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a b s t r a c t

We consider the existence of diagonal Lyapunov–Krasovskii (L–K) functionals for positive discrete-time
systems subject to time-delay. In particular, we show that the existence of a diagonal functional is neces-
sary and sufficient for delay-independent stability of a positive linear time-delay system. We extend this
result and provide conditions for the existence of diagonal L–K functionals for classes of nonlinear positive
time-delay systems, which are not necessarily order preserving.We also describe sufficient conditions for
the existence of common diagonal L–K functionals for switched positive systems subject to time-delay.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Positive systems, in which the state variables remain nonnega-
tive for all time given nonnegative initial conditions, are of impor-
tance in modeling a wide variety of applications; particularly in
domains such as Communications, Biology, Ecology and Eco-
nomics. There is now a well-developed and understood theory of
positive linear time-invariant (LTI) systems [1,2]. Motivated by the
simple fact that realistic models must incorporate factors such as
nonlinearity, time-delay and time-varying parameters, several au-
thors have recently worked on extending aspects of the theory of
positive LTI systems to more realistic and general system classes
[3–8]. The work of the current paper continues in this vein.

Specifically, we consider classes of discrete time positive sys-
tems and the impact of time-delay on their stability properties.We
first note that a recently published result on the existence of diag-
onal L–K functionals for positive linear systems in continuous time
admits a natural analogue in discrete time. In fact, we explicitly de-
scribe how to construct such functionals in the discrete time case.
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This result, as in [9], shows that a fundamental property of positive
LTI systems, namely diagonal stability, extends to positive linear
time-delay systems in discrete time.

In Section 4, we use the results in Section 3 to derive a closely
related condition for positive systems with sector-bounded non-
linearities to be stable independent of delay. It is worth noting
that this result applies to nonlinear positive systems that are not
necessarily order preserving, in contrast to others in the literature.
It is closely related to various results for systems of Persidskii type
described in [10] and elsewhere. As noted in this reference, these
systems arise in applications such as digital filtering. We then turn
our attention to nonlinear switched positive systems with time-
delay in Section 5. Finally, in Section 6, we present some brief con-
cluding remarks.

2. Notation and background

Throughout the paper Rn and Rn×n denote the vector spaces of
n-tuples of real numbers and of n×nmatrices respectively. For vec-
tors v ∈ Rn, v ≥ 0means vi ≥ 0 for 1 ≤ i ≤ n, v ≫ 0means vi >
0 for 1 ≤ i ≤ n.Weuse the notationAT for the transpose of amatrix
A and P ≻ 0 to denote that the matrix P is positive definite. The

http://dx.doi.org/10.1016/j.sysconle.2013.10.012
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2013.10.012&domain=pdf
mailto:oliver.mason@nuim.ie
http://dx.doi.org/10.1016/j.sysconle.2013.10.012


64 A.Yu. Aleksandrov, O. Mason / Systems & Control Letters 63 (2014) 63–67
identity matrix is denoted by I; the dimension will be clear in con-
text. We say that a matrix A ∈ Rn×n is nonnegative if all of its ele-
ments are nonnegative. ThematrixA is Schur if all of its eigenvalues
have modulus strictly less than 1.

The following known facts about nonnegativematrices are use-
ful for our later results.

Proposition 2.1. Let A ∈ Rn×n be nonnegative. The following are
true.

(i) A is Schur if and only if there exists some v ≫ 0 with Av ≪ v.
(ii) If Av ≪ v and ATw ≪ w then defining

D = diag(wi/vi)

we have

ATDA − D ≺ 0.

3. Diagonal L–K functionals for linear discrete time delayed
systems

Consider the positive linear time-delay system

ẋ(t) = Ax(t)+ Bx(t − τ) (1)

where A is Metzler and B is nonnegative. It is nowwell known that
(1) is asymptotically stable for all values of τ ≥ 0 if and only if A+B
is Hurwitz [11], meaning that all of its eigenvalues lie in the open
left half of the complex plane.

In the recent paper [9], the following fact was established.

Theorem 3.1. The positive linear time-delay system (1) has a L–K
functional of the form

x(t)TPx(t)+

 0

−τ

x(t + s)Qx(t + s)ds

where P and Q are positive definite matrices and P is diagonal, if and
only if the matrix A + B is Hurwitz stable.

