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Gaussian-beam mode analysis of reflection and
transmission in multilayer dielectrics
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The analysis of reflections from thin films or dielectric materials can be approached by a matrix method that
treats any thin-layer device as a cascade of sequential, zero-thickness reflecting thin-layer surfaces [J. Opt.
Soc. Am. A 2, 1363 (1985)]. Our paper presents an alternative method for predicting the reflection/transmission
characteristics of such dielectric films in a Fabry–Perot interferometer configuration based on a Gaussian-
beam modal analysis within a scattering-matrix framework [in Proceedings of IEE 7th International Confer-
ence on Antennas and Propagation (IEE, 1991), Issue 15, p. 201.] We present and validate a scalar Gaussian-
beam modal scattering-matrix approach using long-wavelength examples, where diffraction effects are
important to model total transmission and reflection characteristics that also include a waveguide modal de-
scription of a corrugated horn. For optical beams the same technique is equally applicable, but diffraction is
less severe within this framework. This approach is flexible and has many applications within laser optics and
in far-infrared or submillimeter-instrumentation optical analysis, where it is possible to incorporate reflections
in both waveguide and free space within the description of a whole system. To conclude and verify the accuracy
of the technique, experimental measurements taken at 94 GHz are compared with theoretical predictions for a
dielectric cavity of polyethylene sheets between corrugated source and detector antennas. © 2007 Optical So-
ciety of America

OCIS codes: 310.0310, 050.2230, 050.1940, 230.5750, 260.3090, 260.3160.
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. INTRODUCTION
aussian-beam mode analysis (GBMA) has proven to be a
owerful tool in the analysis of quasi-optical systems [1]
quasi-optical refers to long-wavelength diffraction-
ominated propagation). To account for reflected power
sing GBMA, we use a modal scattering technique based
n the mode-matching approach adopted in [2] for wave-
uide propagation, which effectively conserves power
cross successive junctions when waveguide radii are cas-
aded together to represent an antenna, for example. This
odal scattering technique has been used to accurately

redict the field pattern radiated by antennas in a com-
utationally efficient manner [3]. Although it has been de-
eloped for waveguide modes, it can be extended to free-
pace modes, and the same scattering-matrix formulation
s used to track all the power transmitted and reflected in
ccordance with the conservation of power. Reflected and
ransmitted components can be evaluated from a large
ariety of optical elements including dielectric sheets,
enses, and mirrors (both planar and curved) as well as
runcating apertures, which may or may not be perfectly
bsorbing. Propagation through free space (or
aveguides) is represented by diagonal matrices, where

he appropriate phase slippage is introduced for each
ode. In an optical system, potential reflecting surfaces

re obvious when one is dealing with typical geometrical
omponents. At longer wavelengths we must also consider
he feed antenna itself as a potential source of reflection.
his complicates analysis, as reflections can occur within
he entire length of the antenna itself and not just at the
perture. Fortunately, by extending the full electromag-
1084-7529/08/010080-10/$15.00 © 2
etic waveguide description of the horn to free space [1],
e account for all these potential reflections within a com-
lete optical system. This interconnectivity (waveguide
odes to free-space modes) distinguishes this modal ap-

roach from other techniques, where the reflected power
s modeled as occurring solely between the reflecting sur-
ace and the input-horn aperture, neglecting the reflec-
ions within the body of the antenna. This technique is
iscussed in detail in [1,4].
The most common technique for predicting standing-

ave patterns is based on summation of multiple beams
ith appropriate phase terms between thin layers [5,6].

n [4] it has been demonstrated that the presence of a
orn antenna leads to high-Q reflection effects superim-
osed on the typical sinusoidal ripple associated with
tanding waves between planar elements. This paper pre-
ents a range of dielectric thin-layer configurations illu-
inated by a fundamental-mode Gaussian and full de-

cription of the electromagnetic horn antenna, in
omparison to the thin-layer method utilized in [5]. In ad-
ition, a planar dielectric Fabry–Perot interferometer is
lluminated by a corrugated horn at 94 GHz, and experi-

ental measurements are presented to validate the tech-
ique when waveguide modes are also included to repre-
ent the corrugated horn structure in conjunction with
ree-space modes.

. THEORY
he scattering-matrix technique can be considered a
ethod of keeping track of the transmitted and reflected
008 Optical Society of America
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omponents by treating an arbitrary optical system as a
eries of successive subsections, which when added to-
ether in their entirety describe propagation within the
hole system. Each section is treated as a separate, inde-
endent component that is then cascaded with the adja-
ent subsequent section ultimately to represent the sys-
em as a whole [2], as illustrated in Fig. 1.

