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Abstract— In this paper, we study a formation control scheme
that achieves a tight formation in a 1D platoon. The scheme
achieves constant inter-vehicle spacings (with no transient) for
almost every vehicle pair whenever there are no disturbances.
We build up from the basic leader following approach with a
modification in the weight selection. In particular, each member
tracks the movement of its immediate predecessor but also uses
the leader state, which needs to be transmitted, in order to
achieve a tight formation. The key design choice is the use
of filters for the measurements that set the transfer functions
from the leader trajectory to the inter-vehicle spacings to zero
whenever possible. We support the analysis of the architecture
with numerical simulations.

I. INTRODUCTION

Formation control of autonomous vehicles is a topic that
has received an important amount of attention in recent
decades. [1], [2], [3], [4]. Its importance in applications to
automated highway systems, particularly the simple case of
a 1-D platoon of linear vehicles, motivates several recent
works, with researchers considering diverse alternatives to
achieve coordinated movement of a string of vehicles (see
[5], [6] and the references therein).

A simple control strategy is to equip every member of
the formation with a compensator that stabilizes its position
in closed loop, using as a reference the position of its
predecessor on the string plus a desired inter-vehicle spacing.
Using integral feedback control, this approach achieves a
tight formation in steady state for any constant speed of
the leader vehicle. More elaborate approaches also consider
using the states of the lead vehicle and/or the states of other
members of the formation (see for example [7], [8], [9] and
the references therein).

Among the important properties of a formation control
architecture we have the stability of the full interconnected
system. In [10], the authors discuss the effect of the infor-
mation flow in vehicle formations and how the eigenvalues
of the graph Laplacian matrix play an important role when
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determining stability. Other aspects of importance in the
architecture are those of performance and safety. Works
such as [5], [11], [12] describe how in interconnections
that are stable, disturbances may be amplified along the
formation resulting in poor performance or even collisions
(string instability).

Most strategies also aim to obtain a tight formation,
where vehicles maintain a constant inter-vehicle spacing
when travelling at a constant speed. This feature is usually
a consequence of using certain configurations between the
members of the platoon. The motivation behind this is the
possibility of reducing fuel consumption by decreasing drag
in real applications (See for example [13] and the references
therein).

The present work deals with a leader following unidi-
rectional control architecture where the leader moves inde-
pendently; in such scenarios a follower does not detect or
manoeuvre in response to disturbances that affect members
behind it. Moreover, the main goal of the architecture is to
achieve constant inter-vehicle spacings (with no transients)
whenever possible. The main contribution of this paper is
to provide a design procedure for a control architecture
achieving this tightness property with almost no restrictions
on the vehicles and local controllers.

The paper is organized as follows. Section II gives some
notation and describes the leader following formation con-
trol scheme. Section III presents the associated dynamics
obtained by the use of the chosen architecture. In Section
IV we present the design choices that provide tightness to
the platoon. Some numerical examples and comments on the
main results are shown in section V. Section VI contains
some conclusions and lines of future work.

II. FRAMEWORK AND PROBLEM FORMULATION

A. Notation

The notation used in this paper follows much of the
standard systems and control literature. Lowercase is used
for real scalar signals, x : R→ R with specific values of the
signal denoted by x(t). Uppercase is used for scalar complex-
valued Laplace transforms of signals and transfer functions,
X : C → C with specific values denoted by X(s). For the
sake of brevity in the notation, where there is no confusion,
the argument (s) will be omitted. Vectors will be denoted
as x(t) ∈ Rn and X ∈ Cn, while x(t)> and X> denote
their transposes. The imaginary unit is denoted by j, with
j2 = −1. Boldface will be used for matrices G ∈ Cn×m and
the (i, k)-th entry of G is denoted by Gi,k. The magnitude
of X when s = jω, ω ∈ R, is denoted by |X| and its
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Fig. 1. Small vehicle platoon. xi: position of the i-th vehicle. ei = xi−1−
xi: inter-vehicle spacing between the (i− 1)-th and i-th vehicles.

magnitude peak over all possible values of ω is denoted as
||X||∞ := supω |X(jω)|.

