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EXOTIC SPHERES AND CURVATURE

M. JOACHIM AND D. J. WRAITH

Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro-
vided a fascinating object of study for geometers. In this article we survey
what is known about the curvature of exotic spheres.

1. Introduction

Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to
a standard sphere. In this introduction our aims are twofold: First, to give a brief
account of the discovery of exotic spheres and to make some general remarks about
the structure of these objects as smooth manifolds. Second, to outline the basics
of curvature for Riemannian manifolds which we will need later on. In subsequent
sections, we will explore the interaction between topology and geometry for exotic
spheres. We will use the term differentiable to mean differentiable of class C∞, and
all diffeomorphisms will be assumed to be smooth.

As every graduate student knows, a smooth manifold is a topological manifold
that is equipped with a smooth (differentiable) structure, that is, a smooth maximal
atlas. Recall that an atlas is a collection of charts (homeomorphisms from open
neighbourhoods in the manifold onto open subsets of some Euclidean space), the
domains of which cover the manifold. Where the chart domains overlap, we impose
a smooth compatibility condition for the charts [doC, chapter 0] if we wish our
manifold to be smooth. Such an atlas can then be extended to a maximal smooth
atlas by including all possible charts which satisfy the compatibility condition with
the original maps. It is far from obvious that there are manifolds which (up to
diffeomorphism) admit more than one distinct smooth structure. Indeed the dis-
covery of such exotic smooth structures was a big surprise. It is also not obvious
that some topological manifolds admit no smooth structures [HBJ, p. 114] [FQ,
10.2A], though such objects will not concern us in this article.

In dimensions one, two, and three it is well known that every topological man-
ifold admits a unique smooth structure [FQ, 8.3]. The lowest dimension in which
exotic smooth structures exist is dimension four. It is perhaps surprising that
familiar manifolds such as R

4 can admit exotic differentiable structures! Dimen-
sion four is somewhat special from the point of view of such structures. Many
four-dimensional manifolds (e.g., R4) are known to admit infinitely many distinct
smooth structures [FQ, 8.4C]. However, this phenomenon cannot occur in higher
dimensions. In dimensions at least five, any manifold has at most a finite number
of smooth structures, and in many cases this number is one (see [HM] and [KS]).
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Historically, the first manifolds discovered to admit exotic smooth structures
were spheres, specifically S7. These structures were found by Milnor in 1956 [M1].
We give a brief account of the background of their discovery, following Milnor’s own
description in [M5].

Milnor was studying the topology of high-dimensional manifolds, and in particu-
lar manifolds of dimension 2n which are (n−1)-connected. This connectedness con-
dition means that the manifold is connected and the homotopy groups π1, . . . , πn−1

are all zero. It was a reasonable condition to consider as the topology of such a
family of manifolds seemed tractable. Narrowing down the focus of study further,
Milnor considered 3-connected 8-manifolds M8 for which the middle-dimensional
cohomology (with integer coefficients) has a single generator. In this situation it is
always possible to find an embedded S4 ⊂ M8 which generates H4(M). A tubular
neighbourhood of this S4 is a disc bundle with fibre D4, and it can be shown that
M8 must be the union of this bundle with an 8-disc. It follows that the boundary
of the disc bundle must be S7, and in particular this means that the bundle cannot
be trivial (that is, a product S4 × D4).

To understand the possibilities for M8, it was necessary to investigate the possi-
ble D4-bundles over S4. We can view S4 as D4 ∪S3 D4. As D4 is contractible, any
bundle over S4 restricted to either hemisphere is trivial. Therefore, the problem
of understanding D4-bundles over S4 reduces to identifying the ways in which the
fibre discs over the boundary of each hemisphere D4 can be identified when the
two hemispheres are glued. Such an identification is given by a map S3 → SO(4),
and it is not difficult to see that the different possible bundles are in one-to-one
correspondence with the elements of π3SO(4) ∼= Z⊕Z. This correspondence can be
realised explicitly in the following way. For a pair (m, n) ∈ Z ⊕ Z, we consider the
bundle constructed by using an identification map f(m,n) : S3 → SO(4) defined by

f(m,n)(u)(v) = umvun,

where u is a unit quaternion, v ∈ R4, and quaternion multiplication is to be under-
stood on the right-hand side. A little algebraic topology shows that for the bound-
ary of the disc bundle corresponding to the pair (m, n) to be homotopy equivalent
to S7, we need m + n = 1 or m + n = −1. Of course, this gives infinitely many
choices. Let us assume from now on that m + n = 1.

