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Abstract
The use of new technology and mathematics to study the systems of nature is one of the most significant scientific trends of the century. Driven

by the need for more precise scientific understanding, advances in automated measurement are providing rich new sources of biological and

physiological data. These data provide information to create mathematical models of increasing sophistication and realism—models that can

emulate biological and physiological systems with sufficient accuracy to advance our understanding of living systems and disease mechanisms.

New measurement and modelling methods set the stage for control and systems theory to play their rôle in seeking out the mechanisms and

principles that regulate life. It is of inestimable importance for the future of control as a discipline that this rôle is performed in the correct manner.

If we handle the area wisely then living systems will present a seemingly boundless range of important new problems—just as physical and

engineering systems have done in previous centuries. But there is a crucial difficulty. Faced with a bewildering array of choices in an unfamiliar

area, how does a researcher select a worthwhile and fruitful problem? This article is an attempt to help by offering a control-oriented guide to the

labyrinthine world of biology/physiology and its control research opportunities.
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1. Introduction

1.1. Background

In this paper we consider the question What are the

biological problems where a (control) systems approach can be

useful? This is a huge question and it would be misleading to

suggest that there is a definitive answer. However, a number of

avenues of inquiry exist and they fall into two categories: the

definite and the speculative. The definite category relates to

areas in which there is already an established path for a systems

approach. By contrast, the speculative category includes

questions that are fundamental to understanding the mechan-

isms of life and where there may be an opportunity for control

theory to offer useful viewpoints. This suggestion is made with

caution, in the knowledge that some of the world’s most
§ A version of this paper was originally presented at the 10th IFAC Sympo-
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and ‘The Industrialisation of Biology’.
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talented life scientists have previously trod this ground.

However, there are historically important examples where

the physical sciences have shed new light on the mechanisms of

life. And now, at the beginning of the 21st century, there is good

reason to believe that experts in the theory of dynamical

systems and signals can contribute in a similar way. Indeed,

later in the text we will see areas where control system analysis

and theory, alongside other branches of engineering, are already

providing new insights into biological phenomena.

1.2. Commercial and scientific motivation

At no previous peacetime period has the direction of science

and technology been so strongly guided by economic forces and

political agencies. Global competition between rival economies

means that businesses and governments search for competitive

advantages, with intellectual property derived from novel

science and technology being one means of providing such

advantages. This has led governments to actively manage and

direct research funding in a rigorous manner. This trend,

coupled with the decline of traditional technological industries,

has led researchers in all areas of science to respond

accordingly and, where appropriate, to seek new avenues of

inquiry.

mailto:peter.wellstead@nuim.ie
http://dx.doi.org/10.1016/j.arcontrol.2008.02.001


1 In words that may return to haunt him, Plasterk (2005) has described

systems biology as a form of ‘scientific pornography’.
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In the case of control systems specialists, the transfer of their

skills from physical systems to living systems is an obvious

idea. The problem is that the transfer is not straightforward.

Biology is not just another application area of standard control

theory—the language, culture and (most of all) the nature of the

systems is very different. Taken together, these issues present a

significant intellectual challenge to control systems researchers

trained in technological ways. It is nevertheless a challenge that

the control community has accepted as it attempts to make the

transition from existing to new sources of important and useful

research tasks. An aim of this article is to help in the transition

by indicating the differences between how biologists consider

problems and how they sub-divide the topics. This is then

followed by an outline of the aspects of systems biology as seen

from the life science perspective and the areas where

opportunities exist for the control researcher to gain access

to interesting and relevant life science problems.

1.3. Systems and life science: technical differences

The life sciences cover an enormous range of systems in

scale (temporal and spatial), function and type. The scope of

behaviour starts with the minute workings of molecular

machinery and culminates in the behaviour of the coordinated

system of organs and tissue that forms an organism. In between

are cellular systems in which signals are processed, and the

hierarchies of organised assemblies of cells which form tissue

types and organs. Beyond the single organism is the study of

populations of organisms and their joint behaviour.

Engineers are by training accustomed to systems with a

hierarchy of size and temporal scale. In biology however the

scale and range of the hierarchy is staggering. For example,

human physiological function emerges from the orchestrated

behaviour of around 30,000 genes, more than 100,000 protein

and over 200 cell types. Moreover, these elements function at

timescales ranging from microseconds at the molecular level, to

years in the life span of an organism.

In the engineering world, the purpose of system design is to

coordinate the operation of components so that they contribute in

a harmonious way to the overall performance of a system. The

same harmonious coordination seems to exist in living systems,

but with a crucial difference—living organisms are not of our

construction and we can only theorise on how they came to be as

they are. With no design blueprint, we lack an objective frame of

reference against which to assess their performance—a

performance which is in any event highly complex and requires

a level of analysis that needs to be more critically attuned than in

physical systems. For example, living systems can be both robust

to internal variations in some conditions and yet sensitive to small

changes at other times. This resilience/sensitivity to changes has

interesting parallels in feedback control where robustness and

fragility are opposite faces of the same coin (Dorato, 1998; Keel

& Bhattacharyya, 1997). But the complexity and strong

nonlinearity of living systems render parallels with technology

potentially misleading; such parallels often being no more than

the human habit of rationalising the unknown in terms of past

certainties. More will be said of this later in Section 6.
1.4. Systems and life science: cultural differences

The apparently unfathomable complexity of living systems

caused the biological sciences to adopt a ‘reductionist’

approach. That is to say the biological quest for the

understanding of an organism begins by examining the rôle

and function of the smallest indivisible component. This

information is then used in a ‘bottom-up’ attempt to infer the

properties of the organism as a whole. Reductionism has served

us well in the past, but the times are changing and the use of

‘bottom-up’ biology as a means of understanding overall

function is under fire. For example, it is the essence of the

Lazebnik’s (2002) humorous criticism in Can a Biologist Fix a

Radio?, while the same point is made more seriously in Strange

(2005), and with passion in Noble (2006).

The value of reductionism is now openly questioned. But

there is an equally questionable cultural aspect to life science

research that is rarely challenged. This relates to the view of

biology as a ‘pure’ discovery-based science in which systems

method imported from applied sciences can play only a

subservient rôle. The tension that this creates between pure

science and the systems approach has been an interesting, and

sometimes disturbing,1 sociological side-show to the growth of

systems biology, and is an indicator of the cultural gulf that still

separates traditional biology from a system-driven approach.

Paradoxically, it is also this tension that gives systems biology

its potential power, since by the analysis of systems as a

connected set of components – operating at different levels – a

new dimension is added to life science. In this spirit, the multi-

level systems approach to analysis is a particularly powerful

complement to traditional life science research methodologies

and the reductionist tradition.