B. Vehicle models and control strategy

We consider a platoon of N ∈ N vehicles, with positions
xi(t), 1 ≤ i ≤ N modeled by linear time invariant systems
(See Figure 1). In the frequency domain, the model of
each member of the platoon is given by (omitting initial
conditions)

Xi = Hi(Ui +Di) for 1 ≤ i ≤ N, (1)

where Xi denotes the Laplace transform of xi(t), Ui is the
control action and Di is an input disturbance. Ui and Di are
both acting on the i-th member. The transfer functions Hi

have a single pole at the origin and are strictly proper. Now,
we denote the separation errors, for i > 1, as

eprei (t) = xi−1(t)− xi(t)− εi, (2)

eleai = x1 − xi −
i∑

j=2

εi, (3)

and using the Laplace transform,

Epre
i = Xi−1 −Xi −

εi
s
, (4)

Elea
i = X1 −Xi −

i∑
j=2

εi
s
, (5)

where the εi > 0 are desired inter-vehicle spacing constants.
The error Epre

i is the inter-vehicle spacing between the i-th
member of the platoon and its predecessor, while the Elea

i

is the spacing between the i-th member and the leader.
Remark: For simplicity in the exposition we will assume

that εi, and the initial conditions xi(0) and ẋi(0) for i =
1, . . . , N are compatible, that is, such that ei(0) = 0 for
i = 1, . . . , N . In this way, we only study the effect of the
disturbances Di on the separation errors Epre

i . In particular,
and without loss of generality, we will set εi = 0 for all i
and set every initial condition to zero.

Now we define the control actions

U2 = C2E
pre
2 (6)

Ui = Ci(ηiE
pre
i + (1− ηi)Elea

i ), (7)

where Ui is the output of the compensator Ci at the i-th
car and ηi are stable transfer functions to be designed for
i > 2. With these selections, every member of the string
aims to track the position of the leader, while maintaining a
safe distance with respect to its immediate predecessor.

In typical leader following settings the weights ηi are such
that ηi = η for all i with η ∈ (0, 1). The standard reason

for this selection is to achieve a bounded propagation of
disturbances along the string (string stability, see for example
[5], [14]). In the following sections we will consider ηi that
are dynamic filters instead of real constants.

III. DYNAMICS OF THE INTERCONNECTED SYSTEM:
HOMOGENEOUS CASE

First, we will consider the homogeneous case, that is, the
case where every vehicle has the same model and controller.
In other words Hi = H and Ci = C for all i = 1, . . . , N .
In this case, the interconnection defined by (6) can be
described by the transfer function from the disturbances
D = [D1 · · · DN ]

> to the positions X = [X1 · · · XN ]
>:

X = (I −HCG)−1HD, (8)

where I is the N ×N identity matrix and G is the matrix:

G =


0
1 −1

1− η3 η3 −1
...

. . . . . .
1− ηN . . . ηN −1

 . (9)

The term G1,1 = 0 implies that the first vehicle moves
independently and its position is given by

X1 = HD1. (10)

Although we have homogeneous vehicles, we consider ηi
to be dynamic and arbitrary for i > 2. If we define the usual
complementary sensitivity functions as

T =
HC

1 +HC
, (11)

S = 1− T, (12)

we have

X =


S
−T 1

(η3 − 1)T −η3T 1
...

. . . . . .
(ηN − 1)T −ηNT 1


−1

SHD.

(13)

Since the matrix to be inverted is lower triangular, we can
easily express the dynamics of the vehicle positions.

Remark: In the following we will focus on the effect of
the disturbance on the first vehicle D1 and assume that for
all i > 1, Di = 0 for all s. The reason for this is that we are
mainly interested in the behaviour of the string in nominal
conditions, that is, when the movement of the string is only
caused by the movement of the leader. At the same time, we
will obtain conditions on the ηi based on this assumption.
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We have that

X =



1
T

T̃3
T̃4
...
T̃N


HD1, (14)

where

T̃k = T −
k∑

i=3

T k−i+1S

k∏
j=i

ηj

 , (15)

for k = 3, . . . , N .
Now, we are interested in the spacing errors from one

vehicle to its immediate predecessor, i.e. Epre
k = Xk−1−Xk

for k = 2, . . . , N . Then these errors are given by Epre
2
...

Epre
N

 =

 1 −1
. . . . . .

1 −1

X (16)

=


S

T − T̃3
T̃3 − T̃4

...
T̃N−1 − T̃N

HD1.

