34f?  5525p24f35d
5s25p24ft  5s25plaftsd
5s'5p74f2
5s!'5p*4f3
5s'5pP4ft
E,,. range (eV) 0—5 30 — 40
Possible J values 0 — 12 0— 14

In section 2, the Hamiltonian matrices are characterized.
Section 3 details the structure of the eigenstates, which shows
clearly the breakdown of the single-particle model, and finally
section 4 analyses the energy level statistics. Thus, using the
arguments of [9, 16, 17] we extend the model for chaotic
quantum systems further along the rare-earth sequence into a
region of high complexity by analysing the eigenvalue spectra
and eigenstates of Sm IX.

2. Banded Hamiltonian matrices

In this section, the banded structure of the Hamiltonian matrix
is investigated following the systematic analysis of [9, 12, 16,
17, 30].

2.1. Hamiltonian matrix element distribution

The window averaged (H 2); > shown in figure 1, is used to
show the bandedness of the Hamiltonian matrices [9, 12],

1
(H?);j = > HE. (1)

YW 1)
li'—i|<W
[/ =jl<w

where W =10 is the size of the averaging window chosen
for Sm IX. The square of the Hamiltonian matrix elements
was averaged in such a way that there is now a reduced
matrix N/10 x N/10. The basis states are arranged so that
the diagonalized H has its H;; matrix elements increasing
monotonically with i.

The diagonal is more pronounced in both the Is and
JjJj coupling schemes of even Sm IX than odd Sm IX. For
even Sm IX, the amplitude of these effective matrix elements
decreases when moving away from the diagonal. Therefore,
the structure of the Hamiltonian can be treated as band-like,
although it is clear that the amplitude of the averaged matrix
elements decays quite slowly. The situation is similar for odd
Sm IX although there are some large off-diagonal matrix
elements present.

2.2. Off-diagonal elements of the Hamiltonian matrices

The dependence of the off-diagonal matrix elements H;;, (i #
J), on the level numbers i, j is almost random due to the basis
states ; being ‘complex’ linear combinations of the single-
determinant states. Statistics characterizing the off-diagonal
elements of the Hamiltonian matrices for the even and odd
levels of Sm IX are presented in tables 2 and 3. W is the
number of elements of the ‘upper triangle’ of the matrix. In
this work, | H;;| was set to 0 if |[H;;| < 1073 eV.
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Figure 1. Window-averaged Hamiltonian matrix for (a) even Sm IX in jj coupling, (b) odd Sm IX in jj coupling, (c) even Sm IX in /s

coupling and (d) odd Sm IX in /s coupling.

Table 2. Statistical characteristics of the off-diagonal Hamiltonian
matrix elements of even Sm IX in /s and jj coupling.

Whole matrix ~ H;; # Oonly

SmE( even ls

H,%. (eV?) 0.284 0.869

VHE V) 0.533 0.932

H;; (eV) —257%x 1072 —7.88x 1072

Noof H;; (i < j) 4095 1336

Matrix dimension 91 x 91

D (eV) 0.31

% 3.009
SmIX even jj

H,i. (eV?) 0.282 0.533

VHE V) 0.531 0.730

H;; (eV) —131x 1072 —247x 1072

Noof Hy; (i < j) 4095 2162

Matrix dimension 91 x 91

D (eV) 0.31

% 2.357

For both coupling schemes, ,/H_fi for even Sm IX is
~0.53 eV and for odd Sm IX it is ~0.31 eV, when the whole

matrix is considered. When H;; # 0 only is considered, \/H>3
for even Sm IX is 220.73 or ~0.93 eV and for odd Sm IX it
is 0.4 or ~0.68 eV, depending on the coupling scheme (see
tables 2 and 3). In both even and odd Sm IX, the ratio V/D

200

Table 3. Statistical characteristics of the off-diagonal Hamiltonian
matrix elements of odd Sm IX in /s and jj coupling.

