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Abstract: Entomopathogenic nematodes from the two genera Steinernema and Heterorhabditis are
widely used as biological agents against various insect pests and represent a promising alternative to
replace pesticides. Efficacy and biocontrol success can be enhanced through improved understanding
of their biology and ecology. Many endogenous and environmental factors influence the survival of
nematodes following application, as well as their transmission success to the target species. The aim
of this paper is to give an overview of the major topics currently considered to affect transmission
success of these biological control agents, including interactions with insects, plants and other
members of the soil biota including conspecifics.
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1. Introduction

Entomopathogenic nematodes (EPNs) represent a guild of soil-inhabiting nematodes capable
of infecting a wide range of insects. Their free-living infective juveniles (IJs) penetrate insect hosts
through natural openings or through the cuticle [1] and release their symbiotic bacteria into the
hemocoel. The host is usually rapidly killed by the ensuing septicemia, and its cadaver is converted
from insect to nematode biomass, mediated by the action of the bacteria in digesting host tissues into a
nutritious soup for the nematodes. The bacteria also protect the cadaver resource against competitors,
by producing bacteriocins, antimicrobials and other antibiotics [2,3]. IJs develop to adults and give rise
to several successive generations until the resources become scarce. New IJs are produced and emerge
from the cadaver, dispersing and seeking fresh hosts to infect.

The two families Heterorhabditidae and Steinernematidae are widely studied, for two reasons:
firstly, they both show great potential as inundative biological agents against numerous insect pests, in
addition to or in replacement of chemical pesticides, and secondly, due to their short lifespan and ease of
lab culture, they are increasingly used as model organisms in fundamental research into symbiosis and
parasitism, inter alia. So far, about 90 species of Steinernematidae and 20 species of Heterorhabditidae
have been described. However, only a handful of species are commercially produced for use in
biological control [4], and these species (particularly Steinernema carpocapsae, Steinernema feltiae and
Heterorhabditis bacteriophora) are also the ones that are most intensively researched [4–8]. Significant
developments are being made towards increasing efficacy through strain selection and improved
methods of production [9,10], formulation [11–15] and application [16–19]. Research on the biology and
ecology of EPNs, such as mechanisms of infection and factors influencing their survival and behavior,
underpins these developments and also helps make better predictions of their field performance.

EPN transmission strategies have been shaped by natural selection to optimize fitness of the
nematodes themselves, and are of intrinsic interest to parasitologists and evolutionary ecologists. In
this paper, we review factors currently considered to impact EPN transmission success, particularly
those that impact on biocontrol, with emphasis on recent developments and literature.
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2. Trait Diversity

Apart from some noticeable exceptions, such as Steinernema scapterisci which presents a narrow
host range [20], most EPN species are capable of infecting a wide range of different insect species—at
least when tested in the laboratory. However, the susceptibility of insect pests varies depending
on EPN species. Although EPNs are already widely used in inundative biological pest control
programs, a substantial part of current research effort concerns tests against additional insect pests,
including groups as diverse as Dipteran, Lepidopteran, Isopteran, Hemipteran, Hymenopteran or
Coleopteran species. Table 1 presents examples of recent studies (2014–present). Although some
EPN species have been shown to be efficient against a large number of different pest species (e.g.,
H. bacteriophora or S. carpocapsae, see Table 1), several different species of nematodes are usually
compared in order to identify the best species for the proposed purpose (e.g., [21–25]). Native species
are often considered [23,25,26], as they are expected to be adapted to local conditions, ideally including
the pest itself. Use of native species is also preferred for the purpose of limiting environmental
risks. In addition, nematodes belonging to the same species but originating from different isolates
can also drastically vary in their efficacy [27]. For instance, the mortality of Bactrocera dorsalis fruit
flies induced by Heterorhabditis taysearae ranged from 51.2 to 96.1% depending on the isolate, despite
all isolates originating from Benin [28]. Considering such important variation, finding the most
efficient species/isolate is thus particularly important, and is quite a difficult task considering the large
number of EPN species already described. Moreover, new species are regularly discovered. Within
the five last years, at least two Heterorhabditidae and eight Steinernematidae have been described
(Table 2), while already-known species were detected in new geographical locations [29,30]. More
rarely, new species of bacteria are also described, such as Photorhabdus heterorhabditis, a symbiont of
Heterorhabditis zealandica [31]. The laboratory screening step is of most use in rejecting species and
strains with low virulence, but because many factors other than virulence are crucial to field success, it
is advisable to bring more than one virulent strain to field testing. While screening different species
and isolates is an important and practical step in a biocontrol program, the underlying reasons for
species and strain specific differences in efficacy are rarely elucidated (Figure 1). These can include
traits related to nematode behavior and virulence [32], while the bacterial symbiont is an important
and often overlooked determinant of success of the nematode-bacterial complex. In the past, it
was considered that each nematode species was associated with a particular symbiont species or
subspecies [33], but it is becoming clear that certain species, particularly of Heterorhabditis, can associate
with more than one symbiont (e.g., [34,35]). In nature, switching between symbionts with different
properties can allow a nematode to effectively extend its niche. For instance, in desiccating conditions,
Heterorhabditis downesi IJs had a higher reproductive success when they were associated with the
bacteria Photorhabdus temperata subsp. cinerea compared to those associated with P. temperata subsp.
temperata [35]. Reassociating nematodes with compatible but non-native symbionts is one possible
route to strain improvement. However, any gain in virulence must be offset against a potential loss in
other traits of the symbiosis, such as reproductive capacity [36]. Steinernema feltiae recombined with
symbiont Xenorhabdus bovienni from different sources performed significantly better with the native
symbiont and closely related strains than with those from more divergent sources [37].

