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Introduction

The aim of long wavelength analysis is to understand the unique behaviour of terahertz (300 (iHz - 30 THz) quasi-
optical s)stems, and since most THz systems have small Fresnel numbers, a modal approach to analysis is appropriate.
In this paper in particular we discuss the extension of a powerful approach based on Singular Value Decomposition
(SVD) [1] fir improving the efficiency of the application of Gaussian Beam Mode Analysis ((iBMA) to complex
optical systems. We compare the efficiency of the SVD approach with the overlap integral approach, and also validate
the technique by comparison with test cases computed using physical optics code. This work was inspired by the need
for efficient numerical schemes as part of the development of a soft-ware package for quasi-optical analysis and design
of terahertz systems at NUT Maynooth (MODAL).

GBMA is particularly suited to analysing long wavelength systems and has been applied extensively in the design and
analysis of both coherent and partially coherent quasi-optical systems in the millimeter and submillimeter wavebands
[21 Beam Modes can be thought of as the beam-guide analog of conventional waveguide modes, where a beam guide
consists of a number of refocussing elements which ensure that the propagating beam remains quasi-collimated. The
strength of Gaussian beam-mode analysis is that it is straighttbrward to model propagation through beam guide
systems NN

T
ith apertures, mirrors and lenses, and build them up in a modular way, while at the same time keeping track

of the evolution of the beam. Generally the source fields can be represented to high accuracy by a finite sum of only a
few beam modes underlining the potential efficiency of the modal description.

However realistic optical components disturb the pure modal propagation through truncation and aberrational effects
just as a step does in a waveguide. At such optical components power is scattered between modes and for a high
accuracy description of beam propagation one needs to keep track of this scattering [3] However, when there is a
significant amount of power scattering between modes the number of integrations required to derive a scattering matrix
in a straightfonvard way can be quite prohibitive. This has limited the efficiency with which GMBA has been applied
to practical optical configurations.

An example of this is the calculation of Gaussian-mode scattering matrices at focussing mirrors Pt If an off-axis
mirror is treated as an inclined phase transforming plane, then it is necessary to determine the mode coefficients of the
scattered field over the plane, but Gaussian-beam modes are only orthogonal over planes that are orthogonal to the
direction of propagation and the direct evaluation of the scattering matrix turns out to be computationally extremely
intensive. In fact many scattering matrices suffer from this kind of limitation [5]. Therefore such systems could be
analysed much more efficiently if a more economical numerical method for determining the expansion coefficients
over complex surfaces was available [6].

Modal Analysis

In Gaussian Beam Mode (GBM) theory a monochromatic coherent beam can be represented by a scalar field E. which
can be written as a linear combination of independently propagating modes kil

m . The field at any plane z is then given
by:

E(x , y , 20= 1 A,„Yr,„(x, y ; W ) , (1)

where W and R are beam parameters that depend on z and Am are the mode coefficients [7]. To analyse optical systems
in 3-D it is most convenient to use the Hermite-Gaussian modes y, z) of the form:
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where all the symbols have their usual significance and where H(s) is the Hermite polynomial of order i [7]. The
beam width parameter W, phase radius of curvature R and phase slippage term Z1 are functions of position z, which
is taken to be zero at a waist of the mode. The Hermite-Gaussian modes propagate through an optical system without
scattering and the output field at the image plane can be reconstructed by resumming the modes using (1).

In theory, if the field E,, is known at some reference plane zo , the mode coefficients can be calculated by the
appropriate overlap integrals of the general form:

E„(x , y , z„)T *„,7 (x , y W (zo) R(;) )) dx dy (3)

Element boundaries are inherently accounted for, because the field is taken to be zero outside oldie element aperture.
For most applications the overlap integrals A n, have to be evaluated by numerical integration. This requires sampling of
the field to be sufficiently fine to avoid numerical artefacts, such as aliasing. The minimum sampling period is given by
the Nyquist's theorem (A/2), but in most cases finer sampling is needed to obtain convergence. This means that the
evaluation of the overlap integrals is computationally intensive and therefore inherently slow.

Alternative fast methods of modal decomposition are desirable for optics design and analysis tools, that would still
retain the accuracy of the overlap technique. We can attempt to fit a linear combination (coefficients A) of the mode set
functions T i to the known field E. sampled on a limited number of points r,. In matrix formulation the approximate
field E. is given by:

and we determine the best approximation A by minimising the norm of the residual E E:

S2,

This approach, for the usual choice of the norm for the residual, reduces the problem of calculating the mode
coefficients to a linear least squares (LLS) problem [8]. We can express it in a simple form using the Moore-Penrose
pseudo-inverse T ± of the mode matrix Y` :

A=E (6)

Effective routines for solving LLS problems are readily available (e.g. LU decomposition, Gauss-Jordan elimination
[I], [9]). SVD is one of the most powerful and interesting techniques that can be used to solve a LLS problem. The
SVD method is based on the linear algebra theorem which states that any NxM matrix M can be written as the product
of three matrices: a column orthogonal NxM matrix U, a diagonal MxM matrix W, and a transpose of an orthogonal
MxM matrix V[1]:

M=---UWVT. (7)
SVD allows the pseudo-inverse to be calculated as:

/1/+ = V W-1 UT
(8)

E I = I E —7:4 1 = inf I E — T
AE (5)
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even if some of the singular values wi on the diagonal of the matrix W are zero. If that is the case, the corresponding

dements in the inverted matrix need to be set to zero. SVD is numerically stable, handles both over- and under-
determined systems, and provides diagnostic information about the mode set (through the singular values) [1].