In the modal description of free space, the modes can be
epresented by associated Laguerre–Gaussian polynomi-
ls when a high degree of cylindrical symmetry is present.
therwise in the case of asymmetric or Cartesian sys-

ems, Hermite–Gaussian polynomials are the preferred
hoice of mode set. The higher-order Gaussian-beam solu-
ions are given in [7] as

�mn�x,y� = hm��2x

W
�hn��2y

W
�

�exp�− jk�z +
r2

2R��exp�j�mn�, �1�

ith hm the normalized Hermite function of the form

hm��2x

W
� =

1

�2m−1/2m ! ��W2
Hm��2

x

W�exp�−
x2

W2� ,

�2�

hn��2y

W
� =

1

�2n−1/2n ! ��W2
Hn��2

y

W�exp�−
y2

W2� ,

�3�

here W is the beam width, R is the phase radius of cur-
ature, and � is the phase slippage of each mode. The ap-
ropriate normalizing factors are assumed. The electric
eld can be calculated using a modal description at any
lane by a linear combination of the mode coefficients
which determine the amount of power contained in each
ode) and equivalent modes (i.e., �mAm�m) that are fully

etermined by the beam width, the phase radius of cur-
ature, and the relative phase slippage between modes.
he electric field must be known at an initial plane. Only
he phase slippage is mode dependent. The classical
BCD matrix method altered for GBM propagation is
sed throughout this paper to track the evolution of the
BM parameters through free space [8]. We utilize this

echnique to track beam evolution in both directions with
scattering-matrix framework, and this is how multiple

eflections can be accounted for within an optical system.
Each potentially reflecting optical component is repre-

ented by a scattering matrix where 	A
 and 	B
 are col-

ig. 1. Optical system represented by the mode-matching
oncept.
mn matrices for the forward-propagating and reflected
omponents as viewed from the input side. 	D
 and 	C

epresent the forward and reflected components from the
utput side. These matrices take the form of rectangular
atrices [2], which are related by

�	B


	D
� = �	S11
 	S12


	S21
 	S22
��	A


	C
� , �4�

here 	A
 and 	B
 are vectors of mode coefficients contain-
ng the transmitted and reflected components on the
ource side and 	C
 and 	D
 are the transmitted and re-
ected components on the output side. For many systems
here will only be one mode at the input (e.g., the TE11 for
ircular waveguide and the TE10 for rectangular
aveguides), so 	A
 will take the form of a column vector
ith one component. In any case, the cascade for any two

ections is given by

	Sa
 = �	S11
a 
 	S12

a 


	S21
a 
 	S22

a 
�, 	Sb
 = �	S11
b 
 	S12

b 


	S21
b 
 	S22

b 
� , �5�

here 	Sa
 and 	Sb
 are the scattering matrices for the
wo arbitrary sections, with their submatrices represent-
ng the reflected and transmitted components of the
elds. The cascaded matrix takes the form

	Sc
 = �S11
c S12

c

S21
c S22

c � . �6�

he submatrices for 	Sc
 are calculated by

	S11
c 
 = 	S12

a 
		I
 − 	S11
b 
	S22

a 

−1	S11
b 
	S21

a 
 + 	S11
a 
, �7a�

	S12
c 
 = 	S12

a 
		I
 − 	S11
b 
	S22

a 

−1	S12
b 
, �7b�

	S21
c 
 = 	S21

b 
		I
 − 	S22
a 
	S11

b 

−1	S21
a 
, �7c�

	S22
c 
 = 	S21

b 
		I
 − 	S22
a 
	S11

b 

−1	S22
a 
	S12

b 
 + 	S22
b 
, �7d�

here 	I
 is the identity matrix. Thus, in order to account
or reflections and transmissions within an optical sys-
em, we must represent each component or subsection by
ts equivalent scattering matrix. In this way, the output of
ach section then becomes the input for the next. If, for
xample, we wish to analyze the total reflected component
rom a convex lens, we can represent it as a curved front
urface affecting the input beam phase front, followed by
propagation through a medium of refractive index n and
nally by a conjugated curved surface. It is also possible
o include antireflection coatings by simply including an
xtra curved surface and equivalent propagation section.
igure 2 illustrates this cascading process.