Promising results from laboratory experiments on the efficacy of EPNs against insect pests
frequently do not translate into success in field and greenhouse, as shown for example in tests of EPNs
against the African black beetle Heteronychus arator [38] and the carob moth Ectomyelois ceratoniae [39].
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Figure 1. Factors influencing EPNs survival and efficacy.

This is not surprising, given the complexity of the soil environment with many interacting biotic
and abiotic factors impacting nematode survival and host finding (Figure 1). Entomopathogenic
nematodes used as biocontrol agents are usually applied in high numbers [40], but only a fraction of
these succeed in finding a host. A dramatic decline in IJ numbers has been documented following
the application of nematodes [41], which has been attributed to the detrimental effect of UV light and
desiccation at the soil surface. Studies have shown inter-specific variation in nematodes’ tolerance
to UV [42] and to desiccation [43–47]. Adequate environmental moisture is essential for IJ survival
and movement [48–50]. Although it is often difficult to control this parameter in the field, one solution
resides in the addition of adjuvants [21,26,51–53], in particular in the case of folial application of EPNs
that induce a higher desiccation stress [54,55]. For instance, both the survival rates and infectivity
of Steinernema species against two Lepidopteran pests were increased by the use of a surfactant in
the nematode suspension [56]. Similarly, the negative effect of UV on nematodes can be reduced
by using certain UV protectants [55]. In contrast, other application methods can also be used rather
than nematode suspensions, such as nematode-infected cadavers [16] or pre-infected live insect
hosts [19], both of which gave promising results. A more technically advanced alternative is the
use of nematode-filled capsules. While lacking the natural IJ dispersal factors that may be present
in insect cadavers [57,58], the use of capsules has the advantage of being able to include attractants
and feeding stimulants for the target pest, and this approach has been successfully trialed against
Diabrotica virgifera virgifera in maize [59]. Attracting the pest to the nematodes, rather than the reverse,
reduces the importance of several of the key elements in the nematodes’ natural transmission strategy
(dispersal, host finding, and many of the interactions with soil biota), relying more on virulence for the
target pest and also compatibility with the formulation.

Nematodes moving into the soil will be protected from UV and partly from desiccation,
especially since IJs can adapt their vertical distribution according to the soil moisture and their own
tolerance [60,61]. However, they remain vulnerable to other mortality factors, such as temperature
extremes or predation, as well as starvation, resulting in a more gradual decline in their numbers over
the weeks following the application. As for desiccation tolerance, nematodes have different thermal
limits and optima depending on their species [43,44,62]. Temperature is probably the most important
factor impacting EPN efficacy [23,25,38,48,51,63,64]. Temperature can also be used as a tool to improve
EPN efficacy. For instance, conditioning S. carpocapsae and Heterorhabditis megidis for three weeks at
9 ◦C increased their efficacy against black vine weevils Otiorhynchus sulcatus [65].
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Table 1. Recent studies (2014—present) investigating the effect of entomopathogenic nematodes against
insect pests.