1.5. General literature and references

A distinctive form for a systems approach to biology is

developing through the ideas of dynamical systems methods,

multi-level analysis and the study of complexity. The content of

this article is intended to add some specific features to this

emerging form as it regards control systems studies. Before

proceeding however, it is good to note that the idea of a systems

approach is gaining credence in biology. At the moment this is

mainly through the benefits of mathematical modelling as a

way of capturing biological knowledge in a quantitative and

objective form (Di Ventura, Lemerle, Michalodimitrakis, &

Serrano, 2006; Mogliner, Wollman, & Marshall, 2006). There

are also books (Alon, 2006; Palsson, 2006) that cover the

growing area of systems biology in its various complexions.

New books emerge regularly, with the book by Klipp, Herwig,

Kowald, Wierling, and Lehrach (2005) being a particularly

good and comprehensive introduction. In the engineering

control journals the review paper by Sontag (2005) is an

excellent guide for control theorists interested in cellular
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signalling. Another source worth mentioning is the upcoming

joint special issue (Vidyasagar, Khammash, & Tomlin, 2008).

The journal IET Systems Biology (2006) is an important outlet

for publications in this area, and there are a number of edited

volumes available which illustrate the range of views and

approaches that exist (Alberghina & Westerhoff, 2005;

Bringman, Butcher, Parry, & Weiss, 2007; Kitano, 2001).

As background, it is also important to note the long history

of mathematical biology (Murray, 1989; Rubinow, 1975) and

mathematical physiology (Keener & Sneyd, 1998). These

topics predate the current growth of interest in a systems

approach, and are important sources of detail modelling of

many fundamental mechanisms. In this spirit, it is important

that we acknowledge the debt that is owed to the pioneers of

biochemistry, mathematical biology and physiology research.

Their work underpins current systems research in biology and

physiology.

1.6. Organisation of the paper

As indicated in Fig. 1, the article has two parts: Part I

discusses the various areas that, taken together, make up

systems biology as a subject. Part II then considers the control

systems opportunities that arise from these areas. Part I is laid

out as a biologist, physiologist or medical practitioner would

see things. As a result, the separation between topics may

appear at first sight to be arbitrary. For example, metabolism

and cell signalling are mutually overlapping processes—both

are concerned with coupled sets of chemical reactions.

Nonetheless, they are considered separately, since this is

how they are usually treated. Likewise, the idea of homeostasis,

which is intimately linked to control of the metabolism, is

presented in the context of its medical origins.

These inconsistencies apart, some effort has been made to

arrange items in Part I from a control perspective. Specifically in
Fig. 1. Layout of the paper, showing the subdivision of areas from the view-

point of the life scientist (left hand side) and the control systems scientists (right

hand side).
control systems analysis it is usual to distinguish between the

flow of material and energy through a system and the information

processing components that regulate the system. There is a loose

parallel in living systems, where the flux of chemicals and energy

that sustains life in an organism as a whole is studied as

metabolism and the processing of information within a cell as cell

signalling.2 In this spirit, metabolism (Section 2) and the

transmission of information within the cell (Section 3) are used to

open Part I. This material then provides the background to their

use in systems approaches to physiology (Section 4), and

medicine (Section 5).

Part II is straightforwardly arranged in two sections: Section

6 covers some of the specific control opportunities as they relate

to the material in Part I. Section 7 describes the more

speculative areas of life science where a control theoretic

approach may help illuminate areas that are as yet largely

unknown. The article closes with some reflections on the rôle of

mathematical modelling and renewal in science.

Part I: topics in systems biology

Here we are concerned with research topics as they are

perceived and classified in the systems biology community. As

indicated previously, the sub-divisions that have emerged are

not systematically arranged. Nevertheless for the purposes of

this article, and its cross-referencing to the systems biology

literature, the accepted classifications are retained.

2. Metabolism

Metabolism: the totality of all chemical transformations

carried out by an organism.

Thus is metabolism described by Harold (2001) in his

layperson’s guide to cell biology. In this article however we

distinguish between the transformations that are primarily

about material flux and energy, and those that concern the

transmission of information. Thus to Harold’s definition, we

add the codicil: where the primary purpose is the transport,

transformation and use of bio-molecular material to sustain

life.

Each metabolic process consists of a large number of

interconnected sets of enzyme-catalysed biochemical reac-

tions. The set of reactions form a network of biochemical

pathways which work in concert to achieve the metabolic

purpose. The dynamic behaviour of a metabolic network

evolves as a function of the enzyme kinetics associated with

each reaction and their interconnection through the network. At

a qualitative level, metabolism is well understood by life

scientists. However, the quantitative reasons for networks

taking particular forms, and the corresponding metabolic

dynamics, are not well known. Thus although every college text

on physiology and medicine deals with metabolism in detail
2 Note: The equally important area of gene regulation is, for reasons of space,

omitted completely from this review.
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(Guyton & Hall, 1996), many challenges remain before we can

claim a quantitative understanding of metabolic dynamics and

structure. From this viewpoint, the area of metabolism is a good

entry point for control systems analysts, particularly control

engineers with a chemical engineering background who will

already be familiar with the biochemical processes involved. In

the following sections this familiarity is assumed, and only the

key points are reviewed.

2.1. Reaction kinetics

The mathematical modelling of metabolism uses the law of

mass action applied to the metabolic reaction sequence diagram

and combined with the corresponding relations for individual

reactions. This statement contains the two key aspects of

metabolism—(a) the modelling of the individual reactions and

(b) the analysis of the networks formed by coupled reactions to

achieve the metabolic purpose. Consider first the reactions:

enzymatic reactions (Cornish-Bowden, 2004) are complex

chemical processes leading to nonlinear state space models.

Various simplifying assumptions can be made with regard to the

enzyme kinetics (Vera, Balsa-Canto, Wellstead, Banga, &

Wolkenhauer, in press), with the Michealis–Menten (Michealis

& Menten, 1913) quasi-steady state approximation being the

most frequently used. Even after such approximations, the

model of the metabolic process remains nonlinear and relies

upon either linearising assumptions for their solution, or

simulation for visualisation (Klipp et al., 2005).

2.2. Metabolic networks analysis and control

The networks of coupled reactions formed by a metabolic

process are often large and complex. However a great deal can be

learnt by considering the equilibrium conditions of the reactions.

These correspond to a system of linear equations with

coefficients given by the stoichiometry of the various reactants.

The solutions to the network equations provide information on

steady state fluxes, and by adding chemical/thermodynamic

constraints, a great deal of information can be obtained about the

operation of the metabolic process (Varma & Palsson, 1994).

