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The analysis of reflections from thin films or dielectric materials can be approached by a matrix method that
treats any thin-layer device as a cascade of sequential, zero-thickness reflecting thin-layer surfaces [J. Opt.
Soc. Am. A 2, 1363 (1985)]. Our paper presents an alternative method for predicting the reflection/transmission
characteristics of such dielectric films in a Fabry—Perot interferometer configuration based on a Gaussian-
beam modal analysis within a scattering-matrix framework [in Proceedings of IEE 7th International Confer-
ence on Antennas and Propagation (IEE, 1991), Issue 15, p. 201.] We present and validate a scalar Gaussian-
beam modal scattering-matrix approach using long-wavelength examples, where diffraction effects are
important to model total transmission and reflection characteristics that also include a waveguide modal de-
scription of a corrugated horn. For optical beams the same technique is equally applicable, but diffraction is
less severe within this framework. This approach is flexible and has many applications within laser optics and
in far-infrared or submillimeter-instrumentation optical analysis, where it is possible to incorporate reflections
in both waveguide and free space within the description of a whole system. To conclude and verify the accuracy
of the technique, experimental measurements taken at 94 GHz are compared with theoretical predictions for a
dielectric cavity of polyethylene sheets between corrugated source and detector antennas. © 2007 Optical So-
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1. INTRODUCTION

Gaussian-beam mode analysis (GBMA) has proven to be a
powerful tool in the analysis of quasi-optical systems [1]
(quasi-optical refers to long-wavelength diffraction-
dominated propagation). To account for reflected power
using GBMA, we use a modal scattering technique based
on the mode-matching approach adopted in [2] for wave-
guide propagation, which effectively conserves power
across successive junctions when waveguide radii are cas-
caded together to represent an antenna, for example. This
modal scattering technique has been used to accurately
predict the field pattern radiated by antennas in a com-
putationally efficient manner [3]. Although it has been de-
veloped for waveguide modes, it can be extended to free-
space modes, and the same scattering-matrix formulation
is used to track all the power transmitted and reflected in
accordance with the conservation of power. Reflected and
transmitted components can be evaluated from a large
variety of optical elements including dielectric sheets,
lenses, and mirrors (both planar and curved) as well as
truncating apertures, which may or may not be perfectly
absorbing. Propagation through free space (or
waveguides) is represented by diagonal matrices, where
the appropriate phase slippage is introduced for each
mode. In an optical system, potential reflecting surfaces
are obvious when one is dealing with typical geometrical
components. At longer wavelengths we must also consider
the feed antenna itself as a potential source of reflection.
This complicates analysis, as reflections can occur within
the entire length of the antenna itself and not just at the
aperture. Fortunately, by extending the full electromag-
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netic waveguide description of the horn to free space [1],
we account for all these potential reflections within a com-
plete optical system. This interconnectivity (waveguide
modes to free-space modes) distinguishes this modal ap-
proach from other techniques, where the reflected power
is modeled as occurring solely between the reflecting sur-
face and the input-horn aperture, neglecting the reflec-
tions within the body of the antenna. This technique is
discussed in detail in [1,4].

The most common technique for predicting standing-
wave patterns is based on summation of multiple beams
with appropriate phase terms between thin layers [5,6].
In [4] it has been demonstrated that the presence of a
horn antenna leads to high-Q reflection effects superim-
posed on the typical sinusoidal ripple associated with
standing waves between planar elements. This paper pre-
sents a range of dielectric thin-layer configurations illu-
minated by a fundamental-mode Gaussian and full de-
scription of the electromagnetic horn antenna, in
comparison to the thin-layer method utilized in [5]. In ad-
dition, a planar dielectric Fabry—Perot interferometer is
illuminated by a corrugated horn at 94 GHz, and experi-
mental measurements are presented to validate the tech-
nique when waveguide modes are also included to repre-
sent the corrugated horn structure in conjunction with
free-space modes.

2. THEORY

The scattering-matrix technique can be considered a
method of keeping track of the transmitted and reflected
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components by treating an arbitrary optical system as a
series of successive subsections, which when added to-
gether in their entirety describe propagation within the
whole system. Each section is treated as a separate, inde-
pendent component that is then cascaded with the adja-
cent subsequent section ultimately to represent the sys-
tem as a whole [2], as illustrated in Fig. 1.