. Modal Propagation
n quasi-optical systems the evolution of the free-space
eam can be considered in a number of ways. Most com-
only the beam evolves freely via free-space propagation,
here the beam is considered to be converging or diverg-

ng depending on the phase radius of curvature (R�0 sig-
ifies divergence and R�0 convergence). The propagation
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ill be represented by a diagonal matrix, which consists
f the phase terms in Eq. (1). Each diagonal element will
e of the form

Vmn = exp	− ikz + i�m + n + 1���mn
, �8�

here the kz term represents the plane-wave phase delay
nd the second term ��n is the relative phase slippage of
he nth mode worked out using the ABCD matrix method,
.e., the common on-axis phase difference between succes-
ive modes. The propagation scatter matrix is then of the
orm

�S11 S12

S21 S22
�

prop

= �0 V

V 0� . �9�

he S11 and S22 matrices contain only zero elements since
pure propagation step involves no power scattering be-

ween modes. When dealing with propagation within a di-
lectric medium of refractive index n, we utilize the re-
uced radius of curvature convention introduced in [6],
llustrated in [1], and discussed in Subsection 2.B.

. Partially Reflecting/Transmitting Dielectric Sheets
or a dielectric sheet we consider reflection from the sur-

ace, as illustrated in Fig. 3. Upon reflection, the phase
ront undergoes a radius-of-curvature transformation
ased on the curvature of the sheet; it will appear to be
manating from a waist located on the output side of the
irror [9]. The beam radius itself is unchanged upon re-

ection but will now evolve according to the new radius of
urvature imposed by the mirror.

The scattering matrix, distributing power between ad-
acent modes by taking account of the change in curvature
pon reflection Smn, can then be written as an m�n ma-
rix and is given by the overlap integral between the in-
ut and output fields over the area of the sheet [10],

ig. 2. Cascade of N submatrices yields a full 4�4 matrix that
epresents the optical system.

ig. 3. Reflection of a quasi-optical beam from a dielectric sheet.
Smn =�
A
��m exp� jkr2

2 � 1

Rinc
−

2

Rcurv
���*

�n

�exp�−
jkr2

2 � 1

Rinc
��dxdy, �10�

here Rinc is the radius of curvature of the incident beam
nd Rcurv the curvature of the dielectric surface. To ac-
ount for the different refractive indices, we use a concept
rom geometrical ABCD ray matrices, the reduced radius
f curvature, R̂ defined in [8] as

R̂ = R/n, �11�

here n is the refractive index of the medium and R is the
ree space radius of curvature at that plane [8]. For geo-

etric optics we can write

R̂2 =
AR̂1 + B

CR̂1 + D
, �12�

here R̂1 is the radius of curvature in medium one and R̂2
s the radius of curvature in medium two, as illustrated in
ig. 4. This equation allows us to calculate the change in
adius of curvature due to a transformation by a system
escribed by an ABCD ray matrix. This formula is valid
nly for geometrical optics. In order to convert this spheri-
al point-source wave to represent the Gaussian beam, we
ust use the complex reduced beam parameter, which ac-

ounts for the finite extent of the source but is generalized
or a medium of refractive index n [8]. We find this to be

1

q̂



n

q



n

R�z�
− j

n	

�W�z�2 =
1

R̂
− j

	0

�W�z�2 , �13�

here R�z� is the free-space radius of curvature, W�z� is
he beam radius, and 	 is given by 	0 /n, where n is the
ocal refractive index of the media and 	0 is the wave-
ength in free space. The paraxial-wave transformation
ule using the ABCD matrix elements and the q̂
aussian-beam parameter then becomes

ig. 4. Effect on the Gaussian-beam parameters of propagation
hrough a dielectric interface.
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q̂2 =
Aq̂1 + B

Cq̂1 + D
, �14�

here the subscript on q values refers to the medium in
hich the wave is traveling.
By using the reduced q value we can carry out all beam

ransformation calculations using solely the local index of
efraction n and 	0. The radius of curvature will scale by
factor of 1/n, but the beam radius remains unchanged

n the new medium. We can alter two of the matrices de-
cribed in [11] to describe propagation in a dielectric me-
ium. First, the propagation matrix must be altered to ac-
ount for the refractive index and is now given as
1,Ln1 /n2 ,0 ,1� where L is the distance traveled, n1 is the
ndex of refraction of the first medium, and n2 is the index
f refraction of the second medium. The curved dielectric
nterface of normal incidence is given as �1,0, �n2
n1� /R ,1�. Cascading these components will give a full
BCD description of the system, including the effects of