Whole matrix ~ H;; # 0 only

SmIX oddIs

Hiﬁ. eV?) 0.095 0.468

VHZ €V) 0.309 0.684

H;; (eV) —6.08 x 107>  —2.98 x 1072

No of Hy; (i <j) 21945 4474

Matrix dimension 210 x 210

D (eV) 0.101

z 6.79
SmIX odd jj

Hé eV?) 0.094 0.158

VHZ V) 0.3064 0.397

H;; (eV) —342x107% —575x1073

Noof Hj; (i <j) 21945 13049

Matrix dimension 210 x 210

D (eV) 0.1

¥ 3.98

D

(where V = \/H>3 , H;j # 0 only; D is the mean level spacing
of the unperturbed Hy(H;;) energy levels) for /s coupling is
approximately twice that in the jj coupling scheme; i.e. this
strongly suggests basis-dependent results for values of V. For
even Sm IX, D =0.31¢eV while for odd Sm IX, D =0.1eV.
Since the ratio V/D > 1, this suggests the possibility of

chaotic mixing of states.
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Figure 2. Distribution of off-diagonal elements of the Sm IX Hamiltonian matrix. The solid curve is given by equation (3).

The distributions of the off-diagonal H;; elements are
shown in figure 2. The even and odd matrices are remarkably
similar apart from the small vertical shift due to the
different size of the matrices. All histograms show very large
numbers of small matrix elements as expected, since the
matrix elements between distant configurations become very
small when the configurations differ by states of at least
two electrons. For the off-diagonal matrix elements, H;; >
0eV, the distribution can be approximated by the following
exponential formula [9],

AN

_ —|Hjj|
g7 O Hijl " exp (T’) , @

AH

as shown by the logarithmic plots in figure 2. The off-diagonal
H;; elements were curve fitted using the following function

F(x,a, ) =a(|x|7"/?)exp (%) , 3)

where o and B for the least-squares fitting of the nonzero H;;
are given in table 4. The values of 8 are not consistent with the

corresponding values of Hli., (H;; # 0 only) (B8 on average
is 30% lower).

Table 4. Various curve fitting parameters for even and odd Sm IX.

Sm IX even Sm IX odd

Is jJj ls JJj
o 31.12  68.08 132.58  560.28
B 0.82 0.45 0.44 0.24
k 0.005 0.007 0.001 0.002
So 0.51 0.75 0.31 0.74
H, 1.63 1.37 0.94 0.67
b 20.79 18.60 74.68 54.62

0.23N  0.2N 0.36 N 0.26N
AE (eV) 4.54 4.67 3.95 4.05
AE/D 14.66 15.06 39.2 40.63

2.3. Dependence of H;; on their distances
from the diagonal

Figure 3 shows that the matrix elements H;; decrease in
magnitude as the distance from the diagonal A = |i — j| [14]
increases. The matrix elements appear more dispersed in
the Is coupling scheme than in the jj coupling scheme for
both even and odd Sm IX with large off-diagonal elements in
both even and odd Sm IX and in both coupling schemes.

2.4. Sparsity of H;;

The sparsity S of the Hamiltonian matrix defined for |i — j| =
A as the ratio of the number of nonzero matrix elements to the
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Figure 3. Matrix elements H;; of Sm IX as a function of the distance to the main diagonal |i — j|.

total number of matrix elements [12],

S— number of |H;;| #0
" number of all H; |

li — jlfixed, “)
is presented in figure 4. According to this definition the
sparsity is 1 for full random matrices. In the jj coupling
scheme, the sparsity is approximately constant for [i — j| <
N /2, where N is the matrix dimension, and then there is a
definite decrease in the sparsity. For the /s coupling scheme,
the sparsity is approximately constant for |i — j| < N /4, and
then there is a definite decrease in the sparsity. The sparsity is
greater in the jj coupling scheme, and at small |i — j| closer
to the value for full random matrices, than in the /s coupling
scheme. The sparsity was fitted according to [12]

S(A) =S, — kA, ®)

where parameters of the fit, Sy and k, are also given in
table 4.