Yet more steady state information is obtained using

metabolic control analysis (MCA) (Fell, 1997; Heinrich &

Rappaport, 1974). This much studied area is not about control

in the usual sense, but the analysis of how fluctuations in one

part of a network can influence other parts. Specifically, it

relates to the sensitivity analysis of concentrations of molecules

and reaction rates in a network to small parameter changes, i.e.

changes of enzyme concentrations. This is extremely useful for

processes in homeostatic equilibrium (see Section 5.1), since it

provides insights into the local sensitivity of a metabolism in

normal steady state operation. This said, the idea of a set of

steady state levels being the norm in metabolism is not

generally true, and dynamical studies are of increasing

importance (Ingalls & Sauro, 2003). Of particular relevance

is the multi-scale nature of metabolism—multi-scale dynamics

is a common feature in biological processes and more will be

said of it later.
3. Cell signalling

An attractive and well-established area of systems biology

for control researchers is the modelling and analysis of the

sequences of chemical reactions which cause information to be

transmitted within a cell. It is easy to see why the cell is a basic

functional element of all organisms and its operational

mechanisms are fundamental to all aspects of biology. From

a systems viewpoint, the cell is interesting because it is a closed

environment, with distinct input ports and response mechan-

isms. The input ports are the receptor sites in the cell membrane

where signalling molecules may attach and initiate coupled sets

of chemical reactions (signalling pathways) within the cellular

space (Fall, Marland, Wagner, & Tyson, 2002).

Signalling action through the pathways result in a cellular

response which can take a number of forms (Downward, 2001)

including proliferation, cell death and cell differentiation. The

modelling of these pathways is discussed in Section 3.1. The

dynamical models of signalling pathways are nonlinear and the

analysis of their behaviour is challenging and problematic, this

is discussed in Section 3.2. A number of chemical reaction

sequences are found repeatedly in biology and there is a

considerable effort to characterise them as distinct modules,

this characterisation is considered in Section 3.3.

3.1. Cell signalling pathway models

Intracellular signalling paths are less well known than

extracellular metabolic paths, and so typically, ‘what-if’

simulations are used to probe the rôle of various components

of a signalling pathway. This in itself is a big step forward for

biologists for whom intracellular experiments are time-consum-

ing, with results that are frequently unreliable and unrepeatable.

The possibility of rapid, cheap and exactly repeatable in silico

simulation of cellular signalling mechanisms represents a

breakthrough in the study of cell biology (for example see

Heinrich, Neel, & Rappaport, 2002; Neves & Iyengar, 2002).

Despite rapid advances, the area is, for various reasons, still in

its infancy. For example, the biological ‘picture-models’ of cell

signalling pathways are often wrong or incomplete. Also, there

are complexities in the representation of signal pathways caused

by ‘cross-talk’ between different pathways and the multiplicity

of interacting signalling mechanisms. An indication of the scale

of complexity can be gained by glancing at the current ‘best’

picture of the toll-like receptor signalling network (Oda &

Kitano, 2006)(this network is vital to the immune system’s

response). Despite the complexity of this model, and the great

care associated with its assembly, the representation is still

incomplete, possibly incorrect in parts and gives only a

topological picture of the receptor signalling network.

3.2. Analysis of cell signalling pathway models

As noted in the preceding sections, the use of mathematical

models in biology involves many approximations—some are

known and others unknown. Even if the current generation of

mathematical models were to be structurally correct, there are
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issues of model accuracy, calibration and validation. For

example, the reaction coefficients are generally unknown and

must be either estimated, guessed, or taken from the literature. In

the same spirit, the structure of a mathematical model is

dependent upon the biologist’s current beliefs of what constitutes

the correct signalling pathway—these are often incomplete or

incorrect. Indeed, one reason for mathematical modelling is to

test proposed structures, and some of the most useful

contributions by systems biologists have been to suggest new

signalling pathway structures which were subsequently verified

by actual experimentation. The uncertainty in parameters and

structure means that there is a need for parameter estimation and

structural determination methods to be developed for the forms

of model found in cell signalling. As a result system identification

for signalling pathway models is an area where needs exist. These

are discussed later in Section 6.1.

Intracellular measurements are generally not possible, and

those that are possible are difficult and error prone. As a result,

in many cases it is extremely difficult to estimate the

coefficients of a signalling pathway model. In this situation

the special structure of the system dynamics might be used to

infer properties, as in for example positive/non-negative

matrices and monotone systems (Angeli & Sontag,

2003)(see Section 6.1). In practice however, it has been the

use of computer simulations of dynamical models using

parameters from the literature that has shown immediate

practical benefit. For examples of such investigative modelling,

see the work on the MAP kinase pathway (Asthagiri &

Lauffenburger, 2001; Kolch, 2000).

3.3. Functional modules in signalling pathways

Just as in metabolic flux pathways, the structural analysis of

signalling pathways offers many opportunities for creative

connections with what we know from technological control

theory. A particular issue is understanding the biological

function of various parts of a pathway. Typically, and allegedly

because of the exploratory nature of evolution, the functions of

different parts of a signalling pathway are not obvious. Indeed

some parts may have no apparent rôle in the cellular function

under investigation. A further aspect of this is the multi-

functional nature of biological processes whereby a part of a

pathway may only come into play under certain special

circumstances. One extremely worthwhile objective for control

systems analysis is to determine the functions performed by

different parts of a system and when they perform them

(Schmidt & Jacobsen, 2004). A number of researchers believe

that the key to such functional assignment is the encapsulation

of frequently recurring patterns of bio-molecular reactions into

motifs that serve specific functions (Alon, 2006; Tyson, Chen,

& Novak, 2003). As an example, a widely occurring structure is

the protein phosphorylation cycle (Kholodenko, 2006).

4. Physiology

The previous section covered the systems associated with

intracellular signalling and metabolic flux pathways. Physiology
is concerned with the way biological structures are actuated and

animated by these pathways. Specifically, we consider the

systems approach to the cellular assemblies, tissues and organs

that work together to form entire organisms. Taking the meaning

of ‘system’ in its broadest sense, physiology is by definition a

systems approach to how organisms function. The addition of

mathematical modelling and other methods from the engineering

sciences has taken physiology from focusing on a general

description of function to a level that involves great mathematical

and computational sophistication. The dynamical and control

systems problems found at this level are qualitatively different

from metabolic flux pathways and intracellular signalling, since

in addition to bio-chemical dynamics, they also explicitly include

the large-scale features of an organism, such as electrical,

mechanical and/or hydraulic effects. This area should be of

interest to members of the control systems community who

specialise in the integration of sub-system mathematical models

into models of entire systems. A particular challenge here is that

the mathematical modelling crosses all disciplines, and the

integration of model components spans the complete range of

temporal and spatial scales.

4.1. Modelling of organ function

Initially, mathematical physiology (Keener & Sneyd, 1998)

was concerned with developing mathematical models of specific

physiological phenomena. Over time this has moved toward

integrating models of individual physiological elements into

computer-based models of organ functions, graduating over the

years into mathematical models of entire organs. The virtual

heart project (Noble, 2002) was one of the earliest among such

projects and is the most advanced. Starting with a mathematical

model of cellular electrical potentials (Noble, 1962), the virtual

heart project has progressed into a large multi-partner interna-

tional collaboration. A number of other virtual organ projects

have started in recent years with aims ranging from visualisation

for education, training and surgical rehearsal to fundamental

investigation of disease and organ malfunction. Most of these

projects operate under the umbrella of an ambitious physiolo-

gical modelling project—The Physiome Project.

