
A
TL

-D
A

Q
-P

R
O

C
-2

01
7-

02
2

28
A

ug
us

t2
01

7

Approaching Incast Congestion with Multi-host
Ethernet Controllers

Grzegorz Jereczek, Giovanna Lehmann-Miotto
CERN

Geneva, Switzerland
{grzegorz.jereczek|giovanna.lehmann}@cern.ch

David Malone
Maynooth University
Maynooth, Ireland

david.malone@nuim.ie

Miroslaw Walukiewicz
Intel Corporation
Gdansk, Poland

miroslaw.walukiewicz@intel.com

Abstract—The bursty many-to-one communication pattern,
typical for data acquisition systems, but also present in datacenter
networks, is particularly demanding for commodity TCP/IP
and Ethernet technologies. We expand our study of building
incast-resistant networks based on software switches running on
commercial-off-the-shelf servers. In this paper we provide the
estimates for costs and physical area required to build such a
network. Our estimates indicate that our proposed design offers
significant cost advantage over traditional solutions, but higher
space utilisation. Next, we show how the latter can be improved
with multi-host Ethernet controllers, as an alternative to typical
network interface cards. This can also make software switching
easier to adapt in datacenter as a solution for incast congestion.
We confirm the capabilities for incast-avoidance by evaluating
the performance of a reference platform.

I. INTRODUCTION

A many-to-one traffic pattern is particularly demanding for
TCP/IP and Ethernet technologies and it is at the source of a
network congestion problem. It leads to so-called incast con-
gestion, which is perceived as a throughput collapse occurring
when the number of servers sending data to clients increases
past the ability of an Ethernet switch to buffer packets.

Incast congestion has been broadly studied in the context
of datacenter networks (DCNs), but it is also present in data
acquisition (DAQ) networks [1]. The latter are an important
component of large-scale experiments, like the Large Hadron
Collider (LHC) at CERN. A DAQ network collects the outputs
from all the instruments to reconstruct a physical process.

In [2], [3] we presented software switches as an alternative
approach to incast congestion in DAQ. We showed saturation
at bidirectional bandwidth of 120 Gbps with a single software
switch on real hardware under strong congestion, but also
the possibility to scale to terabit networks. Aspects that have
received little attention so far are costs and space consumption.

Here we show costs are better for software switching,
however we see space usage can be an issue. It can be reduced
using a new class of Ethernet devices — multi-host Ethernet
controllers [4]. These devices combine a traditional network
interface controller (NIC) with an Ethernet switch. However,
since their performance characteristics are slightly different,
we recheck that performance is still sufficient. Furthermore,
we will explain how the shortcomings of software switching,
limiting their application in DCNs, can be overcome with
multi-host Ethernet controllers.

Readout System (ROS)

Data Collection
Manager (DCM)

DAQ network

(a)

ROS

DCM

Traffic shaper

D
PD

K
rings

ingress
ports

egress
ports

(b)

Fig. 1. Many-to-one pattern in a DAQ network (a). Data originating from the
experiment are sent over a network to data collectors. Only one collector is
drawn for clarity. The buffering mechanism providing a dedicated queue for
each data collector is shown in (b).

We use the ATLAS experiment [5] as a case study. It is
a general-purpose particle detector designed to study particle
collisions at the LHC. Its DAQ network, having demanding
traffic characteristics, is a good environment to evaluate can-
didate technologies. The conclusions apply, however, to other
networks susceptible to incast.

This paper is structured as follows. Section II gives back-
ground information on the topics to be discussed here. The
costs and the physical space for building large DAQ networks
with software switches are discussed in Section III, whereas
Section IV shows the performance of multi-host controllers
under incast congestion. We conclude our work in Section V.

II. BACKGROUND AND MOTIVATION

A. DAQ networks and many-to-one communication

In LHC nomenclature, particle collisions inside a detector
are referred to as events. Their physical “fingerprints” are
recorded by the detector, here being the ATLAS experiment
[5], which is the data source for the DAQ system. Fragments
corresponding to an event are usually buffered on multiple
readout units, which constitute the Readout System (ROS).
The DAQ network connects the ROS to a computer farm which
retrieves, processes and filters the events (HLT — High Level
Trigger). Every HLT node requests fragments of an event from
the ROS. A number of independent worker processes run on
a single filtering node, working on different events. However,
there is only one process (DCM — Data Collection Manager)

per node that handles all the communication on behalf of the
processing units.

