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Abstract
Using the relativistic configuration interaction Hartree–Fock method the energy
eigenvalues and dipole moments of Ce I, J = 4± and Pr I, J = 11/2±, both
members of the rare earth sequence, are examined for the presence of signatures
of quantum chaos, using the following spectral statistics: nearest neighbour
spacing, covariance of adjacent spacings, spectral rigidity, correlation-hole
method and χ2(ν) probability distribution.

1. Introduction

This is part II of a two-part study involved in investigating the signatures of quantum chaos in
rare-earth elements. In part I [1] the characterization of the Hamiltonian matrices and coupling
matrices of Ce I and Pr I was pursued and it was found that the distribution of the off-diagonal
many-body matrix elements of the Hamiltonian of the configuration interaction Hartree–Fock
(HFCI) method, in both the ls and jj coupling schemes, was close to exponential, as was found
previously in [2]. The Hamiltonian does not contain any random elements and any possible
‘chaoticity’ arises as a result of mixing of the basis states. In the present case (part II) the
characterization of the energy eigenvalues and dipole moments of Ce I and Pr I is examined.
It is again important to stress that additional statistical tests are included that have not been
used, to date, in previous studies [2] of the lanthanide elements.

Diagonalization of the Hamiltonian matrices of Ce I, J = 4± and Pr I, J = 11/2±,
of the previous study [1] results in a set of energy eigenvalues that can be statistically
analysed [2–5]. From the Bohigas–Giannoni–Schmit conjecture [6]—‘spectra of time-reversal
invariant systems whose classical analogues areK systems show the same fluctuation properties
as predicted by the GOE’—(theK systems mentioned in this conjecture are the most strongly
mixing classical systems) the invariant measures of chaos associated with energy level statistics
can indicate the presence or absence of ‘quantum chaos’. These energy level statistics,
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Table 1. (a) The even and odd configurations of Ce I and Pr I used as basis configurations for the
Cowan suite of codes [8]. (b) Even and odd configurations of Ce I and Pr I [7].

(a)
Ce I Z = 58

Odd configurations 4f5d6s2, 4f5d26s, 4f5d3, 4f26s6p, 4f5d6p2,
4f6s6p2, 4f25d6p

Even configurations 4f6s5d6p, 4f26s2, 4f6s26p, 4f5d26p, 4f5d26p,
4f26s5d, 4f25d2, 4f26p2

Pr I Z = 59

Odd configurations 4f36s2, 4f25d6s6p, 4f26s26p, 4f35d6s, 4f25d26p,
4f35d2, 4f36p2

Even configurations 4f25d6s2, 4f25d26s, 4f36s6p, 4f35d6p,
4f5d26s6p, 4f5d36p, 4f5d6s26p

(b)
Ce I

Odd configurations 4f5d6s2, 4f5d26s, 4f5d3, 4f26s6p
Even configurations 4f26s2, 4f25d6s, 4f6s26p, 4f5d6s6p

4f5d26p, 4f25d2

Pr I

Odd configurations 4f36s2, 4f35d6s, 4f26s26p,
4f25d6s6p, 4f25d26p

Even configurations 4f25d6s2, 4f25d26s, 4f36s6p, 4f35d6p

namely the nearest neighbour spacing, covariance of adjacent spacings, spectral rigidity and
correlation-hole method, thus form the results of sections 2–5 where the experimental energy
eigenvalues [7] and the theoretical eigenvalues [8] for even and odd Ce I and Pr I are studied.
In section 6, the line strengths are compared to a χ2(ν) probability distribution where ν = 1
is indicative of classically chaotic behaviour, whereas ν = 0 indicates classically regular
behaviour.