In the current section, we derive a discrete time version of Theo-
rem 3.1.

Formally, consider the system

x(k + 1) = Ax(k)+ B1x(k − 1)+ · · · + Blx(k − l), (2)

where A, B1, . . . , Bl are nonnegative matrices in Rn×n. Under these
assumptions (2) defines a positive time-delay system in discrete
time,meaning that if initial conditions x(−l), . . . , x(0) are nonneg-
ative then x(k) ≥ 0 for all k ≥ 0. For notational convenience, we
write x(k) for the augmented state vector x(k) = (x(k), x(k − 1),
. . . , x(k − l))T in R(l+1)n.

In the following result, we present a direct argument to estab-
lish a discrete-time version of Theorem 3.1.

Theorem 3.2. Consider the system (2) and assume that the matrix S
given by

S = A + B1 + · · · + Bl (3)

is Schur. Then there exists a L–K functional for (2) of the form

V (x(k)) = xT (k)Px(k)+ xT (k − 1)Q1x(k − 1)
+ {xT (k − 1)Q2x(k − 1)+ xT (k − 2)Q2x(k − 2)}
+ · · · + {xT (k − 1)Qlx(k − 1)+ xT (k − 2)

×Qlx(k − 2)+ · · · + xT (k − l)Qlx(k − l)} (4)

where P,Q1, . . . ,Ql are positive definite diagonal matrices.
Proof. We write P = diag{p1, . . . , pn},Qs = diag{µs1, . . . , µsn}

for the matrices appearing in (4). We shall show that it is possible
to find positive real numbers pi andµsi, s = 1, . . . , l, i = 1, . . . , n
such that (4) is a L–K functional for the system (2).

Consider the difference,1V = V (x(k+1)) − V (x(k)) of the func-
tional (4) along trajectories of the system (2). We obtain

1V = xT (k)


ATPA − P +

l
r=1

Qr


x(k)

−

l
r=1

xT (k − r)Qrx(k − r)+ 2xT (k)ATP
l

r=1

Brx(k − r)

+


l

r=1

Brx(k − r)

T

P
l

r=1

Brx(k − r).

Expanding this yields

1V =

l
r=1

n
j=1

µrjx2j (k)−

n
j=1

pjx2j (k)

−

l
r=1

n
j=1

µrjx2j (k − r)+

n
i,j=1

xi(k)xj(k)
n

m=1

pmamiamj

+ 2
l

r=1

n
i,j=1

xi(k)xj(k − r)
n

m=1

pmamib
(r)
mj

+

l
r,s=1

n
i,j=1

xi(k − r)xj(k − s)
n

m=1

pmb
(r)
mi b

(s)
mj .

The expression on the right hand side above defines a quadratic
form

W =

l
r=1

n
j=1

µrjx2j −

n
j=1

pjx2j −

l
r=1

n
j=1

µrjx2rj

+

n
i,j=1

xixj
n

m=1

pmamiamj + 2
l

r=1

n
i,j=1

xixrj

×

n
m=1

pmamib
(r)
mj +

l
r,s=1

n
i,j=1

xrixsj
n

m=1

pmb
(r)
mi b

(s)
mj

in the variables xi, 1 ≤ i ≤ n, xri, 1 ≤ i ≤ n, 1 ≤ r ≤ l. Our goal is
to show that there exist positive numbers pi andµsi, s = 1, . . . , l,
i = 1, . . . , n, for which the quadratic formW is negative definite.

As the matrix S is Schur, it follows from Proposition 2.1 that
there exist positive vectors θ = (θ1, . . . , θn)

T and d = (d1, . . . ,
dn)T satisfying the inequalities

(S − I)θ ≪ 0, (S − I)Td ≪ 0. (5)

Write ω = (S − I)θ, ψ = (S − I)Td, and note that the vectors ω
and ψ are entrywise negative.