The many-to-one traffic pattern, often accompanied by high
burstiness [6], leads to incast congestion. It occurs when
multiple nodes respond with data synchronously to a single
requester, as pictured in Fig. 1a. It has been observed that
these responses, although not very large on average, suffer
from a high packet loss rate [7]. The scale of the problem
increases with the number of responders, i.e. the size of the
readout system in case of DAQ networks.

This incast pattern is particularly demanding for Ethernet
switches and TCP/IP-based communication. The switch ports
connected to data collectors are overcommitted by the data
sent from many readout units. Switches with insufficient
buffers must drop packets. The problem is systematic, so the
built-in TCP retransmission mechanisms are not an effective
solution [6]. They ensure reliability, but with a cost in perfor-
mance. Another option is to provide enough buffering space
within the network, to accommodate traffic spikes and bursts
without the need for discarding data [8]. Large experiments,
like those of the LHC, require particularly large packet buffers.
For example, there are ~100 ROS nodes with 4x10GbE links
and ~2000 HLT nodes with 1xGbE link to the ATLAS dataflow
network. For this kind of network it was shown that a switch
with a shared memory of 1.2 GB provides the best performance
[9]. Only expensive, high-end switches or routers can be taken
into consideration for use [6] as only those offer large enough
memories. Furthermore, the current trend in the industry is to
provide devices with smaller buffers [10] and not with deeper
ones as the scaling needs of the experiments would require.
The lack of buffering is the main obstacle in the use of a
simple push architecture in DAQ [6], [9].

B. Software switches for incast-avoidance

In our prior work we showed that building a high-bandwidth
lossless network based on software switches and a spine-leaf
topology optimized for DAQ is feasible. It can be considered
as a cheaper alternative to the current solutions based on
expensive telecom-class routers with deep buffers or specialist
technologies like InfiniBand.

We use Open vSwitch (OVS) [11], with a dedicated,
throughput-oriented buffering algorithm [3] using DRAM
memory. The overall idea is presented in Fig. 1b. For every
data collector in the system there is a dedicated queue which is
large enough to accommodate traffic bursts towards this DCM.
This approach is flexible and scalable in terms of available
buffers, which can be adjusted to system requirements. Also,
traffic shaping can be performed on these queues in order to
limit the outgoing flow, if there are any bottlenecks in the
subsequent network stages.

Interconnected software switches can scale to terabit net-
works. This is achievable with the popular leaf-spine topology
and flow distribution optimized for a given application. The
ROS nodes and HLT racks can connect to a number of
independent leaf-spine planes depending on the number of
available uplinks and bandwidth requirements. An example of

R R R R R R H H H Pod 1

R R R R R R H H H Pod 2

R R R R R R H H H Pod 3

1

2

3

1

2

3

Pl
an

e
1

1

2

3

1

2

3

Pl
an

e
2

1

2

3

1

2

3

Pl
an

e
3

1

2

3

1

2

3

Pl
an

e
4

Fig. 2. A DAQ network in the parallel spine-leaf topology. Four parallel
planes and three pods with ROS nodes (R) and filtering racks (H). Circles are
the spine (upper layer) and leaf (lower layer) switches.

this topology with four planes and three pods, which contain
six ROSes (R) and three filtering racks (H) each, is depicted
in Fig. 2.

For more details on the design and performance of the
proposed solution, please refer to [3].

C. Multi-host Ethernet controllers

An interesting alternative to using multiple network inter-
faces on commodity servers as software switches is replacing
the former with a new class of Ethernet devices — multi-
host Ethernet controllers. An example is Intel’s FM10000
chip family [4], which offers up to 36 10GbE ports and a
bandwidth of 200 Gbps over four PCIe gen3 interfaces. As
such it provides the features of both a traditional hardware
switch, with a fast ASIC offering large bandwidth for packet
forwarding, and a flexible software switch, with large, but
slower memory, that can be run in parallel.

The advantages in approaching incast congestion in this
way are twofold. First, better port density can be reached.
As we will see in Section III, an example server can be
equipped with 40 10GbE ports and requires three rack units.
In contrast, a device based on the FM10000 chip can fit 72
10GbE interfaces with four servers in four rack units [12].
Second, the possibility to offload only some of the packet
processing tasks to the dedicated switching ASIC can make
our approach to incast congestion more suitable for DCNs. In
[2] we pointed to the potential limitations of software switches
for general workloads, which normally do not apply to DAQ.
Examples are forwarding performance for small packets or
increased switching latency. If incast-sensitive flows were the
only ones redirected to the software switch for buffering and
traffic shaping, other flows would not be susceptible to those
limitations. Furthermore, bufferbloat could be also eliminated.