he change in refractive index. The scattering matrix is
hen given by

�rijS11 S12tij

tijS21 S22rij
� , �15�

here rij and tij are the reflection and transmission coef-
cients and are calculated via the Fresnel formulas for
ormal incidence as given by [6]

rij =
ni − nj

ni + nj
, tij =

2ni

ni + nj
, �16�

here the reflectivity R= �rij�2 and the transmittivity T
�tij�2 and i, j represent the media i and j of refractive in-
ex ni and nj (e.g., r12 represents the reflection from the
nterface between mediums 1 and 2 while t23 represents
he transmission at the interface between mediums 2 and
) with the usual relationship of R+T=1. In addition,
here will be propagation through the medium that con-
titutes the dielectric medium that may be handled by the
ropagation matrix of Subsection 2.A. The finite size of
ptical components can be determined by the limit of the
verlap integral between the field incident and the output
eld. All radiation within the aperture 	�x2+y2��a
 is in-
luded, and all radiation outside the aperture limits 	�x2

y2��a
 can be considered lost. The finite size of mirrors
an be handled in a similar manner, where all power in-
ident on the surface is reflected and all power outside the
irror rim is truncated.

. Modeling Horn Antennas and Free-Space
ransformation
software program called SCATTER [3] has been developed

hat allows the prediction of the full EM reflection/
ransmission properties of homogeneous and inhomoge-
eous horn antennas with cylindrical geometry as are fre-
uently used in GHz/THz systems. This describes the
adiated fields in terms of TE and TM modes. In order to
xtend the waveguide-mode description of the antenna to
he free-space mode equivalent, a transformation matrix
s used from [1,4] that allows the interconnectivity of the
wo mode sets within a scatter-matrix framework. This is
chieved via a free-space transformation matrix that scat-
ers power from the TE/TM mode set to a Hermite–
aussian mode set [1]. Utilizing the output of SCATTER de-

cribing transmission/reflection from a particular horn
eometry, the transformation matrix and the matrices of
ubsections 2.A and 2.B result in the analytical tools nec-
ssary to represent many typical submillimeter and far
nrared components.

. DUAL THIN-LAYER REFLECTIONS
f we consider the propagation of an EM wave through a
omogeneous thin film as shown in Fig. 5, we find from
6] that the total reflection R and transmission T of a
ual-layer sheet is given by

R = �r�2 =
rij

2 + rjk
2 + 2rijrjk cos�2
�

1 + rij
2rjk

2 + 2rijrjk cos�2
�
T = �t�2

=
n3 cos��3�

n3 cos��1�

tij
2tjk

2

1 + rij
2rjk

2 + 2rijrjk cos�2
�
, �17�

here 
=2�nmedh cos	�med
 /	. i, j, k refer to the medium
n which the radiation is currently propagating, labeled 1,
, and 3 in Fig. 5. This situation is relevant to lenses and
ryostat windows in quasi-optical systems where n1=n3
1 and n2 will depend on the material used.
If we replace 
 with 
+�, there is no alteration in R or

. Furthermore, if we replace h with h+�h, where

�h =
	0

2n2 cos �2
, �18�

he reflectivity and transmittivity remain unchanged
hen two films differ in thickness by an integral multiple
f 	0 /2n2 cos �2. It can be shown that when n2h
m	0 /4 cos �2, the reflection is at a minimum when m is
dd and a maximum when m is even, depending on the
elative values of n1, n2, and n3:

If �− 1�m�n1 − n2��n2 − n3� � 0, we find a maximum.

�19a�

If �− 1�m�n1 − n2��n2 − n3� � 0, we find a minimum.

�19b�

ig. 5. Propagation of an EM wave through a homogenous film.
he arrows represent light rays propagating through the respec-
ive media.
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The above conditions can be applied to many classical
ielectric configurations. Two specific examples were cho-
en to highlight the ability of Gaussian-beam mode scat-
ering theory to replicate the results of Eq. (19).