If we write, pi = di/θi, xi = θizi, xri = θivri, then we can rewrite
W as

W =

l
r=1

n
j=1

µrjθ
2
j z

2
j −

n
j=1

djθjz2j −

l
r=1

n
j=1

µrjθ
2
j v

2
rj

+

n
i,j=1

θiziθjzj
n

m=1

dm
θm

amiamj + 2
l

r=1

n
i,j=1

θiziθjvrj

×

n
m=1

dm
θm

amib
(r)
mj +

l
r,s=1

n
i,j=1

θivriθjvsj

n
m=1

dm
θm

b(r)mi b
(s)
mj .
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Now using the inequalities 2zizj ≤ z2i + z2j , 2zivrj ≤ z2i + v2rj,

2vrivsj ≤ v2ri+v
2
sj and grouping terms appropriately,we can see that

W ≤

l
r=1

n
j=1

µrjθ
2
j z

2
j −

n
j=1

djθjz2j −

l
r=1

n
j=1

µrjθ
2
j v

2
rj

+

n
j=1

θjz2j
n

i,m=1

dm
θm
θismiamj +

l
r=1

n
j=1

θjv
2
rj

n
i,m=1

θi
dm
θm

b(r)mj smi.

Here smi are the entries of the matrix S.
It follows readily from (5) that

W ≤

n
j=1

θjz2j


l

r=1

µrjθj − dj +
n

m=1

dmamj



+

l
r=1

n
j=1

θjv
2
rj


n

m=1

dmb
(r)
mj − µrjθj


. (6)

Now for j = 1, . . . , n, r = 1, . . . , l, and any ε > 0, we can
choose µrj > 0 such that

θ2j µrj = ε + θj

n
m=1

dmb
(r)
mj .

Substituting this into (6), we see that

W ≤ −ε

l
r=1

n
j=1

v2rj + εl
n

j=1

z2j +

n
j=1

θjz2j


n

m=1

dmsmj − dj



= −ε

l
r=1

n
j=1

v2rj + εl
n

j=1

z2j +

n
j=1

θjz2j ψj.

It now follows readily that for ε sufficiently small,

W ≤ −β

n
j=1

z2j − ε

l
r=1

n
j=1

v2rj

where β is a positive constant. This completes the proof.

Remarks. The approach we have taken in proving Theorem 3.2 is
an extension of the approaches suggested in [12,13]. It is also possi-
ble to prove this result by suitably adapting themethods of [14] and
writing (2) in the higher-dimensional, companion-matrix form.
This approach has been taken in [15] in which applications to sta-
bilization are also discussed. It is worth noting the arguments pre-
sented in [16] in favor of working in the state space Rn, as opposed
to the higher-dimensional space.

Theorem 3.1 establishes the existence of a L–K functional in
which the matrix Q is positive definite. In Theorem 3.2, we arrive
at the stronger conclusion that each Qi can be taken to be diagonal.
In addition to providing a simpler form for the functional, Theo-
rem 3.2 also describes a direct, constructive approach for obtaining
the functional.

The following corollary is now practically immediate.

Corollary 3.1. Consider the system

x(k + 1) = Ax(k)+ B1x(k − m1)+ · · · + Blx(k − ml), (7)

where A, B1, . . . , Bl are nonnegative matrices, and m1, . . . ,ml are
nonnegative integer delays. The system (7) is asymptotically stable for
any values of m1, . . . ,ml if and only if there exists a diagonal L–K
functional of the form (4) for (7).

Proof. The sufficiency follows directly from Theorem 3.2. For ne-
cessity, note that system (7) is by assumption also stable for the
case wherem1 = · · · = ml = 0.
Remark. As stated, the above result appears to require that a par-
ticular one of the system matrices, namely A, multiplies the un-
delayed current state. Of course, the condition on the matrix S is
invariant under permutations of the matrices A, B1, . . . , Bl and the
result also holds for systems of the form

x(k + 1) = Ax(k − m0)+ B1x(k − m1)+ · · · + Blx(k − ml),

where m0, . . . ,ml are nonnegative integer delays. This follows
from the statement of the corollary as can be seen by taking A as
the zero matrix. Finally, note that the equivalence of the stability
of (7) with the matrix S (3) being Schur stable is known [17].

4. Delay independent stability for nonlinear positive systems

We next present a straightforward extension of Theorem 3.2
to a class of nonlinear positive systems. The class we consider is
closely related to continuous time systems of Persidskii type [10]
and are motivated by applications such as digital filtering.