We can rewrite the right hand side as
S

T − T̃3
T̃3 − T̃4

...
T̃N−1 − T̃N

HD1 =


1
T3
...
TN

SHD1, (17)

where Tk satisfies

Tk = ηkT + (ηkT − 1)

k−1∑
i=3

T k−i
k−1∏
j=i

ηj

 , (18)

for k = 3, . . . , N − 1, with T3 = η3T . If η3 = η4 = . . . =
ηN = η̃, then Tk = (η̃T )k−1. This is in agreement with
results presented in [5].

A. Filters ηi selections for homogeneous case

Now, we study a possible selection for the sequence {ηk}.
From a practical point of view (for example optimization of
fuel consumption [13]) it would be ideal to have Epre

i = 0
for all s and all i ≥ 2. However, the inter-vehicle spacings
between the first and second vehicles Epre

2 = SHD1 and
between the second and third vehicles Epre

3 = η3TSHD1

are fixed for any possible selection of ηk or controllers.
Nevertheless, for k = 4 we have

T4 = η4T + (η4T − 1)Tη3, (19)

and solving T4 = 0 yields

η4 =
η3

1 + η3T
. (20)

For i = 5 we have

T5 =η5T + (η5T − 1)(η3η4T
2 + η4T ),

=η5T + (η5T − 1)η4T (1 + η3T ), (21)

and using η4 obtained in (20) we have

T5 =η5T + (η5T − 1)η3T. (22)

Solving T5 = 0 now yields

η5 =
η3

1 + η3T
. (23)

It is straightforward to compute that for a fixed η3, the
selection

ηk =
η3

1 + η3T
, k ≥ 4 (24)

yields Tk = 0 for all s.
For movements of the leader, this selection allows a re-

sponse of the vehicle platoon that resembles the movement of
a train (with the exception of the first two followers). It must
be noted that the selection of η3 can be any stable transfer
function and it must be selected in order that η3/(1 + η3T )
is also stable.

The selection of the sequence {ηk} was made with the
aim of obtaining Epre

k = 0 for all s whenever possible for
disturbances (or movement) at the leader. These selections
may not provide a satisfactory response of the vehicle string
for disturbances at the followers. This is currently being
investigated in detail with aims to assess the string stability of
the interconnection. Nevertheless, in Section V we consider
the effect of disturbances at followers and the response of
the interconnection in numerical simulations.

IV. DYNAMICS OF THE INTERCONNECTED SYSTEM:
HETEROGENEOUS CASE

Now we consider the heterogeneous case. We will use an
alternative method for obtaining a sequence ηk that achieves
a tight formation. First, we define

Tk =
HkCk

1 +HkCk
. (25)

In general, for Dk = 0 for k > 1, the vehicle positions are
given by (omitting initial conditions)

X1 = H1D1, (26)
X2 = T2X1, (27)
Xk = Tk((1− ηk)X1 + ηkXk−1), k > 2. (28)

Since it is not possible, as in the homogeneous case, to
achieve Epre

3 = 0 we fix η3 to be arbitrary and search for
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Fig. 2. Time response of the inter-vehicle spacings with a step disturbance
at the leader d1(t) = µ(t−1) for a platoon with non-homogeneous weights
ηk .

ηk such that Epre
k (s) = 0 for all s with k > 3. In particular

we have that

Epre
3 = X2 −X3 = T2X1 − T3((1− η3)X1 + η3X2)

(29)
= (T2 − T3(1− η3)− η3T2T3)X1, (30)

(31)

and we set

T̃ = T3(1− η3 + η3T2). (32)

By setting Epre
k (s) = 0 in the control signal definition in

(6) we obtain

Xk =
HkCk(1− ηk)

1 +HkCk(1− ηk)
X1, k > 3. (33)

Now, for Epre
4 we have

Epre
4 = X4 −X3 =

H4C4(1− η4)
1 +H4C4(1− η4)

X1 − T̃X1, (34)

and setting Epre
4 = 0 yields

H4C4(1− η4)
1 +H4C4(1− η4)

= T̃ . (35)

Working iteratively we can conclude that in order to have
Epre

k = 0 for k > 3, we must have

1− ηk =
T̃

HkCk(1− T̃ )
. (36)