In the modal description of free space, the modes can be
represented by associated Laguerre—Gaussian polynomi-
als when a high degree of cylindrical symmetry is present.
Otherwise in the case of asymmetric or Cartesian sys-
tems, Hermite—Gaussian polynomials are the preferred
choice of mode set. The higher-order Gaussian-beam solu-
tions are given in [7] as

V,@,y) = h V2 h V2
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with A, the normalized Hermite function of the form
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where W is the beam width, R is the phase radius of cur-
vature, and ¢ is the phase slippage of each mode. The ap-
propriate normalizing factors are assumed. The electric
field can be calculated using a modal description at any
plane by a linear combination of the mode coefficients
(which determine the amount of power contained in each
mode) and equivalent modes (i.e., 2,,A,,V,,) that are fully
determined by the beam width, the phase radius of cur-
vature, and the relative phase slippage between modes.
The electric field must be known at an initial plane. Only
the phase slippage is mode dependent. The classical
ABCD matrix method altered for GBM propagation is
used throughout this paper to track the evolution of the
GBM parameters through free space [8]. We utilize this
technique to track beam evolution in both directions with
a scattering-matrix framework, and this is how multiple
reflections can be accounted for within an optical system.

Each potentially reflecting optical component is repre-
sented by a scattering matrix where [A] and [B] are col-

ﬁ-m?nﬁlfea’ 1 Sl2 R;‘:Ioctad
conponent on conponent on
the input side Quasi Optical the oufput side
B System D
Reflected Transmitted
conponent on conponent on
the input side Sy the output side
Si1

Fig. 1. Optical system represented by the mode-matching
concept.
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umn matrices for the forward-propagating and reflected
components as viewed from the input side. [D] and [C]
represent the forward and reflected components from the
output side. These matrices take the form of rectangular
matrices [2], which are related by

(BI| |[Sul  [Siwl||[Al @

[D]] " [[Saa]  [Saal]|[C1)°
where [A] and [B] are vectors of mode coefficients contain-
ing the transmitted and reflected components on the
source side and [C] and [D] are the transmitted and re-
flected components on the output side. For many systems
there will only be one mode at the input (e.g., the TE; for
circular waveguide and the TE;, for rectangular
waveguides), so [A] will take the form of a column vector

with one component. In any case, the cascade for any two
sections is given by

[S4,]  [S%] [S5,] [ﬂ{
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where [S%] and [S®] are the scattering matrices for the
two arbitrary sections, with their submatrices represent-
ing the reflected and transmitted components of the
fields. The cascaded matrix takes the form

S S
[9#[21 iﬂ. ©)

21 22

The submatrices for [S¢] are calculated by

[S54] = [S$.IT] - [S4,10S5.117 1S4, 1S5, + [S%1], (7a)
[S4] = [SoII[1] - [S411S5:117[S%,], (7b)
[S5:1= [S5.II] - [SIS5 117 1S5 ], (7¢)

[S55]1 = [S5LII] - [S5.1LS51 11 18511551 + [S5,1, (7d)

where [I] is the identity matrix. Thus, in order to account
for reflections and transmissions within an optical sys-
tem, we must represent each component or subsection by
its equivalent scattering matrix. In this way, the output of
each section then becomes the input for the next. If, for
example, we wish to analyze the total reflected component
from a convex lens, we can represent it as a curved front
surface affecting the input beam phase front, followed by
a propagation through a medium of refractive index n and
finally by a conjugated curved surface. It is also possible
to include antireflection coatings by simply including an
extra curved surface and equivalent propagation section.
Figure 2 illustrates this cascading process.