. Reflectivity as a Function of Path Length
irst, a configuration was chosen, where

• a dielectric with a refractive index n2=3 was selected
ith n1=n3=1 (corresponds to sapphire layer of material

n air);
• the wavelength was set to 	=500 �m with an input

aussian beam profile of waist W=1 mm located at the
rst sheet and at normal incidence to the sheet.
Sapphire is a material often used in submillimeter sys-

ems. Recalling Eq. (19), since n2�n3, we find a maxi-
um located at odd integer multiples of 	 /4. The

cattering-matrix model was constructed using the matri-
es described in Subsections 2.A–2.C using the following
teps:

1. Propagation of the beam in free space to the dielec-
ric sheet interface. This is a fundamental Gaussian in-
ut.
2. Accounting for the dielectric sheet reflectivity (i.e.,

he curvature of the surface, although in this example
dielec=
, and a truncation of diameter 6 W due to the fi-
ite size of the sheet).
3. Propagation within the medium and potential reflec-

ions from the back face of the dielectric.

Figure 6 shows the classical theory and the scattering-
atrix equivalent, which exhibit excellent agreement,

alidating the accuracy of the scattering-matrix method.
The second configuration was as follows:
A dielectric with a refractive index n2=1.1 (corresponds

o Styrofoam) and n3=1.5 (corresponds to HDPE) was
hen selected.

The wavelength was set to 	=500 �m with an input
aist W=1 mm at normal incidence to the sheet and
gain located at the sheet surface.
High-density polyethylene (HDPE) and Styrofoam are

gain typical submillimeter materials. Again, recalling
rom Eq. (19), since n2�n3 we find a maximum located at
ven integer multiples of 	 /4. Figure 7 displays the clas-
ical theory and the scattering-matrix equivalent, which

ig. 6. Reflectivity of a dielectric film of refractive index n as a
unction of optical thickness for the first configuration (see text).
gain shows excellent agreement while recreating the
witch between odd and even integer multiples in Eq.
19), further validating the accuracy of the modal descrip-
ion.

. Reflectivity as a Function of Refractive Index
or lenses in general, n1=n3 and the medium has a re-

ractive index of n2, which alters the reflectivity of the
heet. For a Fabry–Perot interferometer (see Section 4)
he condition n1=n3 is often found, although n3 can also
ary depending on which substance is present. The sheet
as a fixed thickness of 	 /4 and the same initial param-
ters as for the configurations described above except that
ow the refractive index, rather than thickness, is varied.
he reflectivity calculated via Eqs. (16) and (17) is illus-

rated in Fig. 8 along with the scattering-matrix equiva-
ent, which shows excellent agreement with the classical
heory (the top trace corresponds to n1=1, n3=1, the sec-
nd trace to n1=1, n3=1.45, etc.).

The reflectivity of the sheet is expected to be zero when
2=�n1n3, and Fig. 6 demonstrates this particular char-
cteristic where the reflectivity goes to zero for a particu-
ar value of n2 depending on the refractive index of n1 and
3 (e.g., for n1=n3=1, then n2=1.22). Thus by coating sur-

aces with refractive indices of high refractive index, we
an obtain very high reflection coefficients, or alterna-

ig. 7. Reflectivity of a dielectric film of refractive index n as a
unction of optical thickness for the second configuration (see
ext).

ig. 8. Reflectivity response of a quarter-wavelength-thick di-
lectric as a function of the refractive index of the second
edium.
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ively we can make antireflection coatings by choosing a
uarter-wavelength thickness and by choosing a refrac-
ive index n2 that is lower than that of the refractive in-
ex of the last medium n3 (the lens) and where n1=1 (air).
The reflectivity, and hence the transmission of a dielec-

ric sheet, is highly dependent not only on the refractive
ndex but also on the thickness of the dielectric sheet.
his relationship is further complicated by the relative
efractive indices of the medium surrounding the lens.

. FABRY–PEROT INTERFEROMETER
abry–Perot interferometers (FPIs) find multiple uses in
ubmillimeter instrumentation, particularly as diplexers
r frequency-selective filters [11]. They consist of two
emireflecting surfaces separated by a distance d, as illus-
rated in Fig. 9. The FPI passes and partially reflects
ultiple beams, and summations of these beams interfere

onstructively or destructively for various path lengths,
hus determining the overall transmission characteristics
f the device.