2. Level statistics

Diagonalization of the Hamiltonian gives a set of energy eigenvalues that can be analysed
and compared with the predictions of Random Matrix Theory (RMT), the density of states
ρ(E) being one of a number of possible spectral statistics. The configurations of table 1(a)
were used as basis configurations, in the Cowan suite of codes [8], for Ce I (as used in the
study of [1]) and Pr I. The configurations that give rise to the experimental (NIST) energy
eigenvalues [7] are shown in table 1(b). The even and odd parity configurations of both
species will henceforth be referred to as ‘even Ce/Pr’ and ‘odd Ce/Pr’ respectively. In a
finite Hilbert space, ρ(E) disappears at lower and upper boundaries of the spectrum, being
maximum in the middle. This can be seen in figures 29 and 30 of the previous study [1], for Ce
and Pr respectively. The behaviour of ρ(E) can be compared with the Gaussian Orthogonal
Ensemble (GOE) predictions [3], where the GOE predicts the Wigner semi-circle rule. The
BRM theory predicts, both numerically and analytically [9–11], the semi-circle level density
for a sufficiently broad band.

However, as has been pointed out in [1], the atomic Hamiltonian has no random
elements. Also, due to the two-body character of interaction and exact conservation of
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Figure 1. Mode number for the CI (full) and non-CI eigenvalues (broken) of Ce I.

angular momentum, there is a considerable number of ‘zero’ off-diagonal matrix elements.
Configuration interaction (CI) does not destroy the conservation of angular momentum.
According to arguments given in [12], one would expect the level density to be closer to
a Gaussian shape than to a semi-circle shape. Gaussian-like level densities can be seen in [13]
and possibly in odd Pr—see figure 30 of [1]. The transition from Gaussian to semi-circle
level density occurs [12, 14, 15] when many-body forces are introduced, lifting the selection
rules for interactions between configurations of different angular momentum. The local level
density ρ(E) reveals fluctuations of various scales, depending on the range of averaging [12].

3. Level spacing distribution

The effect of CI on the eigenvalues of a system can be seen in figures 1 and 2 for the mode
number of Ce and Pr [8]. The broken curves indicate the unperturbed H0 energy eigenvalues
and it can be seen how CI gives rise to level repulsion and a ‘straightening’ of the cumulative
number of energy states. However, the mean level spacing of the eigenvalues is not substantially
affected by CI as can be seen in table 2. It can also be seen that Deig (where D is the mean
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Figure 2. Mode number for the CI (full) and non-CI eigenvalues (broken) of Pr I.

Table 2. Mean level spacings of the unperturbed levelsD and the perturbed levelsDeig. Note that
D and Deig were calculated for the whole of the energy regions.

Ce Pr

NIST Cowan NIST Cowan

Even Odd Even Odd Even Odd Even Odd

D (eV) 0.034 0.039 0.015 0.013
Deig (eV) 0.022 0.065 0.034 0.036 0.035 0.084 0.019 0.015

level spacing) is approximately two times smaller for Pr than Ce and therefore Pr has roughly
double the average level density. The NIST values shown are, apart from even Ce, factors
of two to five greater than the respective Cowan values, which indicates a much greater level
density for the Cowan results. This suggests that there are many missing energy values in the
NIST data.
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Figure 3. The mode number (full curve) and mean mode number (broken curve) of even Ce. The
left column used the experimental values (NIST) [7], whereas the right column used the theoretical
values calculated with the HFCI suite of codes [8]. The mode number and mean mode number of
the unfolded energy eigenvalues are also shown.

In [13] the effect of CI and non-CI on the nearest neighbour spacing (NNS) of Sm IX was
highlighted. It was found that CI gave rise to a Wigner NNS distribution, whereas the non-CI
gave rise to a Poisson distribution. In fact, due to intra-CI, i.e. interaction between terms of
a configuration, there is disagreement with the Poisson distribution as s → 0, where s is the
nearest neighbour spacing of the unfolded energies.

Before studying the various level statistics, the eigenvalues were unfolded (re-scaled) [16]
using the following function for N , the mean mode number:

N(ρ0, a, E) =
∫ E

0
ρ0ea

√
E dE (1)

where ρ0 and a are treated as curve fitting parameters. Figures 3–6 show the mode number N
and the mean mode number N , for even and odd Ce and Pr. The experimental values of even
and odd Pr and also odd Ce show a large number of apparent energy ‘gaps’. This is probably
due to incomplete data values. However, even Ce appears to have a much smoother appearance
for N . The plots of N versus the unfolded energies, which have slopes of m and intercept c,
are also shown in figures 3–6. The least squares slope m and intercept c are tabulated along
with ρ0 and a in tables 4 and 5. m is very close to 1.0 for both Ce and Pr and this gives an