For these cases, consider the corresponding M8. A compact, oriented 4n-
dimensional manifold has a signature, which is a number depending on the cup
product structure in the middle-dimensional cohomology (see [MS, p. 224] for the
definition). For a smooth, compact, oriented 8-manifold, Hirzebruch showed that
the signature σ(M8) is given by the formula

σ(M8) =
1
45

(7p2[M8] − p2
1[M

8]),

where p2
1[M8] and p2[M8] are so-called Pontrjagin numbers of the manifold (see

[MS, §16] for the definition of Pontrjagin numbers, and [MS, p. 224] for the general
statement of Hirzebruch’s signature theorem). Now the signature of M has to be +1
or −1 (a consequence of the dimension of M and Poincaré duality), and after fixing
an orientation for M we can assume that the signature is +1. For our manifolds
M8 it turns out that p2

1[M8] = 4(m−n)2 = 4(2m− 1)2 since m+n = 1. With this
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in mind, the above equation can be solved for p2[M8]:

p2[M ] =
4(2m − 1)2 + 45

7
.

The key point is that p2[M ] must be an integer (since we are using cohomology with
integer coefficients), but for certain choices of m (for example m = 2) the above
formula does not yield an integer! The upshot of this is that there are D4-bundles
over S4 with boundary homotopically equivalent to S7, for which it is impossible
to add a D8 to give a smooth manifold.

Milnor went on to show (using Morse theory) that the boundary of these disc
bundles is actually homeomorphic to S7. Thus the boundary of such disc bun-
dles is homeomorphic, but cannot be diffeomorphic to S7. In other words, this
construction yields exotic spheres.

Using surgery theory, Kervaire and Milnor [KM] were able to show how large the
family of exotic spheres is in each dimension greater than four. Although in each
case this number is finite, there are exotic spheres in infinitely many dimensions,
and in dimensions 4n + 3 the number of exotic spheres grows very rapidly with n.
The question of whether there is an exotic S4, and if so, how many there are is still
open today. This is essentially the smooth Poincaré conjecture in dimension four.

Following Milnor’s initial discovery, many different topological descriptions of
exotic spheres have been found. Taking orientation into account, there are 27
exotic spheres in dimension seven, and ignoring orientation there are 14. It can
be shown that 10 out of the 14 can be expressed as S3-bundles over S4, and these
are known as the Milnor spheres. Subsequently, it was shown that many exotic 15-
spheres can be described as S7-bundles over S8. In 1966 Brieskorn [Bk] was able to
realise many odd-dimensional exotic spheres as explicit subsets of Euclidean space.
We give an explicit description of these manifolds in Section 2 (for dimensions 1
modulo 4) and in Section 3 (for dimensions 3 modulo 4).

A general approach to describing exotic spheres is provided by the twisted sphere
construction. A twisted sphere is a manifold constructed by gluing two discs Dn

along their boundaries using an orientation preserving diffeomorphism Sn−1 →
Sn−1. It is easy to see that such a manifold is homeomorphic to Sn; however, we
can also produce exotic spheres by this process in the case where the diffeomor-
phism used in the construction is not smoothly isotopic to the identity. In fact, in
dimensions other than four, every exotic sphere is a twisted sphere. In dimension
four, Cerf [Ce] showed that the only twisted sphere is the standard sphere, so if
an exotic 4-sphere exists, it cannot be a twisted sphere. The difficulty with this
approach is specifying the diffeomorphism Sn−1 → Sn−1 required to construct a
given exotic sphere. Explicit examples of such maps are hard to find: see for in-
stance [Du], where an explicit diffeomorphism S6 → S6 is described which yields
an exotic 7-sphere in the twisted sphere construction.

Although these