Pest group Pest Species Nematode Species Tested Reference

Coleoptera Anomala graueri
(white grub)

H. bacteriophora, S. carpocapsae,
S. longicaudum Kajuga et al., 2018 [66]

Curculio elephas
(chestnut weevil)

H. bacteriophora, S. glaseri, S.
weiseri Demir et al., 2015 [67]

Holotrichia oblita (white
grub) H. bacteriophora, S. longicaudum Guo et al., 2015 [68]

Hylobius abietis
(large pine weevil) S. carpocapsae, S. downesi Kapranas et al., 2016 [69]

Phyllotreta cruciferae
(crucifer flea beetle)

H. bacteriophora, H. indica, S.
carpocapsae, S. feltiae

Antwi and Reddy 2016
[70]

Polyphylla fullo H. bacteriophora, S. glaseri, S.
weiseri Demir et al., 2015 [67]

Rhynchophorus
ferrugineus (red palm

weevil)

H. bacteriophora, S. carpocapsae,
S. feltiae Manzoor et al., 2017 [24]

Strategus aloeus (oil
palm chiza)

H. bacteriophora, H. indica, S.
colombiense, S. feltiae, S. websteri

Gómez and
Sáenz-Aponte 2015 [71]

Diptera Aedes aegypti (yellow
fever mosquito)

H. baujardi, S. carpocapsae, H.
indica, Cardoso et al., 2015 [72]

Bactrocera dorsalis H. indica, H. tayserae Godjo et al., 2018 [28]

Bactrocera tryoni
(Queensland fruit fly)

H. bacteriophora, S. carpocapsae,
S. feltiae Langford et al., 2014 [49]

Bradysia odoriphaga
(chive maggot)

H. bacteriophora, S. carpocapsae,
S. feltiae, H. indica, S.

longicaudum

Bai et al., 2016; Wu et al.,
2017 [16,73]

Chironomus plumosus H. bacteriophora, S. carpocapsae,
S. feltiae, S. kraussei Edmunds et al., 2017 [74]

Drosophila suzukii
(spotted wing

drosophila)

H. bacteriophora, S. carpocapsae,
S. feltiae, S. kraussei

Cuthbertson and
Audsley 2016; Hübner et

al., 2017; Garriga et al.,
2018 [75–77]

Musca domestica
(housefly)

H. indica, S. abbasi, S.
carpocapsae, S. feltiae, S. glaseri Archana et al., 2017 [78]

Rhagoletis cerasi
(European cherry fruit

fly)

H. bacteriophora, H. marelatus, S.
carpocapsae, S. feltiae

Kepenekci et al., 2015
[23]

Stomoxys calcitrans
(stable fly) H. bacteriophora, H. baujardi Leal et al. 2017 [79]

Hemiptera Eriosoma lanigerum
(wooly apple aphid)

H. bacteriophora, H. megidis, S.
carpocapsae, S. feltiae, S. glaseri,

S. kraussei
Berkvens et al., 2014 [80]

Planococcus ficus (vine
mealybug) S. yirgalemense Le Vieux and Malan 2013

[81]

Trialeurodes
vaporariorum

(greenhouse whitefly)
H. bacteriophora, S. feltiae Rezaei et al., 2015 [21]
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Table 1. Cont.

Pest group Pest Species Nematode Species Tested Reference

Hymenoptera Cephus cinctus (wheat
stem sawfly)

H. bacteriophora, H. indica, S.
carpocapsae, S. feltiae, S. glaseri,

S. kraussei, S. riobrave
Portman et al., 2016 [52]

Isoptera
Coptotermes formosanus

(formosan
subterranean termite)

S. karii Wagutu et al., 2017 [82]

Macrotermes bellicosus
(termite) H. indica, H. sonorensi Zadji et al., 2014 [83]

Trinervitermes
occidentalis (termite) H. indica, H. sonorensi Zadji et al., 2014 [83]

Lepidoptera Cydia pomonella
(codling moth)

H. bacteriophora, S. feltiae, S.
jeffreyense, S. yirgalemense

Odendaal et al., 2016
[25,26,84]

Ectomyelois ceratoniae
(carob moth)

H. bacteriophora, S. carpocapsae,
S. feltiae Memari et al., 2016 [39]

Ephestia kuehniella (mill
moth)

S. carpocapsae, S. feltiae, S.
riobrave

Ramos-Rodríguez et al.,
2006 [85]

Heliothis subflexa H. bacteriophora, S. carpocapsae,
S. feltiae, S. websteri Bolaños et al. 2016 [86]

Paranthrene diaphana
(clearwing moth)

H. bacteriophora, S. carpocapsae,
S. feltiae Azarnia et al., 2018 [22]

Plodia interpunctella
(Indian meal moth)