4.2. The Physiome Project

The aim of the Physiome Project is to provide a coherent

framework for the mathematical modelling and analysis of

human physiology. In particular, through the various projects

that compose the Physiome Project (Hunter & Borg, 2003)

international teams are developing systematic ways in which to

apply a systems engineering approach to physiological

processes. This area is a rich one for further development as

its benefits become clear and it attracts the attention of

commerce and clinicians (Friedland, 2004). The complexity of

the Physiome Project means that the mathematical modelling

and analysis of physiological processes associated with it are

progressing as part of an international effort using common

repositories of knowledge and integrated programmes (Hunter,

2005).



P. Wellstead et al. / Annual Reviews in Control 32 (2008) 33–4738
4.3. Computational tools for systems biology

There is a wide range of computational tools for systems

biology, and (Alves, Antunes, & Salvador, 2006) is a recent

review. However, for metabolic and cell signalling dynamics,

research focused upon specific pathways and their dynamical

and structural properties, then the standard scientific computing

tools of MATLAB, Octave or Scilab are appropriate. In

particular, while the systems of equations involved in signalling

and flux pathway models are strongly nonlinear and often of

high dimension, they are usually within the capability of

standard scientific simulation methods. This approach is further

supported by systems biology ‘toolboxes’ specifically designed

for widely accepted scientific computing environments, such as

MATLAB (Mathworks, in press; Schmidt, 2006; Schmidt &

Jirstrand, 2006). Thus, when relatively small groups of

computer literate researchers are involved, and the models

are of reasonable complexity, then exchanging and under-

standing models is not a problem. The difficulties lie in

analysing the performance of the model and making biological

sense of the performance.

As mathematical models become accepted in the life science

community, then methods are required with which to transmit

the model to different formats for scientific languages and

computational tools. With this in mind, the Systems Biology

Markup Language (SBML) (Hucka et al., 2003; SBML, 2006)

was developed as a method of exchanging quantitative

biological information. It does this by providing a means of

capturing research results and modelling developments in a

format usable by a large number and variety of systems biology

application programmes. In the words of the SBML website:

‘‘The systems biology community needs information

standards if models are to be shared, evaluated and

developed cooperatively. SBMLs widespread adoption

offers many benefits, including: (1) enabling the use of

multiple tools without rewriting models for each tool, (2)

enabling models to be shared and published in a form other

researchers can use even in a different software environ-

ment, and (3) ensuring the survival of models (and the

intellectual effort put into them) beyond the lifetime of the

software used to create them.’’

SBML is targeted specifically at systems of ODEs and

nonlinear algebraic equations in biochemical networks. The

alternative language cellML does the same, but is intended to be

more general in that it encodes any system of ODEs/algebraic

equations in MathML and then gives the model components

biological meaning through the metadata (Hunter, Li, Mc

Culloch, & Noble, 2006).

As a final point on computational tools, we note that the time

and effort needed to assemble mathematical models, and

determine the numerical values of their coefficients, has led to

the sharing of models. As a result, mathematical models can

increasingly be found online. An overview of model databases

can be found on Institute of Systems Biology (2006), with

particular examples: BioModels Database (2006), JWS Online
(2006), the Physiome Project (2006) and the cellML model

repository cellML Model Repository (2006).

5. Systems medicine

Medical practice is necessarily cautious and conservative in

nature. Since antiquity, the field has evolved gradually through

a combination of observational methods and diagnosis based

upon the particular experience and training of individuals.

Unfortunately, doctors generally have only a basic knowledge

of mathematics. As a result, the quantitative methods that are

available for medical decision-making are too often ignored or

misunderstood (Sutherland, 1992). This has meant that the

gradual move to more systematic and mathematically based

techniques in biology and physiology are only slowly touching

medicine. But touching it they are, and this section discusses

the ways in which this is happening.

5.1. Homeostasis

The biological and physiological perspectives of systems

biology are highly important. There is however a complemen-

tary viewpoint based on the part performed by feedback control

in living systems as it is perceived in medicine. It relates

directly to metabolic control (Section 2) and has a bearing on

the potential practical uses of systems biology in physiology,

medicine and pharmacology.

Building on ideas that date back to the Greek philosophers,

the distinguished French physiologist Claude Bernard (1813–

1878) argued that compensatory internal physiological

processes exist within an organism that work to balance

externally imposed disturbances. Bernard’s practical observa-

tions spoke clearly of feedback regulation and disturbance

rejection mechanisms within living organisms (Bayliss, 1966).

These ideas were further codified in the 1950s by Cannon

(1932) in his book The Wisdom of the Body. With extensive

historical references (to Hippocrates and Pflüger amongst

others) and based on extensive research, Cannon was able to

give a range of practical examples of feedback regulation in

physiology. More importantly, he gave it a name—homeostasis.

Since Cannon’s time other researchers (Sterling, 2004) have

expanded upon the homeostatic principle of internal physio-

logical control in important ways and homeostasis has become

a fundamental principle in medicine and physiology (see for

example Tortura & Grabowski, 2003).

5.2. Personalised and predictive medicine

The systems approach to metabolism, cell signalling,

physiology, and medicine are different routes that converge

on a common aim—an improved understanding of the

mechanisms of life and disease. The four have a specific

meeting point in the area of personalised medicine (Weston &

Hood, 2004). The personalised medicine proposition is that

mathematical modelling and a systems approach, combined

with high-throughput biological measurement technology, can

supply the analytical tools and patient bio-marker data for an
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individual approach to patient care. Within this framework,

genetic information and proteomic time histories will allow

treatments to be individually tailored and systematically

administered. Likewise, a time history of an individual

patient’s bio-markers will allow predictive statements to be

made with regard to future health states, and enable

corresponding preventative actions to be taken. This aspect

of systems medicine has been variously referred to as

personalised (The Royal Society, 2005), predictive and/or

preventative (Hood, Heath, Phelps, & Lin, 2004) medicine. The

pharmaceutical companies have yet another interpretation, in

which drug treatments would be ‘personalised’ for specific sub-

groups of the population.

Personalised medicine implies a significant shift from what

might be termed population-based medical care, where the

emphasis is on average/typical responses to disease. In

personalised medicine, data from population responses will

form a backdrop against which to assess information on how a

specific individual behaves in a diseased state, and subse-

quently responds to treatment. For this to be viable, several

ingredients may be needed such as:
� M
ore regular monitoring, including self-monitoring, of

important diagnostic indicators.
� E
nhanced tools for learning appropriate individual informa-

tion from time trends of individual diagnostic indicators.

Like personalised medicine, predictive medicine represents

a marked change from current practice. Specifically, it is a

move from reactive medical care to one in which an

individual’s susceptibility is predictively treated. In particular,

the use of statistical inference and statistical prediction from

bio-marker records would allow the forecasting of the onset of a

condition, and the use of preventative measures.

Part II: opportunities for control

This part is divided into two sections. The first (Section 6)

outlines areas in which control systems analysis can contribute

in a clear and well-defined manner. The second (Section 7.1),

describes more speculative topics where dynamical systems

theory may play a part.