2.5. Number bandwidth b

The number bandwidth b was estimated by fitting the mean-
squared matrix elements to [12]

A
(H5>\i—j|:A = Hg exp <_Z) , (6)

202

where (Héﬁ i—jl=a 1s the average of the squared nonzero
matrix elements at a given distance A from the diagonal. The
values of b compared with the matrix dimension N are given
in table 4. In all cases, b was found to be much smaller than

N showing the banded nature of the matrices.

2.6. Energy bandwidths AE;

The energy bandwidths AE; were calculated according to

[9, 12]

> (Hii — Hjj)* | Hyj|?
Zj;éi |Hij|2

The overall mean energy bandwidths AE as given in table 4
are seen to be fairly constant. This energy bandwidth is a
more physical characteristic of the Hamiltonian matrix, since
it refers to the energy interval within which the perturbation
strongly mixes the basis states. The number bandwidth (b =
AE/D) is seen to be ~15 for even Sm IX and ~40 for
odd Sm IX reflecting the greater energy spread in the latter
(see table 1).

(AE;)? = (7

2.7. Discussion I

As has been the case for the rare-earth elements studied so
far, the Hamiltonian matrices of even and odd Sm IX in
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Figure 4. Sparsity S of the Sm IX Hamiltonian matrix.

Is and jj coupling schemes can be characterized as sparse
band matrices with a leading diagonal. However, BRM cannot
account for the existence of some nonzero off-diagonal matrix
elements due to the strong coupling of distant basis states by
the perturbation.

3. Structure of the eigenstates and the basis states

Figures 5 and 6 show examples of energy eigenstates |j),
with components C; in a basis |i), and basis states, with
components C; in a basis | j), for odd Sm IX. The eigenstates
are distributed among a large number of component basis
states and form compound atomic states. This is also true for
the basis states as a function of |j).

The states are well localized on the energy scale, i.e.,
the components contributing to a particular eigenstate are
mainly confined within an energy range ~ =+ 10eV around
the centroid energy. This behaviour agrees with the existence
of a characteristic spreading width I" [9], which determines
the energy range within which the basis states are strongly
mixed by the perturbation and hence the range of eigenvalues
to which a given basis state noticeably contributes. A relative
shift of the large components envelope following the increase
of the eigenstate energy can be observed. This means
the localization of components around the eigenstate they
represent. Due to the finite size of the matrix, the eigenstates

are more localized in the middle of the spectrum than at the
upper and lower bounds. The energy centres of the eigenstates
tend to increase as the energy of the eigenstates increases. This
is also true of the basis states as a function of | j).

3.1. EFs and LDOS

The shape of an EF, given by the dependence of W/ on i for
fixed values of j (W/ =|C/|? (C is the amplitude) where
the subscripts refer to the basis states and the superscripts
correspond to the compound eigenstates), is defined as [32]

w;(E%) =" |C,I’8(E° — EY) ®)

1

in the unperturbed energy basis. The local density of states
(LDOS) is given by the dependence of W/ on j for fixed
values of i. The spectral density of states (LDOS) for an
unperturbed state |i) is defined as [32]

wi(E) =Y _|C;j|*8(E — Ej), ©)
J

where E; is the eigenenergy of the perturbed eigenstate
[j) and C;; = (i|j). The mean-squared components (|Cij|2)
were calculated and in order to suppress fluctuations, window
averaged over £5. Before averaging, w;(E) and w;(E) are
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Figure 5. Various eigenstates of odd Sm IX in /s coupling. The eigenstate components C; are shown as a function of the basis state energies.

expressed with respect to their centroids. For the EFs the
centroid of w;(E?), e;, is defined by [32]

=) ECyP
i

(10)

and w; can be expressed as a function of the shift (£ — i)
For the LDOS, the centroid of w; (E) is [32]

=Y EjlCyl,
J

so the LDOS can be expressed as w; (E — E?).