S. riobrave, S. feltiae, S.
carpocapsae

Ramos-Rodríguez et al.,
2006 [85]

Plutella xylostella
(diamondblack moth) S. carpocapsae Sunanda et al., 2014 [87]

Spodoptera litura
(tobacco cutworm) H. bacteriophora, S. glaseri Safdar et al., 2018 [88]

Synanthedon exitiosa
(peachtree borer) S. carpocapsae Shapiro-Ilan et al., 2016

[17]

Thaumetopoea wilkinsoni
(pine processionary

moth)
S. affine, S. feltiae Karabörklü et al., 2015

[89]

Tuta absoluta (tomato
leaf miner)

H. bacteriophora, S. carpocapsae,
S. feltiae

Van Damme et al., 2016;
Kamali et al., 2018 [51,63]

Zeuzera pyrina (leopard
moth) H. bacteriophora, S. carpocapsae Salari et al., 2015 [90]

Table 2. Recently discovered species of entomopathogenic nematodes.

New Species Place Reference

Heterorhabditis noenieputensis South Africa Malan et al., 2014 [91]
Heterorhabditis pakistanense Pakistan Shahina et al., 2017 [92]

Steinernema balochiense Pakistan Fayyaz et al., 2015 [93]
Steinernema beitlechemi South Africa Çimen et al., 2016 [94]
Steinernema biddulphi South Africa Çimen et al., 2016 [95]

Steinernema innovation South Africa Çimen et al., 2015 [96]
Steinernema poinari Czech Republic Mráček and Nermut’ 2014 [97]

Steinernema pwaniensis Tanzania Půža et al., 2017 [98]
Steinernema tbilisiensis Georgia Gorgadze et al., 2015 [99]

Steinernema tophus South Africa Stock 2014 [100]
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3. Dispersal and Host Finding

The number of IJs exiting a host can range from tens of thousands to hundreds of thousands [101],
while billions of them are applied to control pests [40]. We assume that each individual IJ has been
shaped by natural selection to locate a suitable host in which to complete its life cycle, though strains
may since have been artificially selected for improved biocontrol [102]. Even strains that have been
bred for improved biocontrol performance and produced under conditions that are as uniform as
possible consist of individual IJs, each with its unique history of gene x environment interactions [103].
IJs’ behavior changes as they age. The temporal change that receives most attention is the decline
in “quality”, mostly measured as infectivity, as IJs age [104]. IJs are non-feeding and rely on a finite
quantity of energy reserves that are critical for their survival and infection success. In particular,
lipids and glycogen contents have been linked to infectivity in several nematode species [105–107].
To increase their chances of finding a suitable host, IJs employ a variety of strategies, and two types of
model can be used to help conceptualize this [108]. Hierarchical models, developed for other parasites,
divide the transmission process into a set of steps that may include dispersal, host-habitat location, host
location and host acceptance, with each phase (phases are not necessarily distinct) characterized by
responses to specific stimuli [108,109]. While each of these processes is studied in EPNs, the temporal
phasing of them has received less attention, but we can assume that rapidly after their emergence from
an insect host or their application as biocontrol agents, IJs move away in an initial dispersal phase
characterized by random movements as well as potential responses to environmental signals that
might bring them to their hosts’ habitat [109]. Dispersal of IJs is stimulated by factors associated with
the spent cadaver [57]. Among the factors responsible are ascarosides, a diverse class of signaling
molecules that regulate development and social behaviors in Caenorhabditis elegans and more widely
among nematodes [58]. Ascaroside #9 accumulated in nematode-infected cadavers and in bioassays
caused S. feltiae IJs to become more active and move away from the source location [58]. Once in the
host’s habitat, nematodes rely on different types of signals, mostly chemicals [110] (although vibrations
or temperature gradients might also be used [111–113]), bringing them to the area of the habitat that is
modified by the presence of the host (host’s “active space”) [109], and ultimately to the host itself.