3452 A Cummings et al

0 1 2 3 4
0

10

20

30

40

50

60

Relative Energy (eV)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 e

ne
rg

y 
st

at
es

(a) Ce I odd

0 20 40 60
0

10

20

30

40

50

60

unfolded energy (arbitrary units)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 e

ne
rg

y 
st

at
es

(c)

0 2 4 6
0

50

100

150

200

Relative Energy (eV)

(b)

0 50 100 150 200
0

50

100

150

200

unfolded energy (arbitrary units)

(d)

Figure 4. The mode number (full curve) and mean mode number (broken curve) of odd Ce.

Table 3. Energy regions (eV) that are unfolded.

NIST Cowan

Even Odd Even Odd

Ce 1.91–3.60 0–3.81 −1.39–3.09 0.90–5.19
Pr 0.60–3.49 2.26–3.50 −2.05–5.98 −1.99–1.41

average level density (global) of 1.0 for the unfolded energies. Note that the curve fitting was
only calculated for the energy regions shown in table 3. The selected energy regions were also
‘zeroed’ before the curve fitting procedure.

Using the unfolded energies, the NNS distributions were calculated and are shown in
figures 7–10. The Wigner and Poisson distributions are shown as the broken and chain
curves, respectively, and represent the extremes of classical behaviour, i.e. regular (Poisson)
and ‘chaotic’ (Wigner). However, in reality, a system usually has a mixture of both regular
and chaotic characteristics and the Brody distribution [4, 17, 18] is used to account for this:

P(x, ω) = α(ω) · (ω + 1) · xω · e−α(ω)·xω+1
(2)

where α(ω) = �
(
ω+2
ω+1

)ω+1
.

This is analogous to very few atomic systems having exactly either ls or jj coupling but
having an intermediate coupling representation.
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Figure 5. The mode number (full curve) and mean mode number (broken curve) of even Pr.

Table 4. Various curve fitting parameters of the energy eigenvalue statistics of Ce I.

NIST Cowan

Even Odd Even Odd

ρ0 (eV−1) 40.92 13.80 43.57 4.26
a (eV−1/2) 0.54 0.06 0.07 1.15
m 0.99 0.98 0.97 0.99
c 0.65 0.60 3.51 1.21
1 + ω 1.73 1.12 1.65 1.76
% error on 1 + ω 2.47 2.72 1.18 3.83
ω 0.73 0.12 0.65 0.76
Covariance of spacings −0.21 0.06 −0.10 −7 × 10−4

In order to obtain the Brody parameter ω, a graph of ln(ln[(1 − �(s))−1]) versus ln(s)
is plotted and ω is found from its slope of (1 + ω) [19], where �(s) is the cumulative spacing
distribution, i.e.

�(s) =
∫ s

0
P(x) dx ≡ 1 − e−α(ω)·sω+1

. (3)

Figures 7–10 show �(s) and ln(ln[(1 − �(s))−1]) versus ln(s). The resulting (1 + ω ), and
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Figure 6. The mode number (full curve) and mean mode number (broken curve) of odd Pr.

Table 5. Various curve fitting parameters of the energy eigenvalue statistics of Pr I.

NIST Cowan

Even Odd Even Odd

ρ0 (eV−1) 8.56 20.78 12.85 47.36
a (eV−1/2) 1.05 0.59 0.82 0.77
m 1.02 1.01 0.99 0.99
c −1.17 −0.23 0.35 2.46
1 + ω 1.24 1.02 1.95 1.84
% error on 1 + ω 2.77 2.87 1.96 1.70
ω 0.24 0.02 0.95 0.84
Covariance of spacings 0.06 −0.14 −0.11 −0.15

hence ω, are given in tables 4 and 5. The values of ω for the experimental eigenvalues indicate
behaviour very close to Poissonian (ω = 0) for even and odd Pr and odd Ce. Even Ce has a
value of 0.73 and therefore has more Wigner-like level repulsion (ω = 1). The theoretical ω
values of Pr, however, are much closer to the Wigner extreme and in fact it is the even and odd
Ce which have the lowest values of ω and this is indicative of intermediate level statistics.
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Figure 7. P(s),�(s) and ln(ln(1 −�(s))−1) for even Ce. The left column used the experimental
values (NIST) [7], whereas the right column used the theoretical values calculated with the HFCI
suite of codes [8].