The window-averaged EFs and LDOS, plotted in
figures 7 and 8 show the presence of localization. A banded
structure is clearly seen in the shape of the EFs. This banded
structure is also evident in the LDOS although the centre of
the band is seen to be shifted to higher i, as i increases.
The localization of the eigenstates as seen in the EFs (and
correspondingly in the LDOS) implies that a perturbation
mixes the basis states locally and the components of a given
eigenstate rapidly vanish as one moves away from the ‘centre’
of the eigenstate. In general, the LDOS and EFs are skewed at
low and high states, but are more symmetric in the middle
of the spectra. This is partly due to the low states being
bounded from below, i.e. in a finite basis the very low and

an

204

very high basis states cannot achieve the same degree of
coupling—on an average they are only coupled to &b basis
states, unlike the ‘middle’ states, which can couple to ~2b
basis states. This range of coupling (i.e. the bandedness of the
Hamiltonian matrix) results in the localization of the EFs and
the LDOS [9, 17].

The LDOS and EFs had the following functions fitted to
them [9]:

w(E;; E+AE,T,N)=N""f(e) 12)
in the energy region —15 — 15eV, where the shape function
f(¢) has the forms for various distributions as detailed in [9].
This follows from the work of Wigner [1, 2], Fyodorov
et al [31] and Wang et al [32]. It was shown that for BRMs
when the coupling between the matrix elements is constant,
the LDOS has the form of the Breit—Wigner law (similar to
the fitted Lorentzian) [33]. For larger perturbations, the form
of the LDOS can be described by a Gaussian [31]. Typical
window-averaged EFs and LDOS with the least-squares fitted
functions are shown in figures 9 and 10. The 33rd and 108th
states (chosen close to the centre of the EFs and LDOS
distributions) are shown for even and odd Sm IX respectively.
These states are shown for both coupling schemes. The
(ICi; 1?) are larger in the ‘middle’ of the spectra, indicating that
the C;; are more localized over the basis states/eigenstates
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Figure 6. Various basis states of odd Sm IX in s coupling. The basis state components C; are shown as a function of the eigenstate

energies.

than the high or low spectral regions. The window-averaged
LDOS are broader in the central region than the corresponding
EFs.

The sum of the squares of the residuals (SSR) were
calculated using a nonlinear least-squares algorithm as an
indication of the goodness of the fits. For the EFs it was found
that the Lorentzian had the lowest SSR whereas the Gaussian
fits had the greatest SSR. For the LDOS, it was found that the
Gaussian and interpolation exponential had the lowest SSR
and the Lorentzian had the largest SSR.

3.2. Number of principal components N

The number of principal components N indicates the number
of components that contributes significantly to a given
eigenstate (basis state). It was calculated for various f(e)
distributions and it was found that N reaches a maximum
of approximately 60 for even Sm IX, and 150 for odd Sm
IX, which is ~two-third of the number of available states for
both the EFs and LDOS. The maximum value of N extends
over a similar energy range (~5eV) for even Sm IX and odd
Sm IX in both the Is coupling scheme and the jj coupling
scheme and for both EFs and LDOS. The maxima N values
occur in the central energy regions. The value of N for the

corresponding LDOS and EFs for each parity and coupling
scheme are very similar in shape and magnitude.

3.3. The spreading width T’

The spreading width I" for the EFs indicates the energy
region over which substantial mixing between basis states
occurs around the unperturbed centroid basis state. I' for the
LDOS indicates the width of the energy region over which
the initial unperturbed basis state becomes ‘spread’. It was
found to range between ~5 and 10 eV for the Lorentzian and
interpolation exponential, and between ~10 and 20 eV for the
Lorentzian squared, in both the EFs and LDOS and for both
coupling schemes. Similar I"’s for the EFs and LDOS indicate
that the two-body interaction in the Hamiltonian is relatively
small. Fermi’s golden rule gives for the BW function
VZ
Lpw =27 D

where V = (a|H|b), a # b (i.e. off-diagonal elements) and
the ‘bar’ indicates the mean. Using the H,%' values of table 4
(the whole matrix values), the I"gy were calculated and are
tabulated in table 5.