Mode set considerations

In all practical cases, we try to reduce the computational complexity of the propagation problem by representing the
field using as few modes as possible. The choice of W and R are crucial in this case. Often they are chosen such that
the power in the fundamental mode is maximised i.e. 1A 0 1 2 . In the case of a uniformly illuminated aperture (top hat)
we get W=0.891a, where a is the aperture radius. R is chosen to match the radius of curvature of the beam (i.e. infinity
for a plane wave). With this choice, however, the remaining power is spread over a large number of higher order
modes. Individually, they contribute little power, but all of them are required to accurately approximate the field.

The more appropriate choice of W should therefore take into account the form of the higher order modes. As the mode
number increases, its spatial frequency spread is higher and hence it will perform better in modelling an edge. The
choice of W should reflect this. The modes can be characterised in terms of their effective extent. Because of the
gaussian envelope, the effective extent of the mode is finite, and is approximately given by W V1.5 N . Figure 1 shows
the mode profile and its extent for N=10 and N=20.
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Figure 1: The effective extent of the 10 th and 20th order Hermite-Gaussian modes.

To accurately reproduce the discontinuity at the aperture edge, we match the position of the last zero crossing of the
mode to the extent of the aperture.  If we look just at the position of the last zero crossing, the extent of the mode is
approximately given by W V0.75 N . This gives us the following rule for selecting W.

a 
, (9)

NI 0.75 N

We have to remember however, that the actual extent of the highest order mode is W ill .5 AT rather than W V0.75 N.
As a result, we must ensure that in any fitting routine the field is explicitly set to zero at all points outside the aperture,
at least as far as W vri-75—"A7 . This suppresses spurious side lobes that would otherwise emerge there.

Examples

First we will consider the modal decomposition of a top hat field of unit amplitude with an aperture of radius a = 1, in
one dimension, using N = 50 modes. Figure 2 shows a comparison of the reconstruction (here using accurate overlap
integrals) with W selected using both approaches discussed above.
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Figure 2: Top ha reconstruction using 50 modes. W was chosen to maximise power in the fundamental
mode (0, and using mode extent matching (ii).

In figures 3 and 4 we show the results of modal reconstruction of a top hat field and a corrugated horn field,
respectively. The aperture radius was 2.5 mm. The decomposition was done using both the overlap integral approach
and the faster SVD technique. Selected mode amplitudes are also presented.

Mode
It v

Overlap
IA.1 2

SVD
AA'

0 0 3.74170 3.60405
0 2 1.86868 1.80212
0 4 1.38604 1.34569
0 6 1.08402 1.06871
0 8 0.73789 0.73270
0 10 0.30206 0.28936
0 12 0.01705 0.02069
0 14 0.03572 0.03989
2 2 0.92413 0.89816
4 4 0.37946 0.40652
6 6 0.00737 0.02618
8 8 0.01131 0.00635
10 10 0.00559 0.00287
12 12 0.00236 0.00401
14 14 0.00049 0.00315

Figure 3: Comparison between SVD and overlap integral calculations: top hat field reconstruction.
Selected non-zero mode coefficients are listed in the table.
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Figure 4: Corrugated horn mouth reconstruction and selected non-zero mode coefficients
for 15 modes using SVD and overlap approaches.
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Quasi-optical analysis

SVD approach to modal field decomposition can be used in quasi optical analysis of optical systems in the terahertz
region of the spectrum. In its simplistic version, where only one element is considered at a time, the method can be
summarised as follows:

The mode set to be used to decompose the source field needs to be determined. This has been discussed earlier in
this paper. It is worth mentioning however that in the case of multi-element optical systems system-wide factors
(optical throughput of the system) can be taken into the account to optimise the mode set.

• Source field decomposition using SVD approach.
• Propagation of the source field to the next optical element (mirror) using simple propagation characteristics of the

Gaussian Beam Modes. This can be done very easily since only the mode parameters W and R evolve. Mode
amplitudes are unchanged.

• Re-composition of the field at the next element. This element becomes the new source and the whole loop can be
repeated.

We keep track of W and R of the fundamental mode to aid the mode set selection. Only these parameters and the size
the current element (aperture) are used in the selection of the mode set. The throughput of the system is not considered
(-we take one element at a time). The method itself is general, and can be applied to both on-axis and off-axis elements.
The determination of the optimal mode set however, is more difficult for off-axis systems.

Test systems

To test the SVD approach to quasi-optical system analysis, we applied it to the simple one- and two- ellipsoidal mirror
test cases. Curvature of the mirrors was chosen to be significant to emphasise some of the potential problems. The
Si mulated feed was a corrugated conical horn with an aperture radius of 2.5 mm and a slant of 15.4 mm. The
wavelength chosen for the tests was 0.625 mm. The polarisation was perpendicular to the plane of the system (relevant
for the benchmark PO calculations, see below). Other details of the geometry of the test systems are shown in figure 5.