Another test for possible GOE behaviour is the covariance of adjacent spacings:

cov(sn, sn+1) =
∑N

n=1 (sn − 〈sn〉)(sn+1 − 〈sn+1〉)[(∑N
n=1 (sn − 〈sn〉)2

)(∑N
n=1 (sn+1 − 〈sn+1〉)2

)]1/2 . (4)

This is sensitive to correlations between levels Ei and Ei+2 (s is measured on the unfolded
energy scale) and is predicted by GOE theory to have the value −0.27 [20]. From tables 4 and 5
it would appear that, for the experimental values, even Ce with a value of −0.21 is the closest
to GOE predictions, while odd Ce and even Pr have values that are very close to the Poisson
value of 0, i.e. no correlations. It should be noted that the value for odd Pr of −0.14 does not
correspond to an ω of almost 0 (Poisson) and is suggestive of more intermediate statistics. ω
for the theoretical values of even and odd Pr and even Ce are in correspondence with an ω of
intermediate behaviour. However, the value ω of 0.76 and a covariance of approximately 0 for
odd Ce is suggestive of an uncorrelated Wigner spectrum [21], i.e. level repulsion but with no
correlation between Ei and Ei+2.
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values (NIST) [7], whereas the right column used the theoretical values calculated with the HFCI
suite of codes [8].

4. Spectral rigidity

The spectral rigidity �3(L) [22] is used to distinguish classically chaotic behaviour from
regular behaviour in the semi-classical limit. �3(L) is defined for the interval [a, a +L] in the
sequence {xi} as

�3(a, L) = 1

L
min
A,B

∫ a+L

a

[n(x)− (Ax + B)]2 dx (5)

where n(x) is the cumulative number of ‘states’ of the sequence {xi}. For regular dynamics
and therefore a random level sequence with the Poisson nearest level spacing distribution,
the deviation (i.e. �3(L)) grows linearly, �3(L) = L/15. For the chaotic case and Wigner
level spacing distribution the spectra are rigid. Starting at small L with the same linear
behaviour as in the regular case, the deviation only grows logarithmically at L � 1, i.e.
�3(L) = 1

π2

(
ln(2πL) + γ − 5

4 − π2

8

)
where this is the GOE spectral rigidity and γ is Euler’s

constant.
The spectral rigidity [23,24] results are shown in figures 11–14. The 〈 〉 indicates spectral

averaging. It can be seen that, for the NIST data values, only even Ce shows a rigid like
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Figure 9. P(s),�(s) and ln(ln(1 −�(s))−1) for even Pr. The left column used the experimental
values (NIST) [7], whereas the right column used the theoretical values calculated with the HFCI
suite of codes [8].

spectrum while odd Ce, even Pr and odd Pr follow the Poisson prediction for a limited range
of L. Even Ce shows GOE-like behaviour for L � 30 (universal behaviour due to long time
periodic orbits [25]) after which the rigidity gradually decreases. For odd Ce and even Pr
their spectra follow the Poisson function for L � 10–20 and then they become apparently less
rigid than even the Poisson prediction. Note that for odd Pr 〈�3(L)〉 appears to saturate for
L � 25, an apparent non-universal result due to short time periodic orbits in the semi-classical
regime [25].

For the theoretical results of Cowan, the 〈�3(L)〉 for Ce show GOE behaviour for L
ranging only from 5 to 10. The even Ce follows the uncorrelated Wigner prediction to
L ≈ 130, after which the spectral rigidity shows an upbend. For odd Ce, the uncorrelated
Wigner 〈�3(L)〉 is followed until L ≈ 50, after which the spectral rigidity increases quite
dramatically. Even and odd Pr follow the GOE function up to L � 20, after which the
〈�3(L)〉 tends towards the uncorrelated Wigner result for L � 100 for even Pr and L � 200
for odd Pr. 〈�3(L)〉 in both cases then continues to increase quite rapidly, i.e. becoming less
rigid. Note that the �3(L) for an uncorrelated Wigner spectrum was found to be numerically
equal to �3(L) = L/[55 − (210/L)] for L > 15 [21].