There is no substantial difference between the I'py
values of the corresponding coupling schemes. These values

13)
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Figure 8. Window-averaged LDOS for Sm IX.
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Figure 9. Selected window-averaged EFs for Sm IX and least-squares fitting to Gaussian (red), Lorentzian (blue), squared Lorentzian
(green) and interpolation exponential (cyan).
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Figure 10. Selected window-averaged LDOS for Sm IX and least-squares fitting to Gaussian (red), Lorentzian (blue), squared Lorentzian
(green) and interpolation exponential (cyan).
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Table 5. I'zy for even and odd Sm IX, calculated using Fermi’s
golden rule.

SmIXeven SmIX odd
Is JjJ Is jJj
gy = 271% 575 5.71 5.91 5.90

Table 6. Density of states, p(E), for the Lorentzian, squared
Lorentzian and interpolation exponential distributions.

p(E) = Z—ZIY Lorentzian
p(E) = iTIY Squared Lorentzian
p(E) = &=  Interpolation exponential

are consistent with the I"’s calculated via the Lorentzian and
interpolation exponential curve fits. The energy shifts AE for
the EFs were found to vary from ~—1 — 1eV and -2 —
2 eV for even and odd Sm IX respectively for both coupling
schemes. The energy shifts A E for the LDOS were found to
increase from —5 — 10eV for even and odd Sm IX and for
both coupling schemes. This is expected since the centre of
the LDOS increases with i as shown in figure 8. If the width of
the perturbed spectrum is of the same order as the unperturbed
one, it is expected that both shapes (LDOS and EFs) are very
close to each other [17, 30].

3.4. Density of states

Table 6 summarizes the various densities of states p(FE)
corresponding to different distributions. Figure 11 compares
the calculated density of states p for Sm IX with the value
of p for the Lorentzian distribution. It was found that the p
given by the Lorentzian distribution appears to be a better
approximation for the density of states than the squared
Lorentzian and the interpolation exponential.

3.5. Complexity of wavefunction components

The information entropy, S [4, 34-36], measures the degree
of complexity of individual wavefunction components C;;.
It is defined for a given normalized wavefunction |j) and
expanded with the aid of a given basis [i), in terms of the
weights of the components

§i==>"w/Inw/), (14)

where Wl’ = (Cl:i )2 and Cl:" = normalized amplitude. In a
given energy range, £ ~ E;, the distribution of components

Cij is similar to a Gaussian one but with the local width
(€2 =1/N;:

. N; N; .
P/(CT) = ,/j exp [—7’(0/)2},

where N; is the number of principle components [16]. The
entropy S/, or the corresponding length in Hilbert space
I} = exp (S7), characterizes the degree of delocalization of a
given EF |j) with respect to an original basis. The deviation
of 1] from the GOE limit 0.482N indicates the incomplete

s)
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mixing of basis states [16]. Figure 12 shows the calculated
exp (s%), the information length, where « represents either the
eigenvectors | j) or the basis vectors |i).

In the most chaotic part (the centre) of the spectrum,
the information entropy comes very close to reaching the
GOE value, N; = N. The maximum I} value is ~90 for odd
Sm IX and ~35 for even Sm IX for both coupling schemes.
This indicates mixing of the basis states at the centre of
the spectrum. However, there is incomplete mixing over the
whole spectrum. A typical pattern of the regular bell-shape
behaviour of information entropy S is formed due to the CI.

3.6. Localization length

The size of the basis which eigenstates occupy is defined via
the entropy localization length, I, defined as

In =N exp ((H) — Ho), (16)
where (H) is the mean entropy of eigenstates
| MN
(H) == ) Wiln (W), (17)

n=1 i=1

and H, is the normalization constant, which is equal
approximately to 2.078 in the pure Gaussian fluctuations of
C; [4]. M is the number of eigenstates which are taken
for the average (M =1 in this work). The dependence of
the entropy localization length /; on the energy is shown in
figures 13 and 14.