Formally, consider a diagonal nonlinearity f : Rn
→ Rn, f (x1,

. . . , xn) = (f1(x1), f2(x2), . . . , fn(xn))T where each fi is continuous
and satisfies the following conditions:

xifi(xi) > 0 for xi ≠ 0; (8)

|fi(xi)| ≤ |xi|. (9)

Consider the system

x(k + 1) = Af (x(k))+ B1f (x(k − 1))+ · · · + Blf (x(k − l)) (10)

where A, B1, . . . , Bl are nonnegative matrices. Conditions (8), (9)
ensure that (10) is a positive systemwith an equilibrium at the ori-
gin. However, in our next result, it is not necessary to restrict initial
conditions to the positive orthant.

Theorem 4.1. Let S given by (3) be a Schur matrix. Then there exists
a L–K functional of the form

V (x(k)) = xT (k)Px(k)+ f T (x(k − 1))Q1f (x(k − 1))
+ {f T (x(k − 1))Q2f (x(k − 1))+ f T (x(k − 2))
×Q2f (x(k − 2))} + · · · + {f T (x(k − 1))Qlf

× (x(k − 1))+ · · · + f T (x(k − l))Qlf (x(k − l))} (11)

where P,Q1, . . . ,Ql are positive definite diagonal matrices.

Proof. As in the proof of Theorem 3.2, we write P = diag{p1, . . . ,
pn},Qs = diag{µs1, . . . , µsn} for s = 1, . . . , l, i = 1, . . . , n.

Now consider the difference 1V = V (x(k+1)) − V (x(k)) of the
functional (11) along trajectories of the system (10). By direct cal-
culation, we see that

1V =


Af (x(k))+

l
r=1

Br f (x(k − r))

T

× P


Af (x(k))+

l
r=1

Br f (x(k − r))



− xT (k)Px(k)+ f T (x(k))
l

r=1

Qr f (x(k))

−

l
r=1

f T (x(k − r))Qr f (x(k − r)).

From (8) and (9), it follows that

1V ≤ f T (x(k))


ATPA − P +

l
r=1

Qr


f (x(k))
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−

l
r=1

f T (x(k − r))Qr f (x(k − r))

+ 2f T (x(k))ATP
l

r=1

Br f (x(k − r))

+


l

r=1

Br f (x(k − r))

T

P


l

r=1

Br f (x(k − r))


.

As in the proof of Theorem 3.2, the right hand side above is a
quadratic formW in fi(xi(k)), fi(xi(k− r)) for 1 ≤ i ≤ n, 1 ≤ r ≤ l.
Writing pi =

di
θi
, fi(xi(k)) = θizi, fi(xi(k − r)) = θivri, we can apply

arguments identical to those used in Theorem 3.2 to show that (6)
holds. In our current case the same arguments used in the final part
of this previous theorem, imply that there exist positive numbers pi
and µsi, s = 1, . . . , l, i = 1, . . . , n and some positive β such that

W ≤ −β


f T (x(k))f (x(k))+

l
r=1

f T (x(k − r))f (x(k − r))


holds. This completes the proof.

Remark. Theorem 3.4.4 of [10] provides a diagonal Lyapunov sta-
bility condition for nonlinear systems without delay. In the discus-
sion beneath Theorem 3.4.4 of [10], a result for linear systemswith
delay is described. Theorem 4.1 takes both nonlinearity and delay
into account. While the system class covered in Theorem 4.1 is not
necessarily order-preserving, it should be noted that the restriction
|fi(xi)| ≤ |xi|means that the stability of (10) follows from the stabil-
ity of the linear comparison system obtained by setting fi(xi) = xi,
which is order-preserving. The novelty in Theorem 4.1 is the fact
that a diagonal-type L–K functional exists for the system in this
case.

Finally, note that it is straightforward to derive a version of
Corollary 3.1 for the system class (10).

5. Switched positive systems with time-delay

Our goal in this section is to further extend the analysis of the
previous two sections to switched nonlinear positive systems con-
structed from constituent systems of the form (10). We first con-
sider the single delay case in the interest of notational simplicity
and clarity.