A second conceptual model involves a distinction between EPN species as ambush or cruise
foragers. Heterorhabditis species are characterized as cruisers, moving actively through the soil in
search of their hosts, while the behavior of Steinernema species varies from cruisers to ambushers;
ambushers mostly remain at the surface of the soil and lift their body into the air (nictation) or exhibit
jumping behavior to attach to passing insects [114–116]. The behavior of H. bacteriophora and S.
carpocapsae was recently studied in mesocosms [117]. In accordance with the cruiser-ambush theory, H.
bacteriophora was more efficient at infecting non-mobile hosts (Galleria mellonella larvae maintained in
cages) compared to mobile hosts, while the contrary was observed for S. carpocapsae [117]. Despite their
foraging strategy, ambusher species also need to disperse. In another mesocosm experiment, a majority
of S. carpocapsae were found to ambush near the source cadaver, while a majority of H. bacteriophora
dispersed away from it [118]. However, around 4% of S. carpocapsae IJs exhibited a “sprinter” behavior,
dispersing faster than the fastest H. bacteriophora and reaching 30–61 cm (in comparison, only 2% of
H. bacteriophora IJs reached that far) [118]. The two different strategies are likely based on trade-offs
with other parameters. Indeed, although S. carpocapsae responded promptly to the artificial selection
of the fastest dispersers, the resulting enhanced dispersal was associated with reduced reproduction
and nictation abilities [119]. The distinction between species based on foraging strategy should not be
over-relied on for accurately predicting field success of a species. For example, S. carpocapsae, which is
classified as an ambusher, was able to infect large pine weevils (Hylobius abietis) under the bark of tree
roots as far as 30 cm deep in the soil [120]. In this and similar examples, the nematodes may be using
tree roots as “routeways” to facilitate movement through soil.

Several factors are known to influence IJs dispersal, such as the vegetation [118,121] or the soil
properties, in terms of composition and compaction [122]. Along with the presence of appropriate
hosts, the impact of such factors on EPN survival and dispersal might explain the distribution of
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nematodes in habitats differing in plant communities or soil parameters [123,124]. Some insects
can also serve as phoretic dispersers, such as the beetle Calosoma granulatum, recently shown to be
capable of transporting Heterorhabditis amazonensis over long distances (over 40 cm) [125]. Recently,
attention has been focused on the dispersal of IJs in groups, rather than as individuals [126,127].
Both Heterorhabditis indica (cruiser-type forager) and S. carpocapsae (ambusher-type forager) performed
aggregative movement patterns, including in their dispersal phase [128]. Such group movements
might increase the survival of IJs, through reduced evaporation rates in desiccating conditions, or
through protection against predators (effect of dilution). It could also ensure a better infection success
with the penetration of several IJs in a host, where the probability of finding a suitable mate would
also be increased [128], though if nematodes regularly travel and mate with individuals from the
same natal host, this should increase the risk of inbreeding. It is currently unknown to what extent
group movement is a product of physical forces acting on the nematodes, or involves some form of
chemical signaling.

Eventually, the random dispersal of IJs might bring them into zones in which signals from the
host or its habitat will be used for directing movements. In addition to the universally produced CO2

which is attractive for IJs of all EPN species [129], many specific host-derived odorants that stimulate
host-seeking behavior by IJs have been identified and shown to be differentially attractive to different
EPN species [110]. Recently it was shown that Steinernema diaprepesi and H. indica were attracted not
only to beetle frass, but also to the sex pheromones of their weevil host [130]. Entomopathogenic
nematodes widely use root-feeding insects as hosts. Consequently, stimuli initiating active search
from IJs originate not only from the host itself, but also from roots, as indicators of likely host habitat,
and more particularly damaged roots, indicative of the presence of the host. Although not specific to
the host species, following a CO2 gradient is likely to bring nematodes into the rhizosphere, where
potential hosts might then be detected based on their own chemicals or on chemicals emitted by the
plant. While roots themselves are attractive, roots that are wounded by the feeding of herbivores emit
volatiles or blends that specifically attract EPNs, a form of signaling that benefits both plants and
nematodes [131,132]. This effect has been demonstrated for several species of plant, including recently
for carrot, vine, fig and sugarcane [133–135]. In order to directly examine the foraging behavior of
nematodes, Li et al. used pluronic gel, a transparent polymer allowing 3D observation of nematodes
inside the gel. In accordance with previous results, they found that IJs preferentially aggregated around
the wounded parts of roots [136]. In addition to the release of attractive compounds, roots might
also provide nematodes with physical “routeways”, facilitating their progression into the soil [137].
Moreover, the complexity of the root architecture can interact with the herbivore-induced plant volatiles
to impact the foraging behavior of nematodes. Using artificial model-roots with different degrees of
complexity and connectivity, Demarta et al. found that host-finding by H. megidis was facilitated by
low root complexity. However, the addition of a synthetic root volatile, (E)-β-caryophyllene, changed
this pattern and favored the nematodes foraging on the most complex model-roots [138]. The effect of
(E)-β-caryophyllene on the behavior of H. megidis was also found to depend on the type of soil, while
the diffusion of the compound in the soil depended on its humidity [139]. Aboveground stimulation
can also influence the recruitment of EPNs in the soil. In particular, the stimulation of the salicylic acid
pathway, a plant defense pathway, led to the attraction of S. diaprepesi nematodes in the absence of
their hosts [50]. Filgueiras et al. also found a strong effect of elicitors of plant defense applied on leaves
of corn seedlings on the recruitment of H. amazonensis nematodes and suggested that treating crops
with elicitors might be a good strategy to increase the success of the biological control of EPNs [140].