All of the Cowan 〈�3(L)〉 show intermediate behaviour between Poisson and GOE. This
is suggestive, classically, of a mixed phase space of ‘regular and chaotic motion’.
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Figure 10. P(s),�(s) and ln(ln(1 −�(s))−1) for odd Pr. The left column used the experimental
values (NIST) [7], whereas the right column used the theoretical values calculated with the HFCI
suite of codes [8].

5. The correlation-hole method

The correlation-hole method was developed by Leviandier et al [26] for the analysis of
long range correlations. The properly smoothed Fourier transform C(t) of the spectral
autocorrelation function maps the long range correlations onto scales in Fourier space, i.e.
C(t) can be written as the Fourier transform of the autocorrelation function of a spectrum I (x)

on the unfolded scale x [5]:

C(t) =
∫ +∞

−∞
A(r)e2π irt dr (6)

where A(r) = ∫ +∞
−∞ I (R − r/2)I (R + r/2) dR is the autocorrelation function of I (x). In the

case of a ‘stick’ spectrum of equal amplitudes S(E) = ∑
i δ(E − Ei) then [27]

|C(t)|2 =
∣∣∣∣
∑
j,k

e2π i(Ej−Ek)t
∣∣∣∣
2

. (7)

According to [27] the ensemble average can be simulated by applying a smoothing procedure
to the experimental decay function |C(t)|2. It turns out [27] that the most appropriate procedure
is a convolution of |C(t)|2 with a Gaussian. Hence, one has to compare the smoothed result
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to the function

〈|C(t)|2〉 =
∫ +∞

−∞
|C(t ′)|2 1√

2πσ 2
t

exp

(−(t − t ′)2

2σ 2
t

)
dt ′ (8)

where the variance was chosen to depend on time as σt = t/5. This procedure is referred to
as ‘full Gaussian smoothing’. Note that small t in |C(t)|2 corresponds to long range energy
correlations in �3(L). The theoretical 〈|C(t)|2〉 is given by [27]

〈|C(t)|2〉 = N2

(
sin(πNt)

πNt

)2

+N −Nb2(t) (9)

where b2(t) is the two-level form factor [3, 5] and N is the number of levels in the spectrum.
b2(t) for the GOE is given by

b(t) =


(1 − 2t) + t ln(1 + 2t) for t � 1

−1 + t ln

(
2t + 1

2t − 1

)
for t > 1.

(10)

As compared to fluctuations of regular systems, chaotic dynamics causes a considerable
suppression of this Fourier transform near the origin, a so-called ‘correlation hole’. This has
been experimentally observed in the spectra of the molecules acetylene, methylgloxal and
nitrogendioxyl [26, 27]. In [26, 28] the nuclear data ensemble was re-analysed and it was
shown that nuclear spectra exhibit the correlation hole. For cases intermediate between fully
chaotic and regular systems, the correlation hole is less deep and/or abrupt. In particular, a
Poisson spectrum should show no correlation hole.

The | Fourier transform |2 [26, 27], |C(t)|2, of the NIST and Cowan unfolded energies
are shown in figures 15–18. Note that the theoretical 〈|C(t)|2〉 shown in the figures was also
Gaussian smoothed. It can be seen that all of the Cowan Gaussian smoothed results, 〈|C(t)|2〉,
have a clearly visible correlation ‘hole’ present [26–28]. This can indicate the presence of
quantum chaos but false correlation holes can arise even for regular systems [29], for example
in uncorrelated Wigner spectra. Note the presence of oscillations on the Cowan 〈|C(t)|2〉. This
may be due to finite resolution, i.e. one time channel = 1/number of energy levels, and/or the
unfolding procedure associated with missing energy levels [29]. Also, there is no smoothing
for t < 0 and so this ‘asymmetry’ is more apparent at t near zero. Apart from even Ce,
the NIST 〈|C(t)|2〉 show no correlation hole. This is consistent with the limited Poisson-like
behaviour found with the 〈�3(L)〉. Note that small t corresponds to large correlation lengths
L in 〈�3(L)〉 and so the highly oscillatory small time behaviour of 〈|C(t)|2〉 for even and odd
Pr and odd Ce shows the effect of non-universal behaviour in the 〈�3(L)〉.