A. Modal Propagation

In quasi-optical systems the evolution of the free-space
beam can be considered in a number of ways. Most com-
monly the beam evolves freely via free-space propagation,
where the beam is considered to be converging or diverg-
ing depending on the phase radius of curvature (R >0 sig-
nifies divergence and R <0 convergence). The propagation
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Fig. 2. Cascade of N submatrices yields a full 4 X4 matrix that
represents the optical system.

will be represented by a diagonal matrix, which consists
of the phase terms in Eq. (1). Each diagonal element will
be of the form

Von =€xp[—ikz +i(m +n + 1)Ad,,,], (8)

where the kz term represents the plane-wave phase delay
and the second term A¢, is the relative phase slippage of
the nth mode worked out using the ABCD matrix method,
i.e., the common on-axis phase difference between succes-
sive modes. The propagation scatter matrix is then of the
form

‘Sn Sis o

S21 S22

prop 0
The S1; and Sy, matrices contain only zero elements since
a pure propagation step involves no power scattering be-
tween modes. When dealing with propagation within a di-
electric medium of refractive index n, we utilize the re-
duced radius of curvature convention introduced in [6],
illustrated in [1], and discussed in Subsection 2.B.

B. Partially Reflecting/Transmitting Dielectric Sheets
For a dielectric sheet we consider reflection from the sur-
face, as illustrated in Fig. 3. Upon reflection, the phase
front undergoes a radius-of-curvature transformation
based on the curvature of the sheet; it will appear to be
emanating from a waist located on the output side of the
mirror [9]. The beam radius itself is unchanged upon re-
flection but will now evolve according to the new radius of
curvature imposed by the mirror.

The scattering matrix, distributing power between ad-
jacent modes by taking account of the change in curvature
upon reflection S,,,,, can then be written as an m Xn ma-
trix and is given by the overlap integral between the in-
put and output fields over the area of the sheet [10],

Incident Phase Front

Virtual Waist

_____

Reflected Phase Front

Reflected Bearn
Fig. 3. Reflection of a quasi-optical beam from a dielectric sheet.
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where R;,. is the radius of curvature of the incident beam
and R,,,, the curvature of the dielectric surface. To ac-
count for the different refractive indices, we use a concept
from geometrical ABCD ray matrices, the reduced radius
of curvature, R defined in [8] as

R=R/n, (11)

where n is the refractive index of the medium and R is the
free space radius of curvature at that plane [8]. For geo-
metric optics we can write

. AR,+B
R2= R 5 (12)
CR,+D

where R is the radius of curvature in medium one and R
is the radius of curvature in medium two, as illustrated in
Fig. 4. This equation allows us to calculate the change in
radius of curvature due to a transformation by a system
described by an ABCD ray matrix. This formula is valid
only for geometrical optics. In order to convert this spheri-
cal point-source wave to represent the Gaussian beam, we
must use the complex reduced beam parameter, which ac-
counts for the finite extent of the source but is generalized
for a medium of refractive index n [8]. We find this to be

1 n n n\ 1 No
U S S 13
i ¢ R Tmwer g awer

where R(z) is the free-space radius of curvature, W(z) is
the beam radius, and \ is given by \o/n, where n is the
local refractive index of the media and \, is the wave-
length in free space. The paraxial-wave transformation
rule using the ABCD matrix elements and the ¢
Gaussian-beam parameter then becomes
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Fig. 4. Effect on the Gaussian-beam parameters of propagation
through a dielectric interface.
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g2 =
where the subscript on g values refers to the medium in
which the wave is traveling.

By using the reduced g value we can carry out all beam
transformation calculations using solely the local index of
refraction n and \g. The radius of curvature will scale by
a factor of 1/n, but the beam radius remains unchanged
in the new medium. We can alter two of the matrices de-
scribed in [11] to describe propagation in a dielectric me-
dium. First, the propagation matrix must be altered to ac-
count for the refractive index and is now given as
{1,Ln{/n4,0,1} where L is the distance traveled, n is the
index of refraction of the first medium, and n4 is the index
of refraction of the second medium. The curved dielectric
interface of normal incidence is given as {1,0,(nq
-n1)/R,1}. Cascading these components will give a full
ABCD description of the system, including the effects of
the change in refractive index. The scattering matrix is

then given by

rilS11 Siaty

, (15)
t)So1  Soaryj

where r;; and ¢;; are the reflection and transmission coef-

ficients and are calculated via the Fresnel formulas for
normal incidence as given by [6]

n;—n; 2ni
i

r (16)