D. Related work

The majority of approaches to incast focus on control of
the packet injection rate so as not to overwhelm buffers in
the network. The well-known TCP variant for datacenters is
Datacenter TCP (DCTCP) [13]. However, it fails to avoid

incast if there are so many senders that the packets sent in the
first round trip time overflow the buffers [13]. This situation is
not uncommon for high-bandwidth low-latency DAQ networks
under severe all-to-all incast congestion. For a full review of
incast avoidance techniques see [3].

The systems at the LHC experiments follow their own
strategies for congestion mitigation. The ATLAS experiment,
as an example, relies on an application layer solution — traffic
shaping, which is a simple credit-based system [9]. Despite the
successful implementation of the traffic shaping algorithm in
the large ATLAS DAQ network, it was shown in [9] that the
buffering space available in a network plays a crucial role.
Also, large buffers are still provided by costly telecom-class
routers to avoid congestion in the network core. In our work
we focus on providing a cost-effective alternative to them —
software switches. An overview of work in software packet
processing and performance proof is available in [2].

What is not well studied in the literature is a discussion on
costs and space consumption of software switches when build-
ing terabit networks. Some indications for software routers
are provided in [14]. This work considers, however, server
platforms that could provide a bandwidth of 40 Gbps only.
With this work we intend to provide an analysis and potential
improvements at higher scale, using the ATLAS DAQ system
as a use case.

III. COSTS AND PHYSICAL SPACE REQUIREMENTS

The total cost of building a DAQ network is one of the
key factors when choosing a technology. As a matter of fact,
this cost also includes the cost of developing better traffic
shaping techniques in the given configuration, the cost of the
inefficiencies introduced by network congestion, and the cost
of operating a network. The latter includes also the cost of
hiring or training experts for the technology of choice.

Here, we focus on the cost advantage when using a parallel
leaf-spine topology with software switches instead of the
traditional approach with high-end routers in the network core.
Since both solutions are based on Ethernet, we will assume
that the total network cost is the main differentiator.

A. Cost estimation

In case of the DAQ-adapted leaf-spine topology (see Fig. 2),
subsequent leaves and planes are added incrementally (starting
with a single plane with one leaf switch) in order to provide the
required port count. The number of spine switches is prede-
fined and determines the oversubscription factor at the leaves.
1:1 oversubscription is not required for full performance under
specific traffic patterns. For example, in [3], we showed that
only six spine switches are needed if there are seven HLT
racks and 25 ROS nodes in each pod. This means that even
an oversubscription of approximately 5:1 (32:6) is not going
to reduce data acquisition performance.

The overall cost of the parallel leaf-spine network based on
software switches is determined by the total number of servers
used to build this network. We assume here that the same
server is used for all the switches, which is the Supermicro

SuperServer 6037R-TXRF system with ten PCIe 3.0 slots
[15]. This server can be equipped, for example, with two E5-
2697 v2 Intel Twelve-Core Xeon 2.7 GHz processors and ten
quad-port 10GbE network adapters [4]. In this configuration
it should be possible to provide a total of 40 10GbE ports
and a bandwidth of 400 Gbps with a single software switch.
The prices used are catalogue prices from [16], [17]. The
total cost of a single server-switch is approximately £12 000.
Unfortunately, we do not consider the costs of the alternative
version with multi-host controllers as they are not known
at the moment. We estimate, however, that these prices are
comparable or even lower by comparing the costs of the
network chips only. The cost of a single quad-port 10GbE
Intel XL710 chip is $159.99 [4], whereas the FM10840 36-
port chip with 200 Gbps bandwidth over PCIe costs $577.80
[4]. If both approaches are to provide similar bandwidth over
PCIe with a single server switch (400 Gbps), ten quad-port
chips at the cost of $1599.9 or two FM10840 at the cost of
$1155.6 are needed.