Due to their potential high resolution, frequency-
elective FPIs are often used as filters, which have the ad-
antage of variable-frequency bandpass and whose reso-
ance characteristics can be altered by varying the
efractive index of the FPI. Multiple FPIs may be used to
ealize a broader spectral range and increased resolution
nd to achieve a ripple-free transmission profile. They are
lso used in diplexer arrangements, as they may also be
sed for superimposing two signals in a heterodyne in-
trument, but this requires two separate FPIs to avoid
osing one polarization [11]. A FPI can also be used as a
olarization rotator by the use of two quarter-wave
lates, which transform a linear polarization to a circular
olarization of a certain handedness.
The finesse of the FPI, which determines the spectral

esolution of the device or, alternatively, the ratio of fringe
pacing to the FWHM, is given by [11]

F =
��r2�

1 − �r2�
. �20�

To validate the scattering-matrix theory, an alternative
ethod for calculating the behavior of the FPI presented

n [1] is utilized. Briefly, this theory is based on the analy-
is of multilayer films ignoring absorptive, scattering,
isalignment and diffraction losses and with a normal

ig. 9. Fabry–Perot interferometer with an incident Gaussian
eam. The effect of the multiple reflections is to confine a longer
ree-space propagation to a smaller distance.
ngle of incidence. In addition, the thickness of the sheets
s considered to be zero with just the reflectivity and the
istance between sheets as variables. If we consider Fig.
0, where we have N partially transmitting sheets going
rom i=1 to i=N, we find that the amplitude of the elec-
ric field at the left side of mirror 1 and propagating to the
ight is Ei

+ and that the reflected component of the field on
he same side and propagating to the left is Ei

−. We also
nd that the reflection and transmission coefficients are ri
nd ti, respectively, and the distance from sheet i to sheet
+1 is Li. The phase length from sheet i to i+1 is given by
i=2�Li /	. The transmission coefficient t for a stack of N
irrors is given by

t =
EN+1

+

E1
+ =

tN

EN
+ =

t1t2 . . . tNEN
+

AEN
+ + BEN

− =
t1t2 . . . tN

A + rNB
, �21�

here t1,2. . .N represents the transmission coefficient of
heet 1,2. . . .N, and A and B are related to the phase
ength from sheet to sheet.

. Two-Mirror Fabry–Perot Interferometer
or the two-mirror FPI we obtain the result

T = �t�2 =
t1
2t2

2

1 + r1
2r2

2 + 2r1r2 cos�2
1�
, �22�

here T is the total transmittivity of the sheet.
In the scattering-matrix approach we treat the FPI as

wo dielectric slabs of refractive index n, of finite thick-
ess, and with a layer of air sandwiched between them.
herefore the model will be more representative since the
PI consists of two dielectric sheets of finite thickness as
hown in Fig. 9, whereas the multilayer approach essen-
ially ignores this and treats them as infinitely thin
heets, as shown in Fig. 8. Thus we will have seven sub-
ections:

Sheet Interface → Medium → Sheet Interface → Air

→ Sheet Interface → Medium

→ Sheet Interface.

The initial matrix in the cascade is calculated via Eq.
10) with the reflection and transmission coefficients cal-
ulated by Eq. (16). Propagation through the medium of

ig. 10. Amplitudes at partially transmitting sheets i and i+1
or a succession of N sheets.
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ndex n can be handled by the propagation matrix of Sub-
ection 2.A using a diagonal matrix, accounting for the in-
ex of refraction of the medium. The ABCD matrix
ethod is used to track the evolution of the GBM param-

ters W, R, and �. The transmitted power corresponds to
he S21 matrix and the reflected power to the S11 matrix
see Fig. 1).

Figure 11(a) shows the frequency response of the FPI
s the distance between the sheets is increased for a fun-
amental Gaussian waist input located at the surface of
he first sheet and with zero distance between the front
nd back face of either sheet. The dielectric sheet thick-
ess is 	 /4, and the input beam has a beam width W
5 mm and a wavelength of 	=3 mm. All the dielectric
heets are 4W or greater in diameter.

The refractive index of the second medium was set to
.62, yielding R=0.88 and T=0.12. This is the index of re-
raction of thallium bromide-iodide (KRS-5) at 100 GHz,
ielding a finesse of 13.4. Figure 11(b) illustrates a second
xample for values of R=0.1 and T=0.9, with the refrac-
ive index of the second medium equal to 1.39, which is
he index of refraction of Teflon, yielding a finesse of
.032. Both KRS-5 and particularly Teflon are dielectric
ubstances that are frequently used in submillimeter op-
ical systems as filters and lenses and cryostat windows.
he FPI exhibits the classical 	 /2 dependence for trans-
ission as predicted by Eq. (19), with the reflection char-