It can be seen that [, reaches approximately 90% of the
maximum of the GOE values of N (the matrix size) for both
Is and jj couplings. Also there is no significant difference
between the [, of different coupling schemes. The circles
indicate 3.5N PC (where N PC is the effective number of
principal components [16]) compared to 4N PC predicted
in [9] for the Lorentzian distribution.

3.7. Discussion I1

It has been shown that the excited states of the rare-earth ion
Sm IX have possible chaotic structure. These states are similar
to the compound resonances in heavy nuclei. They are formed
as superpositions of large numbers of single-electron basis
states. The mixing of the basis states determines the strength
of the perturbation (coupling due to CI) and the level spacing
of the spectrum. In general, the EFs are Lorentzian in shape
while the LDOS are Gaussian in shape showing localization
in energy with a spreading width I'. The degree of complexity
of wavefunctions can be measured by the information entropy
and the localization length of the various wavefunctions was
found to be very close to the prediction of RMT close to the
centre of the distribution.

4. Energy level statistics

Diagonalization of the Hamiltonian gives a set of energy
eigenvalues that are analysed and compared with the
predications of RMT in the present section.
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Figure 11. The density of states of Sm IX shown by the histogram and the density of states calculated using N and I from the Lorentzian

curve fit.
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Table 7. Mean level spacings of the unperturbed levels D and the
perturbed levels D,;, (calculated for the whole of the energy
regions).

Sm IX
Even  Odd
D (eV) 0.284 0.102
D, (eV) 0.348 0.143

4.1. Cumulative number of levels

In order to examine the effects of CI on the eigenvalues of
the system, the cumulative number of levels of Sm IX is
shown in figure 15, where the density of states p(E) can be
estimated as the slope of the curve averaged over the level
to level fluctuations of their positions [9]. CI gives rise to
level repulsion and a straightening of the cumulative number
of energy states as compared to the unperturbed Hj energy
eigenvalues indicated by the broken curves. CI increases the
level spacing of the eigenvalues in both the even and odd
case by approximately 6% and 4% respectively as can be seen
in table 7.

4.2. Unfolding the energy levels

The eigenvalues were unfolded (re-scaled)[37] using the
following function for N, the mean mode number:
E

N(pg,a, E)= / oo explay/ E' — Ep)dE’,

Ey

(18)

100

(b) SmiX odd jj

801

601

401

20}

100

-15 -10 -5 0 5 10 15
Energy (eV)
) and non-ClI eigenvalues (- - - - - ) of Sm IX.

where pg and a are treated as curve fitting parameters (values
given in table 8) for the rising part of the N (E) versus E curve
and Ej is the energy of the lowest term involved. The curve
fitting was only calculated for the energy regions shown in
table 8 which were zeroed before the curve fitting procedure.
Note that the configurations used in this work are different
from those of [25].

Figure 16 shows the mode number N and the mean mode
number N, for even and odd Sm IX, along with the plots of
N versus the unfolded energies, which have slopes of m and
intercept ¢ given in table 8. m is very close to 1.0 for both even
and odd Sm IX which gives the desired average level density
(global) of 1.0 for the unfolded energies.

4.3. Nearest-neighbour spacing distribution

In [25], the effect of CI and non-CI on the nearest-neighbour
spacing (NNS) of Sm IX was highlighted. It was found that
CI gave rise to a Wigner NNS distribution, whereas the non-
CI gave rise to a Poisson distribution. The NNS distributions
were calculated using the unfolded energies and are shown
in figure 17. The Wigner (broken line) and Poisson (chain)
distributions represent the extremes of classical behaviour,
i.e. regular (Poisson) and chaotic (Wigner). The intermediate
behaviour observed here and in most real systems can be
characterized using the Brody distribution [38, 39]:

w+l

P(x,w) =a(®) - (@w+1) x? e @@ (19)

where a(w) = [(&2)o+ A graph of In(In[(1 —TI(s))~'])

w+1
versus In(s) is plotted and w, the Brody parameter, is found
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Table 8. Various curve fitting parameters of the energy eigenvalue
statistics of Sm IX.