The required number of servers Nservers to provide Nports

ports to connect to the network is given by the total number of
leaf switches NLtotal

and spine switches NStotal
. The number

of servers is therefore given by

Nservers = NLtotal
+NStotal

. (1)

The number of spine switches NS in each plane is predeter-
mined and defines the oversubscription factor [18]. Another
predefined value is the number of network ports available on
every server-switch Nportsserver

.
In order to fulfil the requirements a number of parallel leaf-

spine planes is required. Each plane can offer no more than

NportsP = Npods ·Nportspod

ports to connect the end-nodes. Npods is the maximum number
of pods per plane and Nportspod is the number of available
ports in each pod. Since each leaf switch in a plane is
connected to every spine switch in this plane (see Fig. 2),
it is given by

Nportspod = Nportsserver −NS .

A single leaf switch connects also to a single pod. The
maximum number of pods in a plane is therefore equal to
the maximum number of leaf switches in a plane NL. Since
each spine switch has to be connected to every leaf switch in
a plane, the maximum number of leaf switches in a plane NL

is determined by the number of ports available on a single
switch. The maximum number of pods in a plane is therefore

Npods = NL = Nportsserver
.

The number of fully filled planes is then calculated with

NPfull
=

⌊
Nports

NportsP

⌋
=

⌊
Nports

Npods ·Nportspod

⌋
=

⌊
Nports

Nportsserver · (Nportsserver −NS)

⌋
.

(2)

0 100 200 300 400 500 600 700 800

Total no. of 10GbE ports

0

1

10

100

Pr
ic

e
ra

tio
[t

ra
di

tio
na

l/l
ea

f-
sp

in
e]

Oversub. 1:1 (NICs)
Oversub. 3:1 (NICs)
Oversub. 4:1 (NICs)

Fig. 3. Costs comparison for building a DAQ network with the traditional
approach (large routers in the core) and the parallel leaf-spine topology
(software switches) with different oversubscription factors at the leaf switches.
The cost of cabling is not included.

The remaining ports are provided by a subset of NLrem leaf
switches only in another plane. The number of spine switches
remains the same as the predefined value NS . The number
of leaf switches is equal to the number of pods required to
provide the remaining ports NPrem

and can be calculated with

NLrem =

⌈
Nportsrem

Nportspod

⌉
=

⌈
Nportsrem

Nportsserver
−NS

⌉
,

(3)

where the number of remaining ports is given by

Nportsrem =Nports −NPfull
·NportsP = Nports−

NPfull
·Nportsserver · (Nportsserver −NS) .

(4)

Equation (1) can be now re-expressed as

Nservers = NLtotal
+NStotal

= NLrem +NS +NPfull
(NL +NS)

= NLrem +NS +NPfull
(Nportsserver +NS)

= NLrem
+NS

(
NPfull

+ 1
)
+Nportsserver

,

(5)

considering the servers used to build the planes with the max-
imum number of pods and the plane providing the remaining
pods. In the end, equations (2) to (5) are sufficient to calculate
the total number of servers required to build parallel leaf-spine
fabrics offering Nports ports with NS spine switches in each
plane and Nportsserver ports on each server-switch.

1) The reference solution: The current ATLAS DAQ net-
work architecture [9] is used as a reference solution. We
assume that at least one Brocade MLXe 32 [19] chassis
is used. Subsequent chassis and 10GbE modules (24-port)
are added incrementally when increasing the total number
of available network ports. The ROSes and HLT racks are
connected directly to the router, so the oversubscription cannot
be altered from 1:1. The catalogue prices1 are used [20].

1The cost of the chassis is £62 808, the single 24-port module is £33 058,
and the single switch fabric module is £4709.

0 100 200 300 400 500 600 700 800

Total no. of 10GbE ports

0.0

0.2

0.4

0.6

0.8

A
re

a
ra

tio
[t

ra
di

tio
na

l/l
ea

f-
sp

in
e]

Oversub. 1:1 (NICs)
Oversub. 3:1 (NICs)
Oversub. 4:1 (NICs)

(FM10000)
(FM10000)
(FM10000)

Fig. 4. Comparison of the total area required to build a DAQ network with the
traditional approach and the parallel leaf-spine topology (software switches)
with different oversubscription factors at the leaf switches.

2) Comparison: Fig. 3 shows that the DAQ network of the
size of the ATLAS experiment using software switches can
be three times cheaper than the current solution in the range
from 100 to 800 ports. The advantage grows when increasing
the oversubscription factor, which can be used to some extent
without any performance degradation in the DAQ use case, as
explained in Section III-A. For lower port counts, the ratio is
larger due to the high cost of the reference router chassis.