5.1. A single delay

In this subsection, we shall consider switched systems of the
form

x(k + 1) = Aσ(k)f (x(k))+ Bσ(k)f (x(k − l)) (12)

corresponding to sets {A(1), . . . , A(N)}, {B(1), . . . , B(N)} of nonneg-
ative matrices. The nonlinearity f (x) = (f1(x1), . . . , fn(xn))T sat-
isfies the conditions (8), (9). The switching signal σ maps the
nonnegative integers into {1, . . . ,N} and selectswhich constituent
system is active at each time k.

The results of Section 3 imply that if a diagonal Lyapunov func-
tion exists for the undelayed systemobtained from (2) by setting all
delays equal to 0, then this implies that a diagonal L–K functional
also exists for (2) for all nonnegative integer-valued delays. It is
tempting to conjecture that in the switched case, if a common di-
agonal Lyapunov function exists for the switched systemwith zero
delay, then a common diagonal L–K functional exists for the de-
layed system also. Unfortunately this is not the case as is shown by
the following example.
Example 5.1. Consider the system

x(k + 1) = Aσ(k)x(k)+ Bσ(k)x(k − 1), σ (·) ∈ {1, 2},

where:

A1 =


0.06 0.2
0.27 0.21


, B1 =


0.66 0.08
0.13 0.2


;

A2 =


0.07 0.19
0.4 0.11


, B2 =


0.27 0.21
0.29 0.47


.

It can be verified using theMATLAB LMI toolbox that the undelayed
system (with system matrices A1 + B1, A2 + B2) has a common
diagonal Lyapunov function.

On the other hand, the switched delayed system is not stable
and hence certainly does not have a common diagonal Lyapunov
functional; in fact it cannot possess a common Lyapunov functional
of any form. To see this, consider the higher-dimensional compan-
ion form of the system in which the state vectors are (x(k), x(k +

1))T and the system matrices are

Ci =


0 I
Bi Ai


for i = 1, 2. The spectral radius of the matrix C1C2 is 1.0027. As
this is strictly greater than 1, the switched delayed system cannot
be asymptotically stable and hence it cannot have a common Lya-
punov functional.

In the next result, we provide a sufficient condition for the ex-
istence of a common L–K functional of the form (11) for the family
of subsystems:

x(k + 1) = A(s)f (x(k))+ B(s)f (x(k − l)), s = 1, . . . ,N, (13)

where A(s), B(s) are nonnegativematrices, l is a nonnegative integer
delay, and the nonlinearities f (x) = (f1(x1), . . . , fn(xn))T satisfy
the conditions (8), (9).

Theorem 5.1. Let A(s), B(s) be nonnegative matrices for s = 1, . . . ,
N. Assume that there exist vectors d ≫ 0, θ ≫ 0 satisfying the in-
equalities

(A(s) + B(r) − I)Td ≪ 0, s, r = 1, . . . ,N, (14)

(A(s) + B(s) − I)θ ≪ 0, s = 1, . . . ,N. (15)

Then there exists a common L–K functional of the form (11) for (13).

Proof. Proceeding as in the proof of Theorems 3.2 and 4.1, we con-
sider the difference1V = V (x(k+1))−V (x(k)) of the functional (11)
along trajectories of the system (13) for some s in {1, . . . ,N}. Note
that (13) can be viewed as a special case of (10) in which Bi = 0 for
all i ≠ l. As before,writing pi = di/θi, fi(xi(k)) = θizi, fi(xi(k−r)) =

θivri, r = 1, . . . , l, i = 1, . . . , n and using (8), (9), we can show
that

1V ≤

n
j=1

θjz2j


l

r=1

µrjθj − dj +
n

m=1

dma
(s)
mj



+

n
j=1

θjv
2
lj


n

m=1

dmb
(s)
mj − µljθj


−

l−1
r=1

n
j=1

µrjθ
2
j v

2
rj. (16)

DefineΘ = diag(θ1, . . . , θn). The last term in (16) will be negative
for any choice of positive µrj for 1 ≤ r ≤ l − 1, 1 ≤ j ≤ n.