Figure 5: Geometry of the test cases. Please note that the systems are not drawn to scale.

The results of the SVD analysis of the test cases are shown in figures 6-9, in terms of two orthogonal cuts across the
selected output plane (shown in the figures). Selieral combinations of the following parameters of the SVD method
were tested:
• number of field sampling points: 40x40, 20x20, 10x10,
• number of modes used for decomposition: 10 or 15, and
• number of additional zero field points beyond the element (expressed in terms of the padding parameter — extent

of the added part of the grid as a fraction of the extent of the main element sampling grid).

259



-

- ,
, SVD:

0.5

Scalar

SVD:

PO (40)(40)
15x15 modes, padding

(40x40)

10x10 modes, padding
( 0x20)2

10)(10 modes, padding
(10x10)

10x10 modes, padding

PCT(120x120)

SVD:
--

A III
0.5

, SVD:
0.5

_

_
_

1111/1

III‘

\ Vae°cto(4°xr

_
_
_ 1
_

- ,

_
_

-

-60

,10

-20

2-8 -7 -6 -5 -4 -3 -2 -1 0

R [mm]

Figure 6: Symmetric cut across the output plane of the first test system (single ellipsoidal mirror). The
power is normalised to the vector PO result at the centre. In the legend, the numbers in brackets are the
mirror grid sizes in points. The field at the source mouth was always represented on a 24x24 main grid.

20

10

Foi -10
7:3

-20

.tn -30

Z -40

-50

-60

Scalar PO (40x40)
SVD: 15x15 modes, padding
0.5 (40x40)
SVD: 10)(10 modes, padding
a 5 (20x20)
SVD: 10x10 modes, padding
0.5 (10)(10)'
SVC): 10x10 modes, padding
0.0 (40x40)

\ Vector pc, (120x120)

7

-6 -5 -4 -1 0

R [mm]

15th International Symposium on Space Terahert: Technology

Figure 7: Asymmetric cut across the output plane of the first test system (single ellipsoidal mirror).
Other details as in figure 6.

The SVD results were compared to results of Physical Optics (PO) calculations, in two versions:

1. Simplified scalar approach (Fresnel-Kirchhoff diffraction, polarisation not accounted tot) on a 40x40 grid. These
results were included as an example of an approximate PO calculation (that could be used in an interactive design
package). The calculation time was comparable to the most computationally intensive SVD case tested here
(15x15 modes on 40x40 grid with 0.5 padding).

1 . Full vector approach (typical PO [10], as implemented in GRASP8 [11]). These results, calculated on a bigger grid
(120x120 PO points, which is in our case big enough to ensure convergence), constitute a benchmark the other
results can be compared to.
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Figure 8: Symmetric cut across the output plane of the second test system two ellipsoidal mirrors
Other details as in figure 6.
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Figure 9: Asymmetric cut across the output plane of the second test system (two ellipsoidal mirrors).
Other details as in figure 6.

All results were generated using MODAL, a design and analysis package being developed in-house in Maynooth [12].
This allowed all methods to be applied using exactly the same definition of geometry of the system. The accuracy of
the vector PO engine in Modal favourably compares to that of GRASP8.

Analysis of the test results

Several general observations can be made if one analyses the SVD results:

• Apart from the 10x10 grid case, the SVD results agree rather well with the accurate PO calculation, down to -20
dB. The big advantage of the SVD method is its speed - here SVD calculations were a factor of 20-1000 faster
(depending on the parameters) than the vector PO calculation.
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• The SVD approach can yield a completely wrong result, if the field sampling is too coarse. This becomes a real
problem if the phase changes quickly across the mirror, because aliasing effects can lead to physically incrrect
results. In our test calculations the 10x10 grid case was included specifically to illustrate this issue. In other systems
such grid size can be perfectly adequate.

• SVD results are much more regular than the scalar PO results, and do not suffer from spatial aliasing for small grid
sizes (apart from 10x10 case, as discussed above).
Increasing the number of modes (10x10 -> 15x15) to some extent improves the field reproduction, but gains are not
very significant here.

• Adding zero field points around the main grid slightly improves the reproduction of the field in the centre of the
beam, and also reduces the appearance of extra side-lobes.

Conclusions

Fast methods based on SVD Gaussian Beam Mode decomposition are potentially a very useful tool for analysing quasi-
optical systems. There are many potential problems however that need to be studied in greater detail, before SVD
approach to modal analysis reaches sufficient maturity to be considered a reliable method of quasi-optical analysis.
The aspects of the SVD method that we aim to address in the near future include:

• optimisation of the mode set,
• minimum density of field sampling points,
• weighting of field sampling points in the fitting procedure,
• optimal number, and distribution, of the added zero field points,
• handling of polarisation.

Our view is that significant progress can be made in these areas. However, even at this early stage of its development,
the SVD approach is useful in practical applications. In particular it can be implemented in designer tools, where it can
be used to quickly genei .ate useful results at the system design stage.
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