6. Control systems analysis in biology

Control studies in biology have existed for many years,

with a convenient time-stamp being the book (Wiener, 1948).

There was enormous respect for Wiener and this created an

enthusiastic following for his ideas of using communications

and control systems to describe biological phenomena. Like

Cannon, Wiener also invented a name that captured the

imagination—cybernetics. The name cybernetics was at first

a blessing, it gave identity to the transfer of control and

communication ideas from technology to biology. Unfortu-

nately, a well defined scientific agenda failed to emerge for

cybernetics and it was not until later that the relevance of

control in a systems approach to biology began to take shape.
This occurred when ideas of dynamics and control were

combined with well-founded mathematical models of

biological function. This took initial forms in cell signalling

pathway analysis (see Section 3.2), in quantitative under-

standing of metabolism (see Section 2) and related topics

described in Part I. Subsequently, a wide range of

opportunities have emerged for the transfer of control

theoretic principles to the systems that make up living

organisms. It is the aim of this section to summarise these,

with Section 6.1 covering the areas already mentioned and

Sections 6.2 and 6.3 describing important areas not directly

covered thus far.

6.1. Review of control topics in systems biology

In this section we collect the aspects of the systems biology

topics covered in Part I and outline the associated control

systems opportunities.

6.1.1. Metabolic control analysis

The study of the metabolism is well established and is thus a

good entry point for the control analyst. Likewise, the

mathematical machinery for MCA (Reder, 1988) is framed

in a similar way to control system sensitivity analysis and thus

presents familiar territory. Also, as remarked in Section 2,

steady state analysis is insufficient for a full understanding of

metabolic processes. In this vein, MCA has recently been

explicitly expressed in a control systems format and extended

to the dynamical case (Ingalls, 2004) in a way which opens

other control theoretic opportunities. This is an important step

since, as is emphasised elsewhere in this article, it is the

dynamical analysis of complexity in biological systems that

will allow control systems analysts to add constructively to

biology.

6.1.2. Modelling of signalling pathways

From a pragmatic viewpoint, mathematical modelling and

computer simulation are the most clearly identifiable successes

of systems biology. The current modelling procedures

described in Section 3.1 are first generation methods that have

shown the potential of mathematical modelling and ‘what-if’

computer simulation. However, as the need to account for

different chemical reaction conditions grows, so too will the

need for new modelling approaches. For example, stochastic

models are required where there are few molecules involved

(Turner, Schnell, & Burrage, 2004), while power-law models

are suitable when there is molecular crowding (Vera et al., in

press). Likewise, almost all current signalling modelling

neglects the spatial and molecular transport aspects of the

signalling sequence. This simplification has been acceptable in

these early days of modelling of cell signalling when even

models containing gross approximations are proving informa-

tive, but it cannot endure. There are thus very significant

opportunities for mathematical modellers with a control

systems and dynamics background to contribute. For an

authoritative guide to the state of the art and future possibilities

see Kholodenko (2006).
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6.1.3. Motifs and functional modules

Related to the issues of mathematical modelling is the area

of functional blocks in biological processes. The idea of motifs

and functional modules (as described in Section 3.3) is very

attractive from a control systems viewpoint (Hartwell,

Hopfield, Leibler, & Murray, 1999; Tyson et al., 2003; Zhang

et al., 2005) as it enables functional blocks to be grouped

together and the signalling process made more comprehen-

sible. The way in which control systems analysts can

contribute is by determining the complete dynamical

performance of these motifs. The idea of assigning specific

function to assemblies of biochemical reactions in this way is

seductive. It relates to research into the function of

biomolecular objects (e.g. genes, proteins, etc.) in biological

networks (see Section 6.3), and at a more abstract level to

speculation concerning general control and organising

principles in biology (see Section 7.1). From a practical

viewpoint, a considerable amount of work has been done on

identifying functional modules. Nonetheless, there is more to

be added, particularly from the viewpoint of metabolic and

signalling networks and their linkage to multi-level/multi-

scale control systems.

6.1.4. Feedback systems in biology

As hinted earlier in this article, nature apparently uses

negative feedback so that a robustness–sensitivity compromise

exists. Control specialists have analysed examples of feedback

control and written extensively on biological robustness and

sensitivity in living organisms (e.g. Csete & Doyle, 2006;

Ingalls, 2004; Kitano, 2004). Kitano (an influential figure in

systems biology) interprets robustness more broadly than the

control theoretic meaning. Other authors draw directly upon

results in classical control (Bode, 1945; Nyquist, 1932). In

particular, Stelling, Sauer, Doyle, and Doyle (2004) and Yi,

Huang, Simon, and Doyle (2000) have been prominent in

developing the biological perspectives of the control concepts

of robustness and fragility (Dorato, 1998). These discussions

of biological robustness are scientifically important for a

number of reasons. Not least because of their strategic value for

the future of control engineering ideas in the life sciences.

Specifically, they have raised the profile of control theory by

showing life scientists how a control systems analysis can

provide a theoretical underpinning to experimental observa-

tions (Bullinger, Findeisen, Kalamatianos, & Wellstead,

2007).

Within the cell, feedback (positive and negative) is an

important structural feature of signalling networks. Regulatory

mechanisms of negative feedback have already been men-

tioned, however positive feedback loops also occur in

biological circuits in a way that have oscillator, bi-stable and

gating analogues in electric circuits (Millman & Taub, 1956).

While such basic ideas and many examples of biological

feedback have been developed, this area remains a rich one,

both for control theoretic work and for particular biological

examples. In particular, and despite the excellent work already

referred to, the concept of robustness is still not sufficiently well

formulated in a biological context.
6.1.5. Transient performance and nonlinearity

This area is in essence related to the previous item, but is

treated separately because of the biological significance of

stability and transient performance. The issue of stability

(particularly instability induced by positive feedback) was also

mentioned in the previous item and is raised again in Section

6.2. The discussion here however is different, since it relates to

the nonlinearities and multiple timescales which occur in

biological system dynamics, and the implications that these

features have for transient performance. For example, in

connection with nonlinear response (Wolkenhauer, Mesarović,

Sreenath, Wellstead, & Rolfs, 2006) demonstrates how

changing initial conditions and the pattern of external

excitation will dramatically change the observed performance

of a nonlinear biological system. As the cited paper remarks:

‘‘It would take an experimental biologist many time-

consuming and expensive experiments to obtain comparable

results under each operating condition. And then there

would be no way of determining that all the results were

generated by the same biological mechanism.’’

The clarification of nonlinear dynamics in this and related

ways can be of enormous benefit in unifying apparently

unrelated experimental observations and thereby generalising

experimental results. Here mathematical control theory can

play a powerful part in elucidating fundamentals (see for

example the work of Angeli and Sontag, 2003)

As mentioned earlier (Section 4), the wide range of

timescales in biological responses means that the analysis of

transient response must have a multiple timescale aspect. In

analytical terms this means that there may be no steady state

operating point in the classical sense. As a result there is

scope for control systems experts to fruitfully work on new

stability measures for multi-scale systems and descriptions of

the temporal behaviour of specific nonlinear biological

phenomena.

