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Abstract— This research includes theoretical analysis and 

experimental testing of terahertz systems operating in the w-
band range. In modelling these long wavelength systems we use 
Gaussian Beam mode analysis, a novel technique which can be 
efficiently used to predict optical behaviour of systems that 
borrow components from both traditionally established optical 
and radio receiver techniques. This analytical technique neatly 
includes diffraction, which dominates propagation in this 
wavelength range. We are currently investigating the most 
numerically efficient and stable ways of utilising these modes in 
optical analysis and present our findings. In parallel, in an 
experimental campaign, we are characterising standing waves or 
multiple reflections which occur within terahertz systems. We 
present the experimental arrangement and outline potential 
methods to reduce the influence of multiple reflections in 
terahertz systems. 

 
Index Terms—Gaussian Beam Mode Analysis, quasioptical 

systems, standing waves, sub-millimetre radiation 

I. INTRODUCTION 
ETHODS for modelling the behaviour of Quasioptical 
systems based on the principles of Gaussian Beam 

Mode Analysis[1] are now  widely documented and used as 
standard methods for modelling systems involving terahertz 
frequency radiation. In the first part of this paper we shall 
study two analytical techniques used in Gaussian Beam Mode 
analysis and their stability when subjected to increasing 
computational intensity. The two different techniques 
investigated are the use of Hermite-Gaussian relations and 
also singular value decomposition.  

The second part of this paper concerns an experimental 
campaign investigating the effects of standing waves on 
systems operating at sub-millimetre wavelengths. Gaussian 
Beam mode analysis has been utilized in modelling the power 
coupled between two horns separated by a known distance 
[2]. When this separation distance is changed the power 
coupled between the two horns varies periodically as expected 
but also illustrates more anharmonic behaviour associated 
with high Q cavities. We investigate and validate models to 
simulate this effect and also investigate techniques to reduce 
the magnitude of standing waves using apertures and 
blockages. A first order model  of  the  multiple  reflections is 
also analyzed in order to  
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establish reflection coefficients from antennas and optical 
components commonly utilized in quasioptical systems. This 
standing wave behaviour is the subject of the second study 
briefly outlined in this paper. 

II. NUMERICAL EFFICIENCY OF METHODS OF GAUSSIAN 
BEAM MODE ANALYSIS 

A. Theory and Introduction 
Gaussian Beam mode analysis is a powerful analytical 

technique in modelling the behaviour of quasioptical systems, 
practically it is simply the breaking down of a complex beam 
profile into more manageable parts which may be propagated 
accurately through systems of lenses and mirrors more easily 
than the whole beam profile. Once the individual modes have 
undergone any transformation that represents the system 
through which the beam is travelling, they are finally re-
integrated into a second beam profile using the following 
equation: 

∑
m

mmA ψ , 

where Am is the mode coefficient and ψm is a complex function 
describing the mode.   
 Two different methods were used to reconstruct the chosen 
beam profiles. First the use of Hermite-Gaussian [1] relations, 
from this point on referred to as HG relations, was tested. 
These HG relations use a set of recursion relations to construct 
the mode coefficients before and after propagation through a 
system.  
 The second method used was based on singular value 
decomposition, from this point on referred to as SVD method, 
a matrix method that allows one to find the pseudo-inverse of 
non-square matrices. This method allows us to treat a set of 
mode coefficients and a set of mode functions as two matrices 
allowing us to quickly find a set of post-propagation mode 
coefficients without having to resort to more computationally 
intensive recursion methods. 
 

B. HG Relations Method 
Using the method described in [1] a set of mode 

coefficients Am were created for the beam profile; the profile 
was then reconstructed close to the aperture plane using 
increasing numbers of modes in the reconstruction. With 
increasing numbers of modes the reconstruction more closely 

M 



A-dmZp-wO64 2

matched the original beam profile, however once around 180 
modes and 90 modes, for a top-hat field reconstruction and 
Gaussian field respectively, was reached the method became 
unstable and broke down cf. figure 1.  

 
Fig. 1 a) Reconstruction of a Top Hat Field using 180 modes. b) 
Reconstruction of a Gaussian Field at 90 modes. Both plots showing the 
breakdown of the HG relation method. 
 

C. SVD Method 
The SVD method proved to be much more stable. This 

second technique uses two matrices; Em, the matrix of 
electric fields for each mode m, and the pseudo inverse of 
ψnm, the matrix of modes, where n is the range over which 
you wish to view the profile of the beam.  

Again reconstructions of the beam were carried out for 
increasing numbers of modes until the point at which the 
method became unstable for the Gaussian profile (270 
modes), and also the point at which the reconstruction of the 
top-hat beam took an unfeasibly long time to be calculated, 
(330 modes) in approximately 50 minutes, cf. figure 2. 

 
Fig. 2 a) Reconstruction of a Top Hat Field at 330 modes, 50 minutes 
computational time b) Reconstruction of a Gaussian Field at 270 modes, 
showing instability at high number of modes. 

 
While this method is computationally intensive, with 

computation times increasing greatly over that of HG methods 
the overall stability of the method is apparent in methods 
ability to handle higher numbers of modes. 

 

III. MODELLING AND UNDERSTANDING STANDING WAVES 

A. Theory and Introduction 
 Standing waves pose a considerable problem in THz 

systems; especially in areas such as THz astronomy where 
heterodyne receivers are used in THz medical and security 
imaging where multiple reflections reduce and distort the 
image quality. To this end modelling of standing wave 
systems and experimental investigation into the nature of 
standing waves at sub-millimetre wavelengths is essential.  

 

B. Example of Experiment 
The following is an example of one of the experiments 

carried out in the course of this research. The system was set 
up as described in figure 3, with the source and receiving 
horns facing each other. The source horn was moved away 
from the receiving horn using the moveable mount and the 
power being coupled was measured every 0.05mm. A plot of 
the coupled power versus the separation distance was 
normalized and is plotted below in figure 4. 
Fig. 3 Photograph of experimental setup used in investigating standing waves. 

C. Experimental Results 
Preliminary results for the above experimental setup have 

been encouraging to validate a simple approximate model. 
The normalized set of results from the experiment have been 
compared to two different developed models, an analytical 
solution modelling the standing waves in the above system  
and a model developed from HG relation method described 
earlier cf. 4 
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Fig. 4 Comparison of experimental results (blue), model developed using 
Mathematica  (red), and the analytical solution from Goldsmith [3](black) 

 
[1] J. A. Murphy, A. Egan, “Examples of Fresnel diffraction using Gaussian 

modes.”  Eur. J. Phys .14 (1993) 
[2] N. Trappe, J. A. Murphy, “Gaussian Beam Mode Analysis of Standing 

Waves Between Two Coupled Corrugated Horns.” IEEE Trans. Antenna 
and Propagation, Vol.53 No.5 2005 

[3] P. F. Goldsmith, Quasioptical Systems, Gaussian Beam Quasioptical 
Propagation and Applications, IEEE Press/Chapman & Hall, 1998 