The case when the reference solution is cheaper is for an
oversubscription of 1:1 and lower port counts. In few configu-
rations, the traditional approach can be cheaper. This is caused
by the fact that many spine switches are used for a small
number of pods. This is, however, not a realistic configuration
as the network would remain highly underutilized.

B. Physical space

The physical space required to house the entire set of
network hardware is also an important factor when designing
a DAQ or a datacenter network. This becomes particularly
important in space-constrained areas, like at the LHC experi-
ments. For this reason, we provide an estimate on the physical
dimensions of a DAQ network based on software switches.

Following the same methodology as in the previous section
the space requirements can also be discussed. Fig. 4 shows the
ratio of the physical area required by the reference solution to
the area required by the proposed topology. For the former,
the area is given by the dimensions of the Brocade MLXe 32
chassis [19]. For the latter, the dimensions of racks required
to fit all the server-switches determine the total physical area
needed (see Section II-C). We use a reference rack from [21].

In this case, the traditional approach is advantageous. For
higher oversubscription factors, server-switches in the leaf-
spine fabrics require two to four times more physical area.
Although the ratio remains in the single-digit range, this
aspect has to be considered when designing a DAQ system.
Increased space usage can increase the costs in the end. But
Fig. 4 also shows a potential improvement considering the
multi-host Ethernet controllers introduced in Section II-C. By
replacing NICs with a device based on the FM10000 chip
family [12] up to twice as many ports can fit the same physical

Device under Test

Intel Xeon
E5-2660 V3

10 cores
2.6 GHz

Intel Xeon
E5-2660 V3

10 cores
2.6 GHz

2 QPI
links

9.6 GT/s

4 memory channels
DDR3-2133
32 GB total

4 memory channels
DDR3-2133
32 GB total

PCIe 3.0
40 lanes

PCIe 3.0
40 lanes

FM10840
Reference platform

24 x 10GbE ports

4 x PCIe x8 ports

PC
Ie

x8
PE

P0

PC
Ie

x8
PE

P1

PC
Ie

x8
PE

P2

PC
Ie

x8
PE

P3

(a)

DuT

Emulated ROS
(12 readout nodes)

HLT rack
(30 data collectors)

10 Gbps

1 Gbps

(b)

Fig. 5. Block diagram of the DuT (a) and the evaluation setup (b).

space. Although the density offered by traditional network
designs is still not reached, space utilisation is improved. For
this reason, such devices could be considered an alternative
to traditional NICs in the proposed design. However, since
their performance characteristics are slightly different, in the
following section we will confirm that the software switch
performance demonstrated in our prior work is not impacted.

IV. MULTI-HOST ETHERNET CONTROLLERS FOR
INCAST-AVOIDANCE

As we explained in Section II-C, the limitations of soft-
ware switches could be largely avoided by offloading incast-
sensitive flows to the software switches themselves. In this
section we evaluate the performance and discuss whether these
devices are indeed suitable for incast-avoidance.

A. Device under test

The device under test (DuT), see Fig. 5a is a reference plat-
form, being an Ethernet switch (FM10840 chip [4]) with 24
10GbE ports and four PCIe ports (PEPs). PEPs are connected
with PCIe cables to four PCIe x8 gen3 slots of a COTS server.
This arrangement is used in the following configurations.

a) Traditional Ethernet switch (PEPs:0): Only Ethernet
ports are used and switching is performed by the FM10000
chip. PEP ports are not used. This configuration is used as
a baseline (typical Ethernet switch). Congestion avoidance is
implemented with a static TCP congestion window [1], the
IEEE 802.3x PAUSE frame mechanism [22] at the switch and
NICs, or with application layer traffic shaping [9], which limits
the number of parallel data requests. Whenever possible, the
algorithms are tuned to reach maximum performance.

b) Traditional Ethernet switch with extra software queues
(PEPs:1|2|3|4): Those queues, which we refer to as daqrings
[3], are used to accommodate many-to-one bursts. Here, pack-
ets incoming on Ethernet ports that match some predefined
rules (like source/destination MAC/IP addresses, TCP ports,
etc.) are redirected to the PEP ports (one, two, three or four
PCIe ports can be used) and handled by a software switch

running on the COTS server (Open vSwitch 2.4.0 with our
custom patch [23]). This software switch is programmed to
enqueue the packets in those daqrings in order to avoid incast
congestion. On the other end, the packets are dequeued from
daqrings (with optional traffic shaping) and sent back to the
switching ASIC over the same PEP ports. There, they are
switched to appropriate output Ethernet ports. This approach
provides large buffers in the DRAM memory of the host and
traffic shaping on a per daqring basis, so that a DAQ network
is optimized and can provide lossless operation.