U_ni+nj’ _ni+nj’
where the reflectivity R=|r;|> and the transmittivity T
=[t;|? and i, j represent the media i and j of refractive in-
dex n; and n; (e.g., r12 represents the reflection from the
interface between mediums 1 and 2 while ¢55 represents
the transmission at the interface between mediums 2 and
3) with the usual relationship of R+7'=1. In addition,
there will be propagation through the medium that con-
stitutes the dielectric medium that may be handled by the
propagation matrix of Subsection 2.A. The finite size of
optical components can be determined by the limit of the
overlap integral between the field incident and the output
field. All radiation within the aperture [(x2+y?) <a] is in-
cluded, and all radiation outside the aperture limits [(x2
+y2)>a] can be considered lost. The finite size of mirrors
can be handled in a similar manner, where all power in-
cident on the surface is reflected and all power outside the
mirror rim is truncated.

C. Modeling Horn Antennas and Free-Space
Transformation

A software program called SCATTER [3] has been developed
that allows the prediction of the full EM reflection/
transmission properties of homogeneous and inhomoge-
neous horn antennas with cylindrical geometry as are fre-
quently used in GHz/THz systems. This describes the
radiated fields in terms of TE and TM modes. In order to
extend the waveguide-mode description of the antenna to
the free-space mode equivalent, a transformation matrix
is used from [1,4] that allows the interconnectivity of the
two mode sets within a scatter-matrix framework. This is
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achieved via a free-space transformation matrix that scat-
ters power from the TE/TM mode set to a Hermite—
Gaussian mode set [1]. Utilizing the output of SCATTER de-
scribing transmission/reflection from a particular horn
geometry, the transformation matrix and the matrices of
Subsections 2.A and 2.B result in the analytical tools nec-
essary to represent many typical submillimeter and far
inrared components.

3. DUAL THIN-LAYER REFLECTIONS

If we consider the propagation of an EM wave through a
homogeneous thin film as shown in Fig. 5, we find from
[6] that the total reflection R and transmission 7' of a
dual-layer sheet is given by

r?j + rjzk +2r;7j, cos(28)

R=|r2= =2

1+ r?jrfk +2r;7j, cos(26)

2,2
ng cos(6s) titin

17

" ngcos(6) 1+ rfjrfk +2r;7j; cos(2) ’

where B=2mn,,,qh cos[ 6,,.q1/\. i, j, k refer to the medium
in which the radiation is currently propagating, labeled 1,
2, and 3 in Fig. 5. This situation is relevant to lenses and
cryostat windows in quasi-optical systems where ni=ns
=1 and ny will depend on the material used.

If we replace B with B+, there is no alteration in R or
T. Furthermore, if we replace i with h+Ah, where

Ao

Ah (18)

214 cos Oy

the reflectivity and transmittivity remain unchanged
when two films differ in thickness by an integral multiple
of No/2n9cos f. It can be shown that when noh
=mM\y/4 cos 0y, the reflection is at a minimum when m is
odd and a maximum when m is even, depending on the
relative values of ny, ny, and ns:

If (-1)™(ny-ngy)(ng—ng) >0, we find a maximum.

(19a)

If (-1)™(ny-ng)(ng—ng) <0, we find a minimum.

(19b)
&
73 |/ 3

i3 6 2 h

i é‘ i

Fig. 5. Propagation of an EM wave through a homogenous film.
The arrows represent light rays propagating through the respec-
tive media.
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The above conditions can be applied to many classical
dielectric configurations. Two specific examples were cho-
sen to highlight the ability of Gaussian-beam mode scat-
tering theory to replicate the results of Eq. (19).

A. Reflectivity as a Function of Path Length
First, a configuration was chosen, where

e a dielectric with a refractive index ny=3 was selected
with n1=n3=1 (corresponds to sapphire layer of material
in air);

e the wavelength was set to A=500 um with an input
Gaussian beam profile of waist W=1 mm located at the
first sheet and at normal incidence to the sheet.

Sapphire is a material often used in submillimeter sys-
tems. Recalling Eq. (19), since ny>ns3, we find a maxi-
mum located at odd integer multiples of A/4. The
scattering-matrix model was constructed using the matri-
ces described in Subsections 2.A-2.C using the following
steps:

1. Propagation of the beam in free space to the dielec-
tric sheet interface. This is a fundamental Gaussian in-
put.

2. Accounting for the dielectric sheet reflectivity (i.e.,
the curvature of the surface, although in this example
R jie1ec=, and a truncation of diameter 6 W due to the fi-
nite size of the sheet).