Remarks: The expression in (36) gives a selection of the
filters ηk in order to achieve tight inter-vehicle spacings with
no transient when only the leader moves independently (there
are no disturbances). These filters for every vehicle depend
on the local parameters Hk and Ck and on the parameter T̃
which is fixed by the selection of η3 and the second and third
vehicles of the string. This in turn means that any vehicle
that desires to merge into the platoon just needs to be aware
of T̃ on top of the usual requirements for leader following
schemes (assuming that every vehicle in front is following
the same algorithm for implementing the control).
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Fig. 3. Time response of the inter-vehicle spacings with a step disturbance at
the second member d2(t) = µ(t−1) for a platoon with non-homogeneous
weights ηk .

On an additional note, (36) gives constraints on the local
controllers considering that once T̃ is fixed, Ck must be
chosen such that ηk is a proper transfer function and the
local closed loop at the k−th vehicle is stable.

Finally, we note that the outcome of having no transients
for the inter-vehicle spacings after the third vehicle is highly
sensitive to model uncertainty. This is the topic of ongoing
research.

V. NUMERICAL EXAMPLES

A. Homogeneous case

We consider a homogeneous string with the parameters
(Taken from [5])

H =
1

s(0.1s+ 1)
, (37)

C =
2s+ 1

s(0.05s+ 1)
. (38)

Additionally we set η3 = 0.5 and consequently

T =
400s+ 200

s4 + 30s3 + 200s2 + 400s+ 200
, (39)

ηk =
1

2 + T
=

0.5s4 + 15s3 + 100s2 + 200s+ 100

s4 + 30s3 + 200s2 + 600s+ 300
, (40)

for k > 3, which are stable for the particular selection of C
and H . For a step input to the lead vehicle, d1(t) = µ(t−1)
we obtain the transient response shown in Figure 2. All the
inter-vehicle spacings eprei (t) are 0 for i > 3 as desired and
imposed in the derivation of the sequence ηk.

As dealing with the expressions for the response of the
platoon for disturbances to the followers requires more
derivations, we will illustrate this case with a simulation.
In Figure 3 we can see the time response of the platoon to
a disturbance at the second vehicle d2(t) = µ(t − 1). The
inter-vehicle spacings along the string have magnitude peaks
that are smaller than the peak for epre2 (t). This suggests that
the sequences of transfer functions from disturbances at the
followers to other followers could be string stable. A future
extension is then to compute such sequences for arbitrary
parameter values, and find the conditions for string stability.
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B. Heterogeneous case

Now we consider a heterogeneous string. For the first three
vehicles we have

H1 = H2 = H3 = H =
1

s(0.1s+ 1)
, (41)

C2 = C3 = C =
2s+ 1

s(0.05s+ 1)
. (42)

For k = 4, . . . , 8 we have

Hk =
1

s(0.1s/k + 1)
. (43)

With these parameters and setting η3 = 0.5 we have

T2 = T3 = T, (44)

T̃ =
T (1 + T )

2
, (45)

with T obtained in (39) above. A simple numerical check
shows that Ck = C defined in (41) implies that every Tk is
stable for k > 3. Therefore, we have that

ηk = 1− H(1 + T )

Hk(2 + T )
, k > 3. (46)

It is possible to check that ηk is strictly proper for k > 3.
For the same disturbances as in the homogeneous case, the
time responses are very similar therefore we omit them.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have considered a unidirectional strategy
for the formation control of a string of vehicles. We have
shown that the vehicles can use filtered measurements of the
leader and their immediate predecessor in order to obtain a
quasi train-like behaviour under nominal operation (with no
disturbances and starting from the desired formation). This is
feasible even for a heterogeneous string, namely, for a string
with different vehicles using different controllers.

The most noteworthy feature of the control strategy is
that the vehicles do not need to know all the characteristics
of every predecessor but only of the first few vehicles.
This allows for reduced coordination requirements and the
possibility for new vehicles to merge in the platoon in a
simplified fashion.

Future lines of work include a more detailed study of the
behaviour of the interconnection under disturbances at any

member of the platoon. It is also of interest to assess the
string stability of the control architecture and the behaviour
when there are modelling errors or uncertainties. We also
aim to consider disruptions of the leader state that must be
transmitted to the followers.
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