B. Traffic generation

For traffic generation we use an emulated ATLAS
DAQ/HLT system in a scaled-down configuration, see Fig. 5b.
Each of the twelve emulated ROS nodes provides 24 dummy
event data fragments of 1 kB. These nodes are connected with
a single unshared 10 Gbps link to the DuT. There are also 30
DCMs connected with a single unshared 1 Gbps link to a Top
of Rack (ToR) switch. This switch connects to the DuT with a
single 10 Gbps link. On each DCM node there are also twelve
independent processing units, which request events from ROS
systems in parallel. A single unit does not request another
event before it receives all fragments of the previous one from
all available ROSes. No event processing is performed so the
DuT can be analysed in isolation from other factors.

The data collection latency of a single event is understood as
the timespan between sending the first request to the ROS and
receiving the last fragment from the ROS. Goodput (sustained
load) is calculated as the raw event data bandwidth excluding
all protocol overheads (Ethernet, TCP/IP, ATLAS protocol).
Latency and goodput are averaged over approximately 120 s.

Unless otherwise stated, we disable dynamic TCP conges-
tion control in all ROS hosts and instead use a static sender
congestion window. The window is set to a very large value
so that each ROS is not rate limited by TCP. This allows us
to evaluate the performance of various approaches to incast
without the influence of congestion control. This is also the
best DAQ scenario, in which available data are pushed on the
wire and the readout system can be simplistic. All tests are
performed with an MTU of 1500 B.

C. Evaluation

In [3] we showed that optimized software switches can
provide 15 % higher goodput than regular switches. Here, all
solutions are expected to provide similar performance because
of lower incast congestion. We aim to verify our solution
remains valid on the multi-host controller.

The results are presented in Fig. 6. We compare ATLAS
traffic shaping (PEPs:0), static TCP (PEPs:0, the sender
congestion window is tuned to maximize the performance),
PAUSE frames (PEPs:0), and daqrings with traffic shaping
(PEPs:3), each in their optimum configuration. All approaches
mitigate incast congestion and sustain the requested load
(Fig. 6a). For daqrings, a rate limit of 344 Mbps is optimal
to reach full load. For 1.38 Gbps the highest loads cannot be
reached as there are too many overlapping traffic bursts and

20% 40% 60% 80% 100%

Offered load Go f f

0%

20%

40%

60%

80%

100%

Su
st

ai
en

d
lo

ad
G

su
st

ATLAS TDAQ

PEPs:3; daqrings:344Mbps
PEPs:3; daqrings:1.38Gbps
PEPs:0; traffic shaping (app)
PEPs:0; static TCP
PEPs:0; PAUSE (rx/tx)
PEPs:0; push

(a)

0% 40% 80%
1

10

100

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

Go f f = 10%

0% 40% 80%

Go f f = 70%

0% 40% 80%

Go f f = 99%

PercentileATLAS TDAQ

(b)

Fig. 6. Performance comparison of various incast avoidance techniques.
Sustained load in (a) and the distribution of data collection latency in (b).

switch buffers are overflow. We also plotted the case without
any congestion or flow control, using a simple push of all data
over the network, in which it cannot operate at more than 10 %
of the available bandwidth because of strong incast congestion.

Latency and jitter (Fig. 6b) are significantly increased for
PAUSE frames because of the head-of-line blocking effect
[24]. Higher latency is also true for daqrings, but with low jitter
(flatter curve). Furthermore, at lower loads larger bursts can
be tolerated by the network, so daqrings can be tuned and the
rate limit can be increased to minimize latency. With the rate
limit of 1.38 Gbps the lowest latency and jitter are achieved at
a load of 70 %. In this configuration, daqrings provide lowest
latency and jitter. At full load, a rate limit of 344 Mbps is
required to sustain the load, but here the latency is higher than
in case of traffic shaping and static TCP. With a rate limit of
1.38 Gbps all bursts can no longer be absorbed by the network,
the configuration is not optimal and packet retransmissions
occur, which results in increased data collection latencies.