We claim that there exist positive vectorsµ ≫ 0, µ′
≫ µ such

that

(A(s) − I)Td +Θµ′
≪ 0, B(s)

T
d −Θµ ≪ 0,

s = 1, . . . ,N. (17)
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To see this, note that as there are only finitely many inequalities in
(14), there exists some positive vectorw ≫ 0 with

(A(s) − I)Td + (B(r))Td ≪ −w

for s, r in {1, . . . ,N}. Define ν = maxr(B(r))Td as the component-
wise maximum of the vectors (B(r))Td. It is now easy to verify that
µ = Θ−1(ν +

w
2 ), µ

′
= Θ−1(ν +

3w
4 ) (for example) satisfy (17).

If we now setµlj = µj for 1 ≤ j ≤ n andµrj = (µ′

j −µj)/(l−1)
for 1 ≤ r ≤ l − 1, then (11) defines a L–K functional for (13) as
claimed.

Remark. The previous result gives sufficient conditions for the
existence of a commondiagonal L–K functional and there is a gap to
necessity. It should be noted that the conditions are closely related
to those that appear in Theorem 3 of [18]. This reference provides
stability conditions for switched positive time-delay systems in
continuous time of the form

ẋ(t) = Aσ(t)x(t)+ Bσ(t)x(t − τ), σ (·) ∈ {1, . . . , l}.

The two sufficient conditions that appear in [18] imply the exis-
tence of a positive vector α such that (AT

i + BT
j )α ≪ 0 for all i, j,

which is simply the continuous time analogue of our condition (14)
above. In [18] however, it is the class of linear copositive Lyapunov
functionals that is studied, rather than diagonal Lyapunov func-
tionals. Moreover, stronger results for the case where the matrix
multiplying the delayed state is itself subject to delay are also given
in [18].

5.2. Multiple delays

Finally, for this section, consider the family of subsystems

x(k + 1) = A(s)f (x(k))+ B(s)1 f (x(k − 1))+ · · ·

+ B(s)l f (x(k − l)), (18)

where A(s), B(s)1 , . . . , B
(s)
l are nonnegative matrices for 1 ≤ s ≤ N ,

and the nonlinearities f (x) = (f1(x1), . . . , fn(xn))T satisfy the con-
ditions (8), (9).

It is relatively straightforward, although the notation becomes
more opaque, to adapt the argument used in the proof of Theo-
rem 5.1 to obtain the following result for systems with multiple
delays.

Theorem 5.2. Assume there exist positive vectors θ ≫ 0, d ≫ 0
satisfying the inequalities

(A(s) + B(ν1)1 + · · · + B(νl)l − I)Td ≪ 0,
s, ν1, . . . , νl = 1, . . . ,N,

(A(s) + B(s)1 + · · · + B(s)l − I)θ ≪ 0, s = 1, . . . ,N.

Then there exist positive definite diagonal matrices P,Q1, . . . ,Ql such
that (11) defines a common L–K functional for the family (18).

Example 5.2. Consider a linear example of the system (13) (setting
fi to be the identity for all i), with N = 2 and

A1 =


0.5 0.2
0.3 0.1


, B1 =


0.1 0.1
0.2 0.1


;

A2 =


0.3 0.3
0.1 0.2


, B2 =


0.15 0.1
0.1 0.15


.

It can be verified that the conditions (14), (15) are satisfied with
d = θ = (3, 2)T . It follows that there exists a diagonal L–K func-
tional for the associated switched time-delay system. In general,
verifying the existence of solutions to (14), (15) can be done using
techniques from linear programming (essentially it is a feasibility
problem) or applying results such as those described in [6].

6. Conclusions

Building on recent work on the existence of diagonal L–K func-
tionals for delayed positive linear systems in continuous-time, we
have derived corresponding results for discrete-time positive sys-
tems. Moreover, we have extended these to give conditions for
the existence of diagonal-type Lyapunov functionals for a class
of nonlinear positive systems, which are not necessarily order-
preserving. The problem of common L–K functional existence
for switched positive systems has also been addressed. We have
provided a sufficient condition for such a functional to exist. An
interesting question for the future is to investigate the relation-
ship between the existence of common Lyapunov functions for
switched systems with zero delay and the corresponding prob-
lem for L–K functionals for delayed systems. As indicated in Ex-
ample 5.1, this relationship is in general not straightforward.
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