Sm IX

Even Odd
Unfolded energy
range (eV) —9.139 — 4.689 —9.026 — 5.954
o eV 4.248 10.667
a(ev-?) 0.052 0.054
m 0.995 0.977
c 0.223 2.674
l+w 1.68 1.957
% error on 1 +w 2.376 1.966
1) 0.68 0.957
Covariance of spacings —0.1856 0.0541

from its slope of (1 +w) [40] given in table 8, where I1(s) is
the cumulative spacing distribution, i.e.

w+l

[(s) = /S Px)dx=1—e @@= 20)
0

Figure 17 shows I1(s) and In(In[(1 — IT(s))~']) versus In(s).
Both even and odd configurations give rise to Wigner-like
distributions with the odd configuration having a Brody
parameter very close to 1 which indicates a GOE Wigner
spectrum and chaotic behaviour. A Brody parameter of 0
indicates a Poisson spectrum and regular behaviour. For
even Sm IX, w = 0.68 which is indicative of intermediate
behaviour. It must be noted that the level statistics are greatly
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affected by the number of levels and the unfolding procedure.
Since the matrix dimension for even Sm IX is very small (91)
this may not be a statistically significant set of data. Large
fluctuations from the GOE predicted cumulative density of
states are observed for even Sm IX which further supports this
statement.

4.4. Covariance of adjacent spacings

The covariance of adjacent spacings [39, 41, 42]:
N
D " (n = (52D (Snat = {Sna1))
n=1

[(i(sn ~ (5:)?) (i(sm ~ )]
n=1 n=1

21
tests for local correlations (between levels E; and E;,») and
is predicted by GOE theory to have a value of —0.27 [43].
The covariance of spacings for even Sm IX is closer to the
GOE prediction than the value for odd Sm IX as shown in
table 8. The value for odd Sm IX is very close to the Poisson
value of 0, i.e. no correlations. The value of w = 0.957 and a
covariance of approximately O for odd Sm IX are suggestive of
an uncorrelated Wigner spectrum [44], i.e. level repulsion but
with no correlation between E; and E;,,. Similar behaviour
was reported in [18] for odd Ce.

cov (S” s Spil) =
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4.5. Spectral rigidity

The spectral rigidity A3(L) [45] is defined for the interval
[a, a + L] in the sequence {x;} as

a+L
As(a, L) = %Tig/ [n(x) — (Ax + B)]? dx, (22)

where n(x) is the cumulative number of ‘states’ of the
sequence {x;} [46, 47]. For a regular quantum system,
the energy levels are distributed randomly and without
correlation. A random sequence of uncorrelated levels has a
soft character (linear dependence on L, i.e. A3(L) = L/15).
In contrast, the energy levels of a chaotic quantum system
exhibit strong correlations owing to the repulsion between
the random matrix eigenvalues. A random matrix spectrum
has a rigid character (a logarithmic dependence on L, i.e.
for L > 1, A3(L) = #(ln QrL)+y+1-— % — %2) for GOE
matrices, where y is the Euler’s constant) [42, 48, 49]. The
difference between the two spectra is most pronounced in
the A3(L) statistic since this involves correlations between
many levels, i.e. they test for long-range spectral fluctuations.
The spectral rigidity results are shown in figure 18, where ()
indicates spectral averaging.

For both even and odd Sm IX, a rigid spectrum is
observed for a limited value of L. Even Sm IX shows
GOE-like behaviour for L < 15 after which the rigidity
gradually decreases. Odd Sm IX shows GOE-like behaviour
for L < 30. For odd Sm IX, (A3(L)) appears to saturate
for L > 30, an apparent non-universal result due to short-
time periodic orbits in the semiclassical regime [50] and/or

the unfolding procedure. For even Sm IX for L > 15
the (A3(L)) approaches the uncorrelated Wigner result
As(L)=L/[55— (210/L)] for L > 15 [44]. For odd Sm IX,
(A3(L)) approaches the uncorrelated Wigner result for L >
30 until L ~ 85 after which the spectral rigidity shows an
upbend. Intermediate behaviour between Poisson and GOE is
suggestive, classically, of a mixed phase space of regular and
chaotic motion [51]. In the limit of large L ~ 85, the increase
of (A3(L)) exhibited in the odd Sm IX spectrum cannot be
explained and seems to be caused by large-scale fluctuations
of the cumulative level density.