Fig. 11. Transmission response of the FPI for
cteristic as the reciprocal of T with a 	 /4 dependence. It
lso exhibits the diffractive losses due to the long-
avelength nature of the radiation, which can be seen as
decrease in peak intensity as the separation increases.
lso shown for comparison in Fig. 11 is the evaluation of
q. (22). Excellent agreement is found between the two
pproaches except that the multilayer approach neglects
iffractive losses. This is one of the major benefits of
dopting the GBM approach, which is parameterized by
n evolving beam width, radius of curvature, and phase
erm. The plane-wave approach in [5], by contrast, simply
onsiders the phase evolution from component to compo-
ent, which is appropriate in the geometrical limit �	
0� but gives rise to discrepancies at longer wave-

engths. However, Fig. 11(c) illustrates that as the wave-
ength is reduced to 	=30 �m in the scattering-matrix
echnique, the diffractive losses become small in compari-
on with Fig. 11(d), which illustrates the diffractive losses
hat occur as the range is extended over several wave-
engths for 	=3 mm. This is the behavior that one would
xpect for a quasi-collimated beam at 30 �m. The reflec-
ivity R=0.9 for Figs. 11(c) and 11(d).

. Three-Mirror Fabry–Perot Interferometer
n general, while FPIs are highly useful as narrow pass-
and filters, one would like to be able to alter the free
pectral range and obtain higher resolution. In this re-

iety of dielectric substances and wavelengths.
a var
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ard there has been an evolution toward multimirror
PIs that have two or more coupled cavities with multiple
egrees of freedom through the possibility of altering both
he reflectivity and the separations of the various compo-
ents that constitute the FPI. In particular, we look at the
hree-mirror FPI in two particular configurations based
n those found in [5].

In the case of a three-mirror FPI, we find from Eq. (21)
hat

T =
t1
2t2

2t3
2

D3
, �23�

here the denominator D3 is given by

D3 = 1 + �r1r2�2 + �r2r3�2 + �r1r3�2 + 2r1r2�1 + r3
2�cos�2�1�

+ 2r2r3�1 + r1
2�cos�2�2� + 2r1r3 cos�2�1 + 2�2�

+ 2r1r2
2r3 cos�2�1 − 2�2�, �24�

here the symbols have the usual significance. If one of
1, r2, or r3 equals 0, then the two-mirror FPI is produced.
igure 12 illustrates the three-mirror output compared
ith the equivalent scattering-matrix prediction. As can
e seen, there is good agreement between the two cases,
ndicating that the scattering-matrix technique is reliable
hen predicting the transmission profile of even complex
ulticomponent devices. Again the power transmission is

alculated by the S21 matrix and the reflected power by
he S11 matrix (see Fig. 1). The frequency of each simula-
ion below is 1 THz to limit the effects of diffraction for
ase of comparison to the theory from [5]. The input beam
aist width is W=1 mm and is located at the surface of

he first sheet. All sheets are 	 /4 and sized to 4W in di-
meter.
In the case that r1=r3 and �1=�2, we find that a flat-

op, ripple-free transmission with a near-square band-
ass, high transmission, and good sideband suppression
an be obtained. These are desirable qualities for optical
lters and cannot be obtained with a two-mirror FPI.
rom [5] we find for r1=r3 that

ig. 12. Transmission profile for a multimirror FPI where all
irrors have the same reflectivity �R=0.5�.
T =
�1 − r1

2�2�1 − r2
2�

�1 − r1
2�2�1 − r2

2� + 	r2�1 + r1
2� + 2r1x
2

, �25�

here x=cos�2
�. When a high value of r2 in comparison
ith r1 and r3 is chosen, the two cavities are weakly

oupled and the double peaks move together, forming a
at-top profile. When a low value is chosen, the two cavi-
ies are strongly coupled and the free spectral range will
e altered as the fringes separate. This effect is demon-
trated in Figs. 13(a) and 13(b), where a choice of R=0.1
or the central mirrors and R=0.5 for the first and last
irrors separates the peaks and yields four fringes per
avelength, and a choice of R=0.88 for the middle mirror
ushes the fringes closer and begins to form a flat-top pro-
le. Also shown are the predictions of the scatter-matrix
ethod, which again exhibit excellent agreement

hroughout the various examples.
A careful choice of r1, r2, and r3 can yield a near-square

andpass profile. We find from [5] that r1=r3=0.329 and
2=0.739 are appropriate values for these mirrors. Figure
4 illustrates this profile in comparison with classical
heory. Again excellent agreement is found between the
wo cases with the scatter-matrix technique. The power
ransmission is effectively the S21 matrix, and the re-
ected power is given in the S11 matrix (see Fig. 1).