3. Propagation within the medium and potential reflec-
tions from the back face of the dielectric.

Figure 6 shows the classical theory and the scattering-
matrix equivalent, which exhibit excellent agreement,
validating the accuracy of the scattering-matrix method.

The second configuration was as follows:

A dielectric with a refractive index ny=1.1 (corresponds
to Styrofoam) and ng=1.5 (corresponds to HDPE) was
then selected.

The wavelength was set to A=500 um with an input
waist W=1mm at normal incidence to the sheet and
again located at the sheet surface.

High-density polyethylene (HDPE) and Styrofoam are
again typical submillimeter materials. Again, recalling
from Eq. (19), since ny<ns we find a maximum located at
even integer multiples of N\/4. Figure 7 displays the clas-
sical theory and the scattering-matrix equivalent, which

0.85
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Fig. 7. Reflectivity of a dielectric film of refractive index n as a

function of optical thickness for the second configuration (see
text).

again shows excellent agreement while recreating the
switch between odd and even integer multiples in Eq.
(19), further validating the accuracy of the modal descrip-
tion.

B. Reflectivity as a Function of Refractive Index

For lenses in general, ny=n3 and the medium has a re-
fractive index of ny, which alters the reflectivity of the
sheet. For a Fabry—Perot interferometer (see Section 4)
the condition nq=ngs is often found, although n3 can also
vary depending on which substance is present. The sheet
has a fixed thickness of \/4 and the same initial param-
eters as for the configurations described above except that
now the refractive index, rather than thickness, is varied.
The reflectivity calculated via Eqgs. (16) and (17) is illus-
trated in Fig. 8 along with the scattering-matrix equiva-
lent, which shows excellent agreement with the classical
theory (the top trace corresponds to ny=1, ng=1, the sec-
ond trace to n1=1, n3=1.45, etc.).

The reflectivity of the sheet is expected to be zero when
ng=y\nins, and Fig. 6 demonstrates this particular char-
acteristic where the reflectivity goes to zero for a particu-
lar value of ny depending on the refractive index of n; and
ns (e.g., for ny=ng=1, then ny=1.22). Thus by coating sur-
faces with refractive indices of high refractive index, we
can obtain very high reflection coefficients, or alterna-
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Fig. 6. Reflectivity of a dielectric film of refractive index n as a
function of optical thickness for the first configuration (see text).
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tively we can make antireflection coatings by choosing a
quarter-wavelength thickness and by choosing a refrac-
tive index ng that is lower than that of the refractive in-
dex of the last medium rnj (the lens) and where n;=1 (air).
The reflectivity, and hence the transmission of a dielec-
tric sheet, is highly dependent not only on the refractive
index but also on the thickness of the dielectric sheet.
This relationship is further complicated by the relative
refractive indices of the medium surrounding the lens.

4. FABRY-PEROT INTERFEROMETER

Fabry—Perot interferometers (FPIs) find multiple uses in
submillimeter instrumentation, particularly as diplexers
or frequency-selective filters [11]. They consist of two
semireflecting surfaces separated by a distance d, as illus-
trated in Fig. 9. The FPI passes and partially reflects
multiple beams, and summations of these beams interfere
constructively or destructively for various path lengths,
thus determining the overall transmission characteristics
of the device.

Due to their potential high resolution, frequency-
selective FPIs are often used as filters, which have the ad-
vantage of variable-frequency bandpass and whose reso-
nance characteristics can be altered by varying the
refractive index of the FPI. Multiple FPIs may be used to
realize a broader spectral range and increased resolution
and to achieve a ripple-free transmission profile. They are
also used in diplexer arrangements, as they may also be
used for superimposing two signals in a heterodyne in-
strument, but this requires two separate FPIs to avoid
losing one polarization [11]. A FPI can also be used as a
polarization rotator by the use of two quarter-wave
plates, which transform a linear polarization to a circular
polarization of a certain handedness.