Of course all of these results, the NNS, 〈�3(L)〉 and 〈|C(t)|2〉, are highly dependent on
the unfolding procedure which is greatly affected by missing energy levels. Also, apparent
GOE type behaviour can be mimicked if the curve fitting procedure for unfolding is ‘too good’,
resulting in spurious correlations between energy levels.

It should be noted that the study of the nearest neighbour level spacing distribution and
�3(L) with the experimental spectra of Nd, Sm and Tb [20] showed close agreement with the
predictions of GOE. This has perhaps relevance to [30], where these elements apparently give
rise to f (α) spectra. However, it should be stressed that relatively few energy eigenvalues
were used in the f (α) analysis and the levels were not sorted according to parity or J value.
Also, note that �3(L) was calculated in [20] only for L = number of energy eigenvalues and
not, as in the present case, for L � number of energy eigenvalues.

The lack of many-body electron correlations in the Cowan code may give rise to
uncorrelated behaviour in 〈�3(L)〉 which could lead to a false correlation hole. Also note
that in [31] the conclusion was reached that the limited resolution of spectra can influence all
of the various level statistics—the NNS, 〈�3(L)〉 and |C(t)|2.
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Figure 15. |C(t)|2 and the spectral averaged 〈|C(t)|2〉 of the unfolded energies of even Ce. The
left column used the experimental values (NIST) [7], whereas the right column used the theoretical
values calculated with the HFCI suite of codes [8].
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Figure 16. |C(t)|2 and the spectral averaged 〈|C(t)|2〉 of the unfolded energies of odd Ce. The
left column used the experimental values (NIST) [7], whereas the right column used the theoretical
values calculated with the HFCI suite of codes [8].
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Figure 17. |C(t)|2 and the spectral averaged 〈|C(t)|2〉 of the unfolded energies of even Pr. The
left column used the experimental values (NIST) [7], whereas the right column used the theoretical
values calculated with the HFCI suite of codes [8].
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Figure 18. |C(t)|2 and the spectral averaged 〈|C(t)|2〉 of the unfolded energies of odd Pr. The left
column used the experimental values (NIST) [7], whereas the right column used the theoretical
values calculated with the HFCI suite of codes [8].
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Figure 19. SSR for the non-normalized S1/2 components of Ce.

6. Dipole matrix elements

It is claimed [32] that the dipole matrix elements, S1/2, ‘will become random (and close to
Gaussian) as soon as at least one of the states involved, the initial or the final, moves into the
compound-state energy range and becomes a superposition of many random elements’.

To test this proposition, the dipole matrix elements were calculated between even and
odd Ce and Pr states (fixed J ) and then because the S1/2 vary with energy along a spectrum
the total spectral region was divided into 0.5 eV sub-regions (note that the energy regions
are given relative to zero). As a qualitative guide to the ‘goodness of fits’, the sums of the
squares of the residuals (SSR) were calculated using a non-linear least-squares Marquardt–
Levenberg algorithm for the Lorenztian, squared Lorenztian, interpolation exponential and
Gaussian distributions. The SSR for the curve fittings are shown in figures 19–22 for various
energy regions as indicated in the figure captions. Both non-normalized and normalized S1/2

were analysed. The S1/2 were normalized by using a running average:

S
1/2
ij = S

1/2
ij√〈S〉 (11)

of ±6 elements for both Ce and Pr.
Both the non-normalized and normalized S1/2 for both Ce and Pr show better quality fits

for the squared Lorenztian and interpolation exponential distributions as indicated by the SSR.
It can also be seen that, in general, the SSR increase as the energy interval increases, where
region I = 0–0.5 eV, region II = 0.5–1.0 eV, etc. Also, for the normalized S1/2 components of
Ce, regions X to XII have the lowest SSR for the Lorenztian distribution, whereas the opposite
is the case for Pr.
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Figure 20. SSR for the normalized S1/2 components of Ce.
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Figure 22. SSR for the normalized S1/2 components of Pr.