ig. 13. (a) Transmission profile for a multimirror FPI where
he middle mirror has a reflectivity of R=0.1. (b) Transmission
rofile for a multimirror FPI where the middle mirror has a re-
ectivity of R=0.88.
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. Fabry–Perot Illumination by Corrugated Horn
n long-wavelength systems a FPI will be used in conjunc-
ion with a quasi-optical feed antenna. As a result, the il-
umination of the FPI will not be an ideal fundamental
aussian profile but an actual horn feed beam, which will
roduce different transmission/reflection characteristics.
ere we present an analysis that includes a corrugated
orn at 94 GHz; the horn is characterized by the following
arameters: Waper=5.11 mm, Raper=64.8 mm, aperture
adius�2.5	, and a flare angle of 5.7°. A full modal de-
cription of this antenna was included in the scattering-
atrix framework and subsequently cascaded and trans-

ormed to free-space modes. We illustrate a schematic of
he experimental setup in Fig. 15.

Theoretical results are compared with experimental
easurements, where the horn illuminates two sheets of
DPE. The transmission characteristics of this optical

onfiguration are displayed in Fig. 16. The dielectric
heets that were modeled had a refractive index of 1.52,
hich gives a surface reflectivity of 15%, and were
1.5 mm thick �6.74	� and 20W in diameter. Initially the
heets were in contact with each other as well as with
oth the source and the detector horn. One horn and di-
lectric sheet were fixed in place, while the second horn
nd dielectric sheet were displaced to a distance of 2	.
The scatter-matrix technique exhibits excellent agree-
ent with the measured transmission response of the
PI, including the level and size of the ripple. The power
oupling has dropped to an average of 6% as a result of
wo factors:

ig. 14. Response of the multimirror FPI as a bandpass filter
ith the appropriate choice of reflectivity values.

ig. 15. Experimental setup of two corrugated horns coupled
ia a FPI.
1. The 15% power loss due to reflected power at each
ielectric sheet.
2. The 64% power loss due to the initial 43 mm separa-

ion of the two corrugated horns.
In Subsections 4.A and 4.B the fundamental Gaussian

uffered no losses other than reflective and diffractive
osses, as it was not coupling to a detector on the output
ide of the FPI.

. CONCLUSIONS
n this paper a scattering-matrix formulation based on
BM analysis has been demonstrated to be an accurate
redictor of multiple reflections from thin-layer films, in-
luding the effects of path length and refractive index
ariance. This technique can be applied to a wide range of
avelengths, including those considered to be geometri-

al, in addition to longer wavelengths where diffraction
ends to dominate propagation. It has proven to be com-
utationally efficient and can be extended to include the
olume of the horn antenna that illuminates the system.
he technique incorporates an equivalent waveguide
odal description alongside the traditional free-space
BMs in one scattering-matrix formulization. Further-
ore, the technique exhibits the ability to predict the

ransmission characteristics of complex multi-element de-
ices such as the Fabry–Perot interferometer, an advan-
age over another matrix technique from [5], which can-
ot include diffraction losses or account for the finite
hickness of the dielectric sheets. The real power of the
BM technique stems from the fact that it allows long-
avelength behavior to be included while accounting for

he structure of the antenna illuminating the systems. A
BM technique for modeling aberrations in off-axis mir-

or systems that is typically used in a THz system can be
tructured as a scattering matrix [12] and is compatible
ith the GBM scattering-matrix technique presented in

his paper. Although clearly this paper has not considered
he distortions introduced into the beam by nonideal op-
ics, currently these GBM techniques are being combined,
hich will potentially allow a full analysis of standing-
ave and aberration characteristics of optical systems

rom front-end optics to back-end detectors.

ig. 16. Power coupling of two corrugated horns coupled via a
PI.
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Although not considered here, the above theory is
qually valid for nonnormal-incidence Gaussian beam
pon the addition of an appropriate phase term. The de-
ice will suffer from lateral walk-off, which will result in
ess efficient power transfer by the Fabry–Perot interfer-
meter. GBMA is a scalar solution and so neglects polar-
zation effects, whereas a well-designed system should in-
roduce minimal cross-polar effects, which can be
stimated [11]. Finally [13,14] are provided to illustrate
he importance of GBM in Fabry–Perot laser cavities;
hese papers discuss the effect of the FPI on the spatial
tructure of the transmitted beam. Although this topic is
ot included in this paper, one could reconstruct the beam
fter propagation through the FPI using the appropriate
BM parameters to evaluate the final beam quality upon

ransmission.
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