The finesse of the FPI, which determines the spectral
resolution of the device or, alternatively, the ratio of fringe
spacing to the FWHM, is given by [11]

lr?|
F=——. 20
e (20)
To validate the scattering-matrix theory, an alternative
method for calculating the behavior of the FPI presented
in [1] is utilized. Briefly, this theory is based on the analy-
sis of multilayer films ignoring absorptive, scattering,
misalignment and diffraction losses and with a normal

Irgut Beara

Fig. 9. Fabry—Perot interferometer with an incident Gaussian
beam. The effect of the multiple reflections is to confine a longer
free-space propagation to a smaller distance.
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angle of incidence. In addition, the thickness of the sheets
is considered to be zero with just the reflectivity and the
distance between sheets as variables. If we consider Fig.
10, where we have N partially transmitting sheets going
from i=1 to i=N, we find that the amplitude of the elec-
tric field at the left side of mirror 1 and propagating to the
right is E] and that the reflected component of the field on
the same side and propagating to the left is E;. We also
find that the reflection and transmission coefficients are r;
and t;, respectively, and the distance from sheet i to sheet
i+11is L;. The phase length from sheet i to i +1 is given by
B;=2mL;/\. The transmission coefficient ¢ for a stack of N
mirrors is given by

t=— === —= (2D
* "B, AEL+BEy A+ryB

where t;9 n represents the transmission coefficient of
sheet 1,2....N, and A and B are related to the phase
length from sheet to sheet.

A. Two-Mirror Fabry-Perot Interferometer
For the two-mirror FPI we obtain the result

5t

T= ‘t‘2 = (22)

1+72r2 + 2rry cos(28y)’

where T is the total transmittivity of the sheet.

In the scattering-matrix approach we treat the FPI as
two dielectric slabs of refractive index n, of finite thick-
ness, and with a layer of air sandwiched between them.
Therefore the model will be more representative since the
FPI consists of two dielectric sheets of finite thickness as
shown in Fig. 9, whereas the multilayer approach essen-
tially ignores this and treats them as infinitely thin
sheets, as shown in Fig. 8. Thus we will have seven sub-
sections:

Sheet Interface — Medium — Sheet Interface — Air
— Sheet Interface — Medium
— Sheet Interface.

The initial matrix in the cascade is calculated via Eq.
(10) with the reflection and transmission coefficients cal-
culated by Eq. (16). Propagation through the medium of

7 i+{
E+!' —_— E+z'+l—"
F, < Foy 4——
¢ >

I'z'

Fig. 10. Amplitudes at partially transmitting sheets i and i+1
for a succession of N sheets.
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index n can be handled by the propagation matrix of Sub-
section 2.A using a diagonal matrix, accounting for the in-
dex of refraction of the medium. The ABCD matrix
method is used to track the evolution of the GBM param-
eters W, R, and ¢. The transmitted power corresponds to
the Sy; matrix and the reflected power to the S;; matrix
(see Fig. 1).

Figure 11(a) shows the frequency response of the FPI
as the distance between the sheets is increased for a fun-
damental Gaussian waist input located at the surface of
the first sheet and with zero distance between the front
and back face of either sheet. The dielectric sheet thick-
ness is N\/4, and the input beam has a beam width W
=5mm and a wavelength of A=3 mm. All the dielectric
sheets are 4W or greater in diameter.