4.6. Correlation-hole method

Leviander et al [52] developed the correlation-hole method
for the analysis of long-range correlations. The properly
smoothed Fourier transform C(¢) of the spectral autocorre-
lation function maps the long-range correlations onto scales
in Fourier space (time domain), i.e. C(¢) can be written as the
Fourier transform of the autocorrelation function of a spec-
trum 7 (x) on the unfolded scale x [53]:

C@) = f m A(r)e? ™ dr, (23)

o0

where A(r) = f_+;°2 I(R—5)I(R+%)dR is the autocorrela-
tion function of 7 (x). In the case of a ‘stick’ spectrum of equal
amplitudes S(E) =) §(E — E,) then [53]

2 2mi(E;—Ep)t 2
ICOP =) e B,

J.k

(24)
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The ensemble average can be simulated by applying a
full Gaussian smoothing procedure to the experimental
decay function |C(¢)|> [53]. The theoretical {|C(#)|?) is
given by [53]

sin (wNt)

2
5 ) +N — Nb>(1), 25)

(ICnP) = N2<
where b, (1) is the two-level form factor [42, 49] and N is the
number of levels in the spectrum. Chaotic dynamics cause a
suppression of the Fourier transform equation (24) near the
origin, a so-called ‘correlation hole’. For cases intermediate
between fully chaotic and regular systems, the correlation hole
is less deep and/or abrupt. In particular, a Poisson spectrum
should show no correlation hole [52, 54].

The |Fouriertransform|?, |C(¢)|? of the unfolded energies
is shown in figure 19. The theoretical (|C(¢)|*) shown in
the figures was also Gaussian smoothed. In both cases, even
and odd Sm IX, a correlation hole is present. This hole
can indicate the presence of quantum chaos. However, it
should be noted that false correlation holes can arise even
for regular systems [55], for example, in uncorrelated Wigner
spectra. The appearance of the correlation hole as k increases
is consistent with the behaviour found for (A3(L)) since
small ¢ corresponds to large correlation lengths L in (A3(L)).
The presence of highly oscillatory small time behaviour in
(|C(1))?) may indicate the effect of non-universal behaviour
in the (A3(L)) statistic. A more plausible explanation for
the present case may be due to the finite resolution and/or
the unfolding procedure associated with missing energy
levels [55].

4.7. Discussion II1

All of the statistical tests on the energy levels indicate the
strong possibility of quantum chaos in odd Sm IX and
intermediate behaviour between regular and chaotic regimes
for even Sm IX. However, the NNS, As(L) and {|C(?)|?),
are highly dependent on the unfolding procedure which is
greatly affected by missing energy levels. A large number of
statistical tests is required to search for signatures of quantum
chaos, with no individual test being able to provide a decisive
test of regular versus chaotic behaviour.

5. Conclusion

As has consistently been the case throughout studies on the
rare-earth elements, the Hamiltonian matrices once more can
best be described by BRM as sparse banded matrices with
a leading diagonal. However BRM cannot account for the
existence of nonzero off-diagonal elements. We have extended
the previous analysis to include an investigation into the
behaviour of the eigenstates and found them to be compound
atomic states formed by the large mixing of the basis states
due to CI and characterized by the spreading width I" and
the localization length. The energy level statistics indicate the
strong possibility of quantum chaos, particularly in odd Sm IX
and intermediate behaviour between regular and chaotic for
even Sm IX, thus reinforcing the conclusion of earlier work
and pointing to the universality of behaviour in complex
physical systems.
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