6.1.6. Special system structures

In intracellular systems biology, the continuous time

dynamics of signalling pathways are often combined with

the essentially logical machinery of gene expression. Together

with transport delays in protein synthesis, this may lead to

hybrid systems with time delay properties that are exceedingly

difficult to analyse (Henzinger & Sastry, 1998). It has proven

possible to graphically analyse some specific low dimensional

hybrid systems (see for example Pettit & Wellstead, 1997). In

general, however, the area is difficult and the level of analysis is

either very abstract, or very specific to the case in hand. In an

effort to make the abstract analysis less general, there is a

systems analysis opportunity to consider the specific hybrid

forms that occur in signalling pathway dynamics (Downward,

2001).

Dynamical descriptions of metabolic flux and cell signalling

lead to positive systems. This can potentially be used to

advantage since positivity gives special properties to temporal

behaviour, and then enables the analyst to make useful
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performance statements with limited knowledge of parameter

values. This is useful because of the difficulty in estimating

numerical values for reaction kinetics. As noted previously,

monotone systems theory for systems biology has been

pioneered by Sontag (2005) and Angeli and Sontag (2003).

6.1.7. System identification and estimation

Thus far, much of system identification work in this area has

involved applied mathematicians, see for example the review

(Crampin, Schell, & McSharry, 2004). However, because of

their prior experience with parameter and structure estimation

for complex dynamical systems, system identification research-

ers from the control systems community can add a further

dimension to the area. The starting point for this should be a

recognition that biology is not merely an application for

standard identification methods. Genuinely new approaches are

required that recognise (i) the specific types of nonlinear, time-

varying processes found in living organisms (Bullinger,

Findeisen, & Streif, 2006), (ii) the particular form of

measurements that are available (Klipp et al., 2005) and (iii)

the numerous disturbances and measurement errors that are

specific to biological processes and sensing.

With these caveats, there is great scope for system

identification experts to develop signal processing and identi-

fication methods that are specific to the biological application.

There are many challenges, including methods to
1. E
xtract meaningful information from biological/medical

sensing modalities.
2. D
eal with unusual measurement errors and disturbances.
3. H
andle unconventional data forms and data collection

protocols.
4. I
ncorporate unusual forms of prior information and

constraints.

6.1.8. Getting quantitative information from measurements

The previous paragraph mentioned that the measurement

methods available in biology are quite specific. This bears

expanding upon because, compared to the measurement and

sensing of physical systems, the measurement of variables in

living systems is either difficult, crude or not possible. In

addition, biology has historically focused primarily on

gathering qualitative data and has only recently begun to

report quantitative results. The difficulty in biological

measurements means that there are significant opportunities

for new sensor data analysis procedures and sensor data fusion

methods to be developed. Also, new technical advances from

engineering fields could allow for the generation of more

quantitative biological data and feature extraction tools. This is

an area where instrument engineers and computer scientist are

very active, but the scope is vast and the opportunities

correspondingly large.

6.1.9. Modelling and computational tools

As described in Section 4.3, the Systems Biology Markup

Language is widely used as a format for representing models in

a machine transferable way. There are many software tools and
modelling packages that support SBML—over 100 at the last

count. For the control systems specialist the most attractive of

these tools are the Systems Biology Toolbox (Schmidt &

Jirstrand, 2006) and the commercially available SimBiology

Toolbox (The Mathworks, in press), both for use with

MATLAB. These toolboxes are a good starting point in the

modelling of biological systems, and have the usual scope for

extension.

Despite a wealth of tools and packages, as shown in Alves

et al. (2006), the area of computational tools for biology is one

of growth. The underlying modelling principles on the other

hand are less well studied. In this spirit, one potential area for

research is the development of common modelling and model

analysis tools which import the expertise from dynamical

systems modelling. For example, systems biology is an area

where systematic methods for model development and analysis,

such as bond graphs, could make useful new contributions as

they have done in the physical world (Wellstead, 1979).

Modelling tools for large-scale biological or physiological

systems might also benefit from software-oriented control

experts in hierarchical techniques developed for total plant

management and enterprise control. This may even inform the

multi-level/multi-scale systems biology modelling described in

Hunter et al. (2006). In this vein, any control systems researcher

with a strong interest in computational aspects of systems

biology modelling is strongly recommended to refer to the

detailed Physiome Project Roadmap (Hunter, 2005). Hunter’s

comprehensive and informative description of the Physiome

Project makes the roadmap an essential working reference.

6.1.10. Control and predictive medicine

Thus far the personalised/predictive medicine described in

Section 5.2 has focused on the static case where high

throughput measurements are used with regular sampling of

personal bio-markers to design therapy and predict outcomes

using regular feedback from the bio-markers. However, a

moment’s thought is sufficient to see that such an approach

must take into account the dynamics of internal homeostatic

feedback loops. Without a proper understanding of the

physiological and biological dynamics associated with a

patient with a specific condition, then personalised/predictive

medicine may be self-defeating (Middleton & Wellstead,

2006).

More generally, the use of a quantitative and more

technologically based approach to medical investigation and

practice has attracted a great deal of interest in medical circles

(for example Ahn, Tewari, Poon, & Phillips, 2006a, 2006b).

Nonetheless progress will be slow and with many organisa-

tional issues to address. The difficulty of obtaining and sharing

patient records, for example, means that this area will need a

structured ethical code for data handling. The primary ways in

which control systems specialists can assist here are in the areas

of mathematical signal processing and data handling. For

example, the design of predictive methods for disease trends

from the high throughput data and bio-marker sources is a clear

area where random signal processing can be of use. However

the data sources are distributed, inconsistent and unreliable.
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Thus the methods of data fusion and validation (used in sensor

data integration) and secure control networks (from military

and enterprise control and management) may be a starting point

for the control community.

6.2. Oscillations in living systems

The harmonic analysis of signals is basic to the way in which

we analyse physical systems and design technological systems.

We use frequency domain methods to analyse and explain the

physical world, and the frequency domain is an essential tool in

communications and control systems technology. Given the

universal nature of harmonic behaviour in physical systems, it

is therefore natural that we ask whether living systems employ

frequency modulation for communication and control. The

answer is an unequivocal ‘yes’, and so we devote an entire

subsection to parallels between frequency domain properties of

technological systems and our understanding of biological

signalling and function.

For example, oscillatory behaviour is believed to be

important for communication in neurological systems, (see

Schitztler & Gross, 2005, and the references therein, and

Varela, Lachaux, Rodriguez, & Matinerie, 2001). In parti-

cular, the frequency selectivity represented by the distinct a,

b, d and g-bands is apparently used to achieve distinct

signalling and communications objectives. This suggests that

information is passed at several frequencies as a method of

differentiating between different brain signalling functions.