Recent evidence suggests that the response of nematodes to volatile compounds such as
(E)-β-caryophyllene or pinene could be modified by their experience (previous exposure to the
compound) [141]. Intriguingly, the behavior of H. indica individuals that were not previously
exposed to α-pinene depended on interspecific relationships; although naive H. indica alone were
repelled by α-pinene, they exhibited a preference for this compound when they were associated to
previously-exposed S. diaprepesi, [141].
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4. Infection

Having located a host, IJs may choose to infect or not, depending on its suitability. Since IJs of
different species respond differently to different species of insect [110], some amount of host selection
may already be accomplished during the host-seeking phase. Apart from some specialist species [20],
most EPNs can infect a wide range of different host species, at various developmental stages, with
substantial differences in susceptibility to nematodes both between species and between developmental
stages of the same species. Insect larvae and pupae are often found to be more susceptible to EPN
infection than adults [25,85,142]. Such differences in susceptibility can result from various mechanisms,
such as differences in behavior (in particular higher activity levels and avoidance behaviors in adults),
immune system or physical barriers to nematode penetration. For instance, the low susceptibility of
certain pupae, which was also observed in other studies [49,77], could be due to a lack of natural entry
routes for nematodes, as well as a tougher cuticle [76]. Susceptibility can also vary among different
larval instars, as was observed in armyworms and mosquitoes [72,88]. Interestingly, large pine weevils
(H. abietis) infected by H. downesi or S. carpocapsae as pupae died as adults, suggesting that IJs can infect
pupae, survive through their host metamorphosis and kill the adults [142]. In social insects, variation in
susceptibility was observed among different castes. While Steinernema karii induced a higher mortality
in workers of the termite species Coptotermes formosanus compared to soldiers [82], the opposite effect
was observed for the two other termite species Macrotermes bellicosus and Trinervitermes occidentalis
exposed to H. indica and Heterorhabditis sonorensi [83]. Finally, although EPNs are typically thought of
as infecting and killing live insect hosts, IJs can also act as scavengers. For instance, although their
progeny was lower than that recorded in live hosts, both Steinernema kraussei and H. megidis were able
to reproduce in freeze-killed G. mellonella larvae [143]. The ability to utilize additional resources for
reproduction may facilitate persistence of EPN populations in soil post application.

Differences in the success of nematode infection documented above can be partly due to the
response of the host’s immune system to the nematode-bacteria complex. The immune response
of insects to EPNs and the mechanisms used by nematodes and bacteria to evade or defeat it have
been extensively studied in recent years (see the review by Eleftherianos et al. [144]). Following
the penetration of IJs into the insect host through natural openings and their establishment in the
hemolymph, the IJs then release their symbiotic bacteria. These are either from the Photorhabdus genus
for Heterorhabditis species, or from the Xenorhabdus genus for Steinernema nematodes. The subsequent
release of toxic and immunosuppressive compounds by the bacteria cause death of the host by
septicemia [145,146]. Axenic nematodes, especially Steinernema species, are also capable of causing the
death of their hosts [146,147], in particular through the release of a venom containing a high proportion
of proteases (serine carboxypeptidases, trypsins, eukaryotic aspartyl proteases, zinc carboxypeptidases)
and protease inhibitors [147]. However, the association between nematodes and bacteria is important
in the virulence of the complex [148]. In an experiment where nematodes from different Steinernema
species were isolated from their symbiotic bacteria, combinations of nematodes with “foreign” bacteria
resulted in a reduction of the virulence of the complex against G. mellonella larvae, as well as a reduction
in nematode progeny [149].