V. CONCLUSION

In this paper we showed how incast-resistant networks
based on application-optimized software switches can be built
more cheaply than traditional approaches. Thus, it is not only
the lossless operation under incast congestion, but also cost
advantage, that are offered by software switches.

This comes, however, at the cost of higher space require-
ments. This can be mitigated by using multi-host Ethernet
controllers instead of traditional network interfaces, which

can improve space utilisation by a factor of two. We also
pointed out that these devices can be potentially used as an
alternative to other incast-avoidance techniques in datacenters,
where limitations of typical software switches have stronger
consequences than in data acquisition.

Finally, we performed an initial evaluation of a multi-host
controller, using a reference platform. We confirmed that sim-
ilar performance to other incast-avoidance techniques can be
achieved. Thus, our evaluation showed that incast-avoidance
in DAQ and DCN can be a new application area for multi-
host Ethernet devices. Further study of the performance under
strong incast congestion in various configurations is required
in order to show the possible advantages in performance of
this approach over other solutions. In the context of DCN,
in particular, comparison with state-of-the-art TCP congestion
control, DCTCP [13], is desirable.

ACKNOWLEDGMENT

This research project has been supported by a Marie Curie
Early European Industrial Doctorates Fellowship of the Eu-
ropean Community’s Seventh Framework Programme under
contract number (PITN-GA-2012-316596-ICE-DIP).

The authors thank Mikel Eukeni Pozo Astigarraga and
Espen Blikra for help in preparing the evaluation testbed.

REFERENCES

[1] G. Jereczek et al., “Analogues between tuning TCP for data acquisition
and datacenter networks,” in Proc. IEEE ICC, 2015.

[2] G. Jereczek et al., “A lossless switch for data acquisition networks,” in
Proc. IEEE LCN, 2015.

[3] G. Jereczek et al., “A lossless network for data acquisition,” IEEE
Transactions on Nuclear Science, 2017.

[4] Intel. [Online]. Available: http://www.intel.com/
[5] The ATLAS Collaboration, “The ATLAS Experiment at the CERN Large

Hadron Collider,” Journal of Instrumentation, vol. 3, no. 08, 2008.
[6] N. Neufeld, “LHC trigger & DAQ — an introductory overview,” in Proc.

IEEE-NPSS Real Time Conference, 2012.
[7] S. Varma, Internet Congestion Control. Morgan Kaufmann, 2015.
[8] A. Phanishayee et al., “Measurement and analysis of TCP throughput

collapse in cluster-based storage systems.” in FAST, vol. 8, 2008.
[9] T. Colombo et al., “Data-flow performance optimisation on unreliable

networks: the ATLAS data-acquisition case,” Journal of Physics: Con-
ference Series, vol. 608, no. 1, 2015.

[10] A. Vishwanath et al., “Perspectives on router buffer sizing: Recent
results and open problems,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 2, 2009.

[11] Open vSwitch. [Online]. Available: http://openvswitch.org/
[12] Adlink CSA-7400. [Online]. Available: http://www.adlinktech.com/
[13] M. Alizadeh et al., “Data Center TCP (DCTCP),” ACM SIGCOMM

Comput. Commun. Rev., vol. 40, no. 4, 2010.
[14] M. Dobrescu et al., “Routebricks: Exploiting parallelism to scale soft-

ware routers,” in Proc. ACM SOSP, 2009.
[15] Supermicro. [Online]. Available: https://www.supermicro.com
[16] Broadberry. [Online]. Available: https://www.broadberry.co.uk
[17] Insight Direct UK. [Online]. Available: http://www.uk.insight.com/
[18] M. Al-Fares et al., “A scalable, commodity data center network archi-

tecture,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, 2008.
[19] Brocade MLX series. [Online]. Available: http://www.brocade.com/
[20] MCi Online. [Online]. Available: http://shop.mcidiventi.co.uk/
[21] 42U rack dimensions, cabinet size, & specifications. [Online]. Available:

http://www.42u.com/42U-cabinets.htm
[22] “IEEE standard for Ethernet,” IEEE Std 802.3, 2012.
[23] daq-software-switching — GitHub repository. [Online]. Available:

https://github.com/gjerecze/daq-software-switching
[24] Y. Ren et al., “A survey on TCP incast in data center networks,”

International Journal of Communication Systems, 2012.