Examples of the curve fittings for the normalized S1/2 are shown in figures 23 and 26, along
with their semi-logarithmic companions. From the logarithmic plots it can be observed that
the tails (large |S1/2|) have, in general, intermediate forms between Lorenztian and Gaussian.
A notable exception is that of the normalized S1/2 of Ce in region X, where the Lorenztian
function is closely followed.

Also, to test the hypothesis at the beginning of this section, the normalized S1/2 were
squared and the resulting S of the corresponding energy regions were fitted with a χ2

distribution with a ν degrees fitting parameter. For Gaussian statistics of S1/2 a Porter–Thomas
distribution with ν = 1 is expected. The χ2(ν) probability distribution is

Pχ2(x; ν) = x
(ν−2)

2 e
−x
2

2
ν
2�(ν2 )

. (12)

In [33] it was found to be more convenient to use a logarithmic variable as the argument in the
χ2(ν) distribution:

Pχ2(log10 x; ν) = ln(10)( νx2 )
ν
2 e

−νx
2

�(ν2 )
. (13)

The SSR for the curve fitting to Pχ2(log10 S; ν) and the resulting ν are shown in figures 27
and 28 for Ce and Pr respectively. For Ce a ν of ≈0.8 is obtained with ν varying from 0.7 to 0.9
for Pr. This suggests that the S1/2 are not fully Gaussian and that the corresponding classical
system has a mixed phase space [33]. Only for ν = 1 is a fully chaotic system expected.
Thus this mixture of many weak and strong lines (i.e. ν < 1) indicates, semi-classically, a
mixed phase space consisting of regular (corresponding to integrability and regular classical
motion) and irregular states (corresponding to non-integrability and chaos) as postulated by
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Figure 23. (a) The distribution of the normalized S1/2 components of Ce and least squares fitting
to (i) Lorenztian (broken) (ii) squared Lorenztian (dotted) (iii) interpolation exponential (full)
(iv) Gaussian (chain) in energy region II (b) The logarithm of the distribution of the normalized
S1/2 components of Ce in the energy range II.
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Figure 24. (a) The distribution of the normalized S1/2 of Ce in the energy range X. (b) The
logarithm of the distribution of the normalized S1/2 components of Ce in the energy range X.
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Figure 25. (a) The distribution of the normalized S1/2 components of Pr in the energy range II.
(b) The logarithm of the distribution of the normalized S1/2 components of Pr in the energy range II.
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Figure 26. (a) The distribution of the normalized S1/2 of Pr in the energy range VIII. (b) The
logarithm of the distribution of the normalized S1/2 components of Pr in the energy range VIII.
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Percival [34], with the regular states being highly localized and the irregular states being much
more delocalized. Examples of the distributions of the normalized S are shown in figures 29
and 30. However, it must be emphasized that the calculational apparatus of the Cowan code—
using the independent particle model, with a mean field, and the corresponding relativistic
HFCI equations—and its inherent lack of many-body correlations may contribute significantly
to this apparent mixture of regular and irregular states. Note that S1/2, and thus S, are basis
representation independent and hence are invariant measures, i.e. S1/2 is the same in both ls
and jj coupling since it is the actual energy eigenvector function(s) that is used to calculate
the S1/2, and although the composition of the basis states varies from one basis set to another,
1, the energy eigenvector does not.

7. Conclusion

It can thus be seen from the results of the present and previous study that one needs a barrage of
statistical tests with which to indicate the presence or absence of quantum chaos in an atomic
system. It is also found that, because of the basis representation dependence of the Hamiltonian
and coupling matrices and the inability of many of the statistics to distinguish very complex
behaviour, as would be expected classically for a many-body system, from genuine ‘chaotic’
behaviour, the invariant measures of level statistics are perhaps the best candidates with which
to search for signatures of quantum chaos. However, a complete set of energy eigenvalues
is ideally required to reach any definitive conclusion, although the presence of extra levels
due to improper energy level assignments can also be a possible source of error. It must be
emphasized that the unfolding process is fraught with difficulties that can lead to spurious
correlation and/or non-correlation effects. Also, it must be stressed that no one statistic by
itself can determine the presence or absence of ‘quantum chaos’.