Following host penetration, the release of bacteria by nematodes is usually delayed in the host
by 30 min for Heterorhabditis species and several hours for Steinernema nematodes [150]. There is thus
a possibility for the insect to neutralize its parasite before the bacterial challenge. Insects’ reactions
to nematode infection include the melanization and encapsulation of the parasites with hemocytes.
Many immune factors have been shown to vary in the hemolymph of the host following the entry of
nematodes, including both humoral and cellular responses. For instance, many studies documented
modifications through time in the hemocyte counts [151–153] and the enzyme activity of the host such
as proteases and phenoloxidase [152–155]. Nematodes and their symbiotic bacteria can both inhibit
their hosts’ immune system, suppressing the melanization process and depressing the antimicrobial
response [146,153,156]. Since IJs are applied in high numbers, it is likely that at least some hosts get
infected by numerous nematodes. Such multiple infections, although leading to competition between
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nematodes (see below), lower the risk of them being overcome by the host’s immune system. However,
Kenney and Eleftherianos suggested that the success of infection of EPNs used in biocontrol programs
could be improved by developing nematode-bacteria complexes that produce proteins necessary for
evasion of the host’s immune system, or nematodes with a short delay in the ejection of their bacterial
symbionts [157].

5. Interaction with the Biotic and Abiotic Environment

As shown above, environmental parameters such as temperature, humidity, types of vegetation
and soil properties can affect nematode survival and virulence, while infection also depends on complex
interactions between IJs, their symbiotic bacteria and the host (Figure 1). However, other abiotic
parameters and biotic interactions are particularly worthy of interest, especially when considering
nematodes as biocontrol agents.

Nematodes applied inundatively to soil can affect other species, including non-target hosts or
potential competitors such as indigenous nematodes [158]. Studies investigating the environmental
risks linked to the use of EPNs generally re-affirm the low impact of this form of biocontrol on
non-target species [159]. For instance, non-target species were unaffected by the use of H. bacteriophora
applied against corn rootworm larvae in maize [160]. The effect on non-target species will depend on
the biology of these species, and laboratory studies can help identify susceptible species and formulate
recommendations for risk reduction, if considered necessary [161]. Special consideration needs to be
given to ecologically important species, and potential impact on their roles in ecosystems. However,
as for tests against target species, laboratory tests of susceptibility of important non-targets may not
accurately predict impact in the field. Recently, bumble bees (Bombus terrestris) were reported to
suffer 80% mortality when exposed in the laboratory to soil treated with EPNs at recommended field
concentrations [162]. Moreover, IJs were able to proliferate in the bee cadavers, which the authors
suggested may represent a potential threat for other members of their colony [162]. However, factors
such as the preferred habitat for bumble bee nests, the depth and structure of the nests, and behavior of
infected individuals [163] or their hygienic colony mates [164], will likely present significant ecological
barriers to EPN infection of bumble bees. Safety may also be examined in terms of persistence of EPNs
in the treated area. In a field experiment, S. carpocapsae was detected in the soil up to two years after
application, but not after four years, and its presence was positively correlated with that of its large
pine weevil host [165], an optimistic result regarding potential environmental risk.

EPNs used for biocontrol are also likely to interact with other organisms, especially those
belonging to the trophic network of their hosts. Within the few days following infection, host cadavers
release scavenger deterrent factors (SDF), chemical compounds produced by nematodes’ symbiotic
bacteria that deter potential scavengers and thus protect the host cadaver [166]. A wide range of
species, including various arthropods [166,167] and birds [168], are known to be sensitive to such
factors, avoiding infected cadavers or promptly rejecting them after an attempt to consume them.
Recently, laboratory tests on three cyprinid fish species showed they were also sensitive to SDFs,
rejecting G. mellonella larvae killed by Heterorhabditis or Steinernema species, and preferentially feeding
on freeze-killed mosquito (Aedes aegypti) larvae compared to nematode-killed ones [169]. Tests on the
carabid beetle Carabus granulatum, a predator of the lepidopteran host of H. amazonensis, showed that
larvae and adults both avoided feeding on infected larvae when they had a choice [170]. In forced
feeding experiments, the consumption of infected larvae led to a high mortality of the predator [170].
However, not all insects are repelled by nematode-infected hosts. For instance, while crickets and
springtails avoided Steinernema-killed insects, consumption was observed for ants, cockroaches, mites
and earwigs [171]. In addition, springtails Sinella curviseta and Folsomia candida were found to directly
consume IJs [171]. As suggested by the authors, the scavenger and predator effect of soil arthropods
could have a top-down regulatory impact on nematodes.