Additionally, because neural connections are formed by dense

groups of connections, the issue of synchronisation (or the

lack of it) within a group is important (Ioannides, Poghosyan,

Dammers, & Streit, 2004; Spencer et al., 2003). Thus

frequency and phase of oscillations appear to be used to

encode neural information, while the absolute amplitude is

apparently less important.

The brain is a well-known example of a biological sub-

system in which it is believed that frequency sensitivity is used

in intercellular communication. Actually, oscillatory behaviour

is everywhere in living systems (Glass, 2001). Moreover it has a

determining rôle in many biological outcomes from the

circadian rhythm, to the control of heart beat and beyond to

the internal functioning of a cell (Nelson et al., 2004). For

example, in Dolmetsch, Xu, and Lewis (1998) and Li, Llopis,

Whitney, Zlokarnik, and Tsien (1998), frequency sensitivity is

shown at the intracellular level. By externally modulating the

frequency of oscillations in intracellular calcium it is shown

that the level of gene expression is a function of frequency. This

raises an interesting parallel with technological systems in

which frequency modulation is routinely used to encode

information. The pursuit of this idea from a systems viewpoint

has radical implications for how we probe the biological

function of proteins and genes. Specifically, analysis of

biological function is currently performed on averaged ‘steady

state’ data. If gene expression is sensitive to oscillations in the

cytoplasm, then genetics is currently only looking at the origin

on the frequency spectrum of protein/gene function. This has

implications for the network ideas discussed in Section 6.3.
Let us take this point further. A fundamental feature of

physical systems and their components is that they exhibit a

response/output that varies depending upon the frequency of the

stimulus. Frequency dependence is an expression of the

dynamical nature of physical systems, thus the observation that

responses of biological systems may also be frequency-

dependent suggests a potentially useful analogue between

technical and biological components. In this context, it is

interesting to recall that classical biology and physiology are

concerned with the steady state behaviour of organisms. For

engineers versed in systems dynamics, there is the exciting

possibility of using frequency domain ideas in biology. The

analysis of oscillatory processes in living organisms is led by the

works of Winfree (1980) and Goldbeter (1996). Thus, there is

already a rich literature on oscillations in biology as seen from a

mathematical (Goldbeter, Gonze, Houart, Lepour, & Halloy,

2001) and control systems theory perspective (Stan & Sepulchre,

2007). There remains however many stimulating opportunities

for the harmonic analysis of biological phenomena.

6.3. Network methods: assigning function via structure

The Human Genome Project marked a turning point in the

evolution of systems biology. Specifically, the use of

technology and automation to increase the rate and reliability

of biological data capture and analysis was crucial to

performing the sequencing in a reasonable time. The speed

and repeatability of automated high-throughput analyses of

biological samples was fundamental to the project’s success. It

gave the means to rapidly and efficiently perform the many

experiments required in the Human Genome Project, thereby

supplanting traditional manual laboratory methods with

systematic automation. To this day for many biologists, the

automation of biological measurement is systems biology.

The technological lessons learnt from the Human Genome

Project were not wasted upon the scientists involved. It was a

natural extension to use high–throughput (e.g. automated)

methods to search for, and associate biological function with,

individual genes and proteins. This is important to biologists

since the Human Genome Project showed remarkable

similarities between the human genome and that of other

species. Thus finding special complexities in the relationships

between genes (and the proteins that they coded for) in

generating biological function was seen a potential way of

distinguishing us as a species. An issue here is that the genome

only represents a small fraction of the total DNA, and thus a

valid question is ‘What function does the remaining DNA

have?’ This is pursued later in Section 7, so for the moment we

stay with the fundamental dogma that genes code for proteins

and proteins are the basic elements of biological function.

Graph theory has emerged as an important tool in the search

for biological function, with new approaches (Barabasi &

Oltvai, 2004; Estrada, 2006; Mangan & Alon, 2003) being used

to explain features of gene/protein interaction networks. In

particular, graph theoretical techniques have been used to

address several key problems in the post-genomic era

including: the annotation of proteins and genes of unknown
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function (Sharan, Ulitsky, & Shamir, 2007); linking the

importance of a gene or protein to its position within the

interaction network of an organism (Jeong, Mason, Barabasi, &

Oltvai, 2001; Wuchty & Stadler, 2003); and the prediction of

protein–protein interactions and experiment design (Lappe &

Holm, 2004; Valencia & Pazos, 2002). A major issue with the

use of these techniques, and what makes this area interesting for

the control systems analyst, is that functional genomics and

proteomics is done with only partial data (e.g. samples from the

whole interaction network) and noisy information. The graphs

which show interconnections between objects contain only a

sub-set of the possible interconnections, and measurement

difficulties mean that even those interconnections may be false

due either to systematic or random measurement errors. There

is a clear need for a thorough understanding of the impact of

these issues on the techniques described here if they are to be

reliably applied to real data (Borgatti, Carley, & Krackhardt,

2006; Stumpf, Wiuf, & May, 2005). In addition, and vitally

important for the control systems analyst, the dynamic and

contextual properties of gene and protein interaction are not

accounted for.

There is an interesting comparison here with the mid-20th

century developments of network theory for complex

dynamical electrical networks (Balabanian & Bickart, 1969).

Although biological networks are far more complex, there is

good reason to believe that traditional network dynamics will

offer insights additional to the static network view. Thus with

most of what is published being rapidly superseded by new

experimental observations or theories, this whole area is ripe

for theoretical analysis from a network dynamics viewpoint.

For a current summary of this area see the survey paper (Mason

& Verwoerd, 2007).

7. Mechanisms of life

In this section, we consider some interesting fundamental

issues in biology where a control systems viewpoint may offer a

different and helpful perspective. These are problems which

have big prizes for the right answers, and there is reason to

believe that a view from outside the confines of biology may be

needed. After all, and as noted previously, many of the most

significant breakthroughs in biology have been made by

outsiders. For example, Mendel studied physics at the

University of Vienna, and Delbrück, Schrödinger, Crick, and

Wilkins all had physics backgrounds. More generally, there is

ample historical evidence that a view from outside a subject’s

conventions leads to new results (Christensen, 1997). With this

in mind, we indicate some possible topics for study by control

specialists.