All of the statistical tests indicate intermediate behaviour between regular and ‘chaotic’
regimes for the Cowan code (HFCI) results. In particular, the line strengths are suggestive,
semi-classically, of a mixed phase space of regular and irregular states [34]. However, the level
statistics for the NIST data should be viewed as highly tentative, given the restricted number
of energy levels.

Although including many more configurations in calculations is highly desirable (in order
to give more basis states), one wonders if the resulting statistics are just a product of extreme
complexity and have no connection with quantum chaos, i.e. what one ideally requires is a
‘simple’ atomic system with which to probe the regimes of quantum chaos and where there is
no inherent complexity involved ‘to begin with’.

Future studies should include the use of ‘proper’ many-body calculations that have many-
body correlation effects included. Other possible atomic systems that are being used to search
for signatures of quantum chaos [32] include doubly excited states and inner-shell excitation
spectra of alkaline earth atoms or even multiply excited states of light atoms [4, 18, 35]. The
inclusion of continuum effects should also be included in future studies.

A possible candidate with which to search for the signatures of quantum chaos is highly
ionized Sm [13] and further along the rare-earth sequence. The reason for this surmise is
due to the collapse of the 4f radial wavefunction which leads to large off-diagonal matrix
elements, 〈ψa|H |ψb〉 (of course, this is basis dependent), for many of the matrix elements of
the Hamiltonian and also because of the presence of a high level density for the unperturbed
levels and hence small unperturbed level spacings. However, [36] have found an additional
selection rule in complex rare-earth spectra originating from strong exchange interaction which
may be thought of as arising from the presence of a new quantum number. This, classically,
represents another ‘constant of motion’ and suggests that the system cannot attain a fully chaotic
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Figure 29. (a) The distribution of the normalized S components of Ce in energy region II. (b) The
distribution of the normalized S components of Ce in energy region X.



3474 A Cummings et al

8 6 4 2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

log
10

S

P
χ2(

lo
g 10

S,
ν)

ν = 1
ν = 0.87

8 6 4 2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

log
10

S

P
χ2(

lo
g 10

S,
ν)

ν = 1
ν = 0.69

(a)

(b)

Figure 30. (a) The distribution of the normalized S components of Pr in energy region II. (b) The
distribution of the normalized S components of Pr in energy region V.
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state. In fact, a ‘good’ quantum number reflects the presence of some type of symmetry. How
this additional symmetry would affect the predictions of RMT is an interesting avenue for
exploration.

In summary, the cerium atom calculations have not only been performed by methods
different from previous studies (thus critically cross-examining the data obtained earlier) but
a few finer statistical tests have been added, using for example the spectral rigidity and the
correlation-hole method. A broader range of methods is vital in spectroscopic studies where
no single method alone is known to provide a decisive test of regular versus chaotic behaviour.
The results for the Pr I atom are new and important for extracting universal features common to
all (or many) rare-earth atoms and distinguishing them from element-specific characteristics.

Acknowledgments

This paper was supported by the Irish science and technology agency Enterprise Ireland under
research grant no SC-99-206. We would like to thank one of the referees for their helpful
comments.

References

[1] Cummings A, O’Sullivan G and Heffernan D M 2001 Signatures of quantum chaos in rare earth elements: I.
Characterization of the Hamiltonian matrices and coupling matrices of Ce I and Pr I using the statistical
predictions of Random Matrix Theory J. Phys. B: At. Mol. Opt. Phys. 34 3407

[2] Flambaum V V, Gribakina A A, Gribakin G F and Kozlov M G 1994 Phys. Rev. A 50 267–96
[3] Mehta M L 1991 Random Matrices, Revised and Enlarged 2nd edn (New York: Academic)
[4] Connerade J-P 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L31–8
[5] Guhr T, Müller-Groeling A and Weidenmüller H A 1998 Phys. Rep. 299 190–245
[6] Bohigas O, Giannoni M J and Schmit C 1984 Phys. Rev. Lett. 52 1
[7] http://physics.nist.gov/cgi-bin/AtData/main asd
[8] Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)
[9] Casati G, Molinari L and Izrailev F 1990 Phys. Rev. Lett. 64 1851–4
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