Nematodes can also be in direct competition with other organisms. In the case of the carabid
C. granulatum cited above [170], the predator is not only a threat for the integrity of the host
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cadaver, and thus for the reproduction success of nematodes; IJs and beetles compete for the same
resources, that is, living prey or hosts. Consequently, the inundative use of EPNs could decrease the
number of insect prey available for predators, with consequences on their populations. Parasitoid
insects also compete for the same resource, as well as being susceptible to infection by nematodes
themselves. Despite negative interactions demonstrated in the laboratory, this is less often documented
in the field [172,173]. For example, in field trials, the use of nematodes against Caribbean fruit
flies Anastrepha suspense did not reduce the density of their emerging parasitoid Diachasmimorpha
longicaudata [174]. The most direct competitors of EPNs might be nematodes themselves, either
indigenous entomopathogenic nematodes or free-living nematodes (FLN). For instance, FLNs from
the genus Oscheius show scavenger behavior and are capable of reproducing in freeze-killed as well as
already infected insect cadavers [175]. Competition with Oscheius species in host cadavers resulted in
a substantial reduction in the number of EPN progeny, with inter-specific differences in their ability to
overcome intraguild competition [175,176]. A more recent study found contradictory results with no
evidence of competition between two Oscheius species and EPNs [143]. Apart from competition for
resources, a direct interspecific killing behavior has also been documented among four Steinernema
species, as well as intra-specific killing among males [177,178]. Because of their negative interaction on
other nematodes, EPNs can be used to control pest species. Many studies already documented the
efficacy of EPNs against pest nematodes (reviewed by Kenney and Eleftherianos [157]). For instance,
several species of EPNs, and particularly their bacteria, proved to be efficient against the root-knot
nematode Meloidogyne incognita, a parasite of tomato plants [179–181]. More complex and unexpected
interactions between EPNs or their bacteria and other organisms are reported, such as the induction
by EPNs of systemic resistance in tomatoes against insect pests and bacterial diseases [182].

The plant host can also affect the susceptibility of insects feeding on it. For instance,
Steinernema riobrave nematodes showed a reduced virulence and reproduction on Helicoverpa zea
larvae reared on tobacco plants compared to those feeding on tomato and eggplants [183]. There is an
increasing use of GMO plants in crops, many of them producing their own insecticidal proteins.
In a recent study, no significant effects on the virulence, reproduction and host preference of
H. bacteriophora were found when diamondback moth (Plutella xylostella) was reared on broccoli leaves
genetically modified to produce CrylAc proteins [184]. Additional levels continue to be added to
the inter-organismal interactions in which EPNs are implicated—most recently, the insect host’s
endosymbionts. For example, the presence of Wolbachia endosymbionts promoted the survival
of Drosophila melanogaster infected with S. carpocapsae through effects on the insect’s immune
response [185].

6. Conclusions and Future Directions

The use of EPNs against pests is particularly timely given the negative impact of the use of
chemical pesticides. Applied research largely focuses on improving their use on a large scale, through
improved nematode culture methods, storage, treatment formulations and application methods.
Spreading billions of nematodes in places where they are not always native represents a potential
environmental risk that deserves attention. In this respect, long-term studies combining laboratory
experiments followed by field tests are particularly relevant. In addition, a better understanding
of the biology and ecology of EPNs is likely to give new directions in their use against pests. It is
now getting easier to access large datasets of information through proteomic and transcriptomic
studies. For instance, such approaches were used to describe nematode infection. The venom
proteome of S. carpocapsae IJs was recently analyzed using mass spectrometry, highlighting the
presence of 472 venom proteins including numerous proteases and protease inhibitors, as well as
toxin-related proteins potentially linked to the suppression of host immune system [147]. In addition,
the host immune response could be better understood with transcriptomic analyses following
nematodes infection [186–188]. Genetic analyses, including sequencing, are particularly useful to
better understand the diversity of nematodes [189,190] and their symbiotic bacteria [191,192], and to
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study their phylogenetic relationships [193]. Such phylogenies can help understand the evolution
of certain traits. For instance, Blackburn et al. reconstituted the phylogenetic relationships of 18
strains of Photorhabdus and also tested their virulence against two hosts. Results showed a general
evolutionary trend towards an increase in virulence in Photorhabdus [194]. Finally, genomic and
proteomic data provide a large number of genes that are potential candidates for the improvement
of EPNs, from the survival of IJs in certain conditions to an increase transmission and killing efficacy.
Although artificial selection solely based on phenotypic traits can lead to improved nematodes [195],
understanding the mechanisms might lead to better efficacy, especially on traits where artificial
selection is complicated [196].
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189. Půža, V.; Chundelová, D.; Nermut’, J.; Žurovcová, M.; Mráček, Z. Intra-individual variability of ITS regions
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