The refractive index of the second medium was set to
5.62, yielding R=0.88 and T'=0.12. This is the index of re-
fraction of thallium bromide-iodide (KRS-5) at 100 GHz,
yielding a finesse of 13.4. Figure 11(b) illustrates a second
example for values of R=0.1 and 7'=0.9, with the refrac-
tive index of the second medium equal to 1.39, which is
the index of refraction of Teflon, yielding a finesse of
0.032. Both KRS-5 and particularly Teflon are dielectric
substances that are frequently used in submillimeter op-
tical systems as filters and lenses and cryostat windows.
The FPI exhibits the classical /2 dependence for trans-
mission as predicted by Eq. (19), with the reflection char-
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acteristic as the reciprocal of 7' with a A\/4 dependence. It
also exhibits the diffractive losses due to the long-
wavelength nature of the radiation, which can be seen as
a decrease in peak intensity as the separation increases.
Also shown for comparison in Fig. 11 is the evaluation of
Eq. (22). Excellent agreement is found between the two
approaches except that the multilayer approach neglects
diffractive losses. This is one of the major benefits of
adopting the GBM approach, which is parameterized by
an evolving beam width, radius of curvature, and phase
term. The plane-wave approach in [5], by contrast, simply
considers the phase evolution from component to compo-
nent, which is appropriate in the geometrical limit (A
—0) but gives rise to discrepancies at longer wave-
lengths. However, Fig. 11(c) illustrates that as the wave-
length is reduced to A=30 um in the scattering-matrix
technique, the diffractive losses become small in compari-
son with Fig. 11(d), which illustrates the diffractive losses
that occur as the range is extended over several wave-
lengths for A=3 mm. This is the behavior that one would
expect for a quasi-collimated beam at 30 um. The reflec-
tivity R=0.9 for Figs. 11(c) and 11(d).

B. Three-Mirror Fabry-Perot Interferometer

In general, while FPIs are highly useful as narrow pass-
band filters, one would like to be able to alter the free
spectral range and obtain higher resolution. In this re-
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gard there has been an evolution toward multimirror
FPIs that have two or more coupled cavities with multiple
degrees of freedom through the possibility of altering both
the reflectivity and the separations of the various compo-
nents that constitute the FPI. In particular, we look at the
three-mirror FPI in two particular configurations based
on those found in [5].

In the case of a three-mirror FPI, we find from Eq. (21)
that

2,2,2
tlt2t3

D

T=

) (23)

where the denominator Dj is given by

D3 =1+ (rr9)? + (rors)® + (r17r5)% + 2r7r9(1 + r2)cos(2¢h;)
+ 2rors(1 + r%)cos(2¢2) + 2rqr3 cos(2¢; + 2¢s)
+ 2r1r§r3 cos(2¢1 — 2¢py), (24)

where the symbols have the usual significance. If one of
rq, e, or r3 equals 0, then the two-mirror FPI is produced.
Figure 12 illustrates the three-mirror output compared
with the equivalent scattering-matrix prediction. As can
be seen, there is good agreement between the two cases,
indicating that the scattering-matrix technique is reliable
when predicting the transmission profile of even complex
multicomponent devices. Again the power transmission is
calculated by the Sy; matrix and the reflected power by
the S;; matrix (see Fig. 1). The frequency of each simula-
tion below is 1 THz to limit the effects of diffraction for
ease of comparison to the theory from [5]. The input beam
waist width is W=1mm and is located at the surface of
the first sheet. All sheets are \/4 and sized to 4W in di-
ameter.

In the case that r;=r3 and ¢;=¢y, we find that a flat-
top, ripple-free transmission with a near-square band-
pass, high transmission, and good sideband suppression
can be obtained. These are desirable qualities for optical
filters and cannot be obtained with a two-mirror FPI.
From [5] we find for r;=r3 that
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Fig. 12. Transmission profile for a multimirror FPI where all
mirrors have the same reflectivity (R=0.5).
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(1- r%)2(1 - r%)

T Q-2 1= D) + [+ 1D + 2ra P

(25)

where x=cos(28). When a high value of ry in comparison
with r{ and rs is chosen, the two cavities are weakly
coupled and the double peaks move together, forming a
flat-top profile. When a low value is chosen, the two cavi-
ties are strongly coupled and the free spectral range will
be altered as the fringes separate. This effect is demon-
strated in Figs. 13(a) and 13(b), where a choice of R=0.1
for the central mirrors and R=0.5 for the first and last
mirrors separates the peaks and yields four fringes per
wavelength, and a choice of R=0.88 for the middle mirror
pushes the fringes closer and begins to form a flat-top pro-
file. Also shown are the predictions of the scatter-matrix
method, which again exhibit excellent agreement
throughout the various examples.