7.1. General principles in living systems

Our quantitative understanding of the physical world is

based upon a family of general principles and laws that

underlie the behaviour of physical systems and processes—

Newton’s Laws, Relativity Theory and so on. Not surpris-

ingly a strong motivation for theorists is to find correspond-
ing general principles that will explain living organisms

(Casti, 2004). Within control systems theory, for example

some general principles from feedback control have been

applied to successfully explain a number of observed

properties of organisms. (An example, is the analysis of

the movement of organisms in response to chemical

gradients, Bray, 2002). There is a strong consensus however

that a straightforward mapping of current control theories on

to biological problems is not enough, and researchers are

proposing a range of alternatives with the following as

examples:

� Organising principles. Mesarović and Takahara (1972) have
been prominent in developing a theory of multi-level systems

in order to determine general organising principles for

biology. The power of the multi-level concept is that it

accounts for much of what is missed in other functional

theories for biology. For example, in proteomics the

straightforward association of protein groups with particular

functions is flawed since it does not account for the context

(or level) in which the proteins are operating.
� M
odelling frameworks. The multi-level systems theory of

Mesarović provides one possible way of developing

organising principles in living organisms. This paradigm is

appealing since it recalls the form of descriptions used in

physical systems, and as such it appeals to the unity of

science. Similar remarks can be made of modelling frame-

works that describe biological principles. As an example,

consider Wolkenhauer and Hofmeyr’s (in press) model of

self-organisation in cellular life. This approach brings

together the issues of adaptation and development of

functional blocks in biology (Section 3.3).
� L
anguage and mathematical formalism. The previous two

items represent attempts to build a theory for living systems

using language that would be familiar to a mathematical

physicist or engineer. However, others argue that we need to

re-formulate the theoretical study of living systems by

changing the language of discourse. In practical terms this

means alternative mathematical formalisms that can encom-

pass the complexity, diversity and contextual adaptation that,

as we have seen, are the essence of living systems. For

example, MacFarlane (2006) has suggested that ideas of

agency might be used, and explores the theme in a wide

ranging paper (MacFarlane, 2003). In a related context, we

note that computer scientists are also addressing this area

using formal logic (Mardare & Priami, 2005). It seems likely

that the world of control systems dynamics and computer

science will converge in this area.

7.2. Beyond the human genome

The scientific world was surprised when the human genome

was found to contain so few components and that a large

number of these components are shared with other species.

Thus the human genome is in itself insufficient to explain the

complexity and variety of human life, and the subsequent

research thrust in genomics has been an attempt to explain this

puzzle. There are however a number of possibilities (Noble,
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2006) associated with information that lies beyond the

genome,3 but one has a special resonance for engineers. It

goes as follows: the genome is accounted for by a small

percentage of the total DNA sequence. The remaining non-

coding DNA is generally considered to be ‘junk’ left over from

many generations of random evolutionary steps.

To an engineer the more plausible theory is that the non-

coding DNA is associated with the operation and regulation of

gene expression. In this theory the genome is the ‘set of parts’

for a system, and the non-coding DNA provides the assembly

and operating instructions for those parts. This analogy gains

credence when one compares the manner of operation of coding

DNA sequences with the action of formal computer code

(Amos, 2006). A prominent proponent of this viewpoint is

Mattick (Gibbs, 2003) whose explanation of non-coding DNA

resembles the language of digital computer control (Mattick &

Makunin, 2006). This and other features of non-coding DNA

are susceptible to a systems interpretation that offer exciting

research opportunities for the control theorist.

7.3. Evolvability of living systems

This is an area that holds many opportunities for dynamical

systems theory (Nowak, 2006) for the following reasons. The

basic tenet of the Theory of Evolution (Darwin, 1998) is that

evolution occurs through a series of random mutations. However,

the practical evidence of evolution is that once useful features of

an organism have arisen, they are preserved in subsequent

evolutionary stages. The eukaryotic cell and distinct organs are

examples of useful evolutionary developments that are preserved

features. The implication is that evolution proceeds not by a

series of truly random mutations, but is constrained in a way

whereby components are not subject to change in future

evolutionary steps if they are beneficial to the organism.

The idea of preserved features is taken to the cellular level in

Kirschner and Gerhart (1998), from a molecular and genetic

viewpoint, and elsewhere from a systems viewpoint (Freeman,

Kozma, & Werbos, 2001). The idea of constraint within a

process of sequential improvement immediately causes a

control theorist to think of constrained stochastic optimisation

techniques. Thus, detailed biological issues apart, it should be

possible to study constrained evolutional systems from the

control theoretic viewpoint of constrained optimal control. In

this framework stochastic populations of objects change in

response to changes in environment and within constraints

prescribed by the principle of retained function. This approach

would offer a theory that included retention of evolved features,

and could potentially offer insights into the underlying

organising principles of Section 7.1.

As a codicil to this subsection, the idea of there being general

organising principles underlying the mechanisms of life occurs

in all areas of biological systems research. Concepts of

evolvability, emergent behaviour, context-dependent adapta-
3 Beyond the DNA code itself there are yet more possibilities in the area

known as epigenomics (Beck & Olek, 2003).
tion and robustness occur in different interpretations. These

range from the view in Kitano (2004) of robustness (Section

6.1) as an organising principle rather than a property endowed

by structure, to the biological reading of adaptation in

Kirschner and Gerhart (1998) and evolvability of motifs

mentioned in Section 3.3(Voigt et al., 2006). These ideas

overlap in ways described in, for example, Wagner (2005). Any

control theorist venturing into this area will need to read widely

and deeply. The intellectual challenges are enormous, but the

reward could be important to our understanding of life.

8. Conclusion

8.1. On models

The systems biology approach to living organisms can be

considered as part of the ongoing process of unification within

science in which mathematical models have played a central

rôle (Gribbin, 2002). Newtonian physics presented mathema-

tical rules which, when combined with the ideas of many other

great scientists, gave the means to build deterministic

mathematical models of the physical world—models that were

later enriched by Relativity Theory. Quantum physics then gave

a model of atomic structure which laid down the physical basis

for chemistry. In a similar vein, astrophysics presents models of

the structure and composition of the universe and how elements

are formed, and our understanding of carbon-based molecules

provides models of how life could arise.

Considered from this viewpoint, the systems approach to

biology, with its current focus on the development of

mathematical models and their analysis, is a logical sequel

to the sequence of research that established the mathematical

foundations for modern physics and chemistry. In the context of

biology, the wonderful thing about a mathematical model is that

it gives an objective quantitative format within which to embed

and collate experimental observations, and then test the validity

of biological hypotheses. By harnessing the power of modern

scientific computation, such models provide a means for

analysis and the organisation of information across a range of

different and complex topics. In this spirit, a mathematical

model can become the repository of shared knowledge and a

focus for the interdisciplinary team work that systems biology

requires.

8.2. On change

As mentioned in Section 1, the complexity of life means that

applying a systems approach to biological processes is vastly

more difficult than any problem that the physical and

technological worlds have yet presented. Thus, progress in

systems biology will be slow and by steady increments. The

complexity of life will require us to check many directions and

establish activities in many research areas. The aim of this

article has been to show in general where research is already

going, and in particular to indicate some research areas suitable

for those control systems expert who elect to change to systems

biology.
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Changing one’s area of intellectual pursuit is hard in the

modern research environment where constant productivity is

demanded, but in the case of control systems research it is

timely. The fact is that control as a research discipline has long

reached maturity. The excitement of the early days has faded

and there is a need for renewal—a situation that makes

Goethe’s maxim (Seehafer, 1999) appropriate:

Becoming older means entering on fresh business. All

circumstances change and one must completely stop acting

or take a new rôle with deliberation and awareness.
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