A careful choice of ry, 9, and r5 can yield a near-square
bandpass profile. We find from [5] that r1=r3=0.329 and
r9=0.739 are appropriate values for these mirrors. Figure
14 illustrates this profile in comparison with classical
theory. Again excellent agreement is found between the
two cases with the scatter-matrix technique. The power
transmission is effectively the Sg; matrix, and the re-
flected power is given in the S;; matrix (see Fig. 1).
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C. Fabry-Perot Illumination by Corrugated Horn

In long-wavelength systems a FPI will be used in conjunc-
tion with a quasi-optical feed antenna. As a result, the il-
lumination of the FPI will not be an ideal fundamental
Gaussian profile but an actual horn feed beam, which will
produce different transmission/reflection characteristics.
Here we present an analysis that includes a corrugated
horn at 94 GHz; the horn is characterized by the following
parameters: W,,.,=5.11mm, R,,,=64.8 mm, aperture
radius=2.5\, and a flare angle of 5.7°. A full modal de-
scription of this antenna was included in the scattering-
matrix framework and subsequently cascaded and trans-
formed to free-space modes. We illustrate a schematic of
the experimental setup in Fig. 15.

Theoretical results are compared with experimental
measurements, where the horn illuminates two sheets of
HDPE. The transmission characteristics of this optical
configuration are displayed in Fig. 16. The dielectric
sheets that were modeled had a refractive index of 1.52,
which gives a surface reflectivity of 15%, and were
21.5 mm thick (6.74\) and 20W in diameter. Initially the
sheets were in contact with each other as well as with
both the source and the detector horn. One horn and di-
electric sheet were fixed in place, while the second horn
and dielectric sheet were displaced to a distance of 2]\.

The scatter-matrix technique exhibits excellent agree-
ment with the measured transmission response of the
FPI, including the level and size of the ripple. The power
coupling has dropped to an average of 6% as a result of
two factors:
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Fig. 15. Experimental setup of two_corrugated horns coupled

via a FPL
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1. The 15% power loss due to reflected power at each
dielectric sheet.

2. The 64% power loss due to the initial 43 mm separa-
tion of the two corrugated horns.

In Subsections 4.A and 4.B the fundamental Gaussian
suffered no losses other than reflective and diffractive
losses, as it was not coupling to a detector on the output
side of the FPI.

5. CONCLUSIONS

In this paper a scattering-matrix formulation based on
GBM analysis has been demonstrated to be an accurate
predictor of multiple reflections from thin-layer films, in-
cluding the effects of path length and refractive index
variance. This technique can be applied to a wide range of
wavelengths, including those considered to be geometri-
cal, in addition to longer wavelengths where diffraction
tends to dominate propagation. It has proven to be com-
putationally efficient and can be extended to include the
volume of the horn antenna that illuminates the system.
The technique incorporates an equivalent waveguide
modal description alongside the traditional free-space
GBMs in one scattering-matrix formulization. Further-
more, the technique exhibits the ability to predict the
transmission characteristics of complex multi-element de-
vices such as the Fabry—Perot interferometer, an advan-
tage over another matrix technique from [5], which can-
not include diffraction losses or account for the finite
thickness of the dielectric sheets. The real power of the
GBM technique stems from the fact that it allows long-
wavelength behavior to be included while accounting for
the structure of the antenna illuminating the systems. A
GBM technique for modeling aberrations in off-axis mir-
ror systems that is typically used in a THz system can be
structured as a scattering matrix [12] and is compatible
with the GBM scattering-matrix technique presented in
this paper. Although clearly this paper has not considered
the distortions introduced into the beam by nonideal op-
tics, currently these GBM techniques are being combined,
which will potentially allow a full analysis of standing-
wave and aberration characteristics of optical systems
from front-end optics to back-end detectors.
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Although not considered here, the above theory is
equally valid for nonnormal-incidence Gaussian beam
upon the addition of an appropriate phase term. The de-
vice will suffer from lateral walk-off, which will result in
less efficient power transfer by the Fabry—Perot interfer-
ometer. GBMA is a scalar solution and so neglects polar-
ization effects, whereas a well-designed system should in-
troduce minimal cross-polar effects, which can be
estimated [11]. Finally [13,14] are provided to illustrate
the importance of GBM in Fabry—Perot laser cavities;
these papers discuss the effect of the FPI on the spatial
structure of the transmitted beam. Although this topic is
not included in this paper, one could reconstruct the beam
after propagation through the FPI using the appropriate
GBM parameters to evaluate the final beam quality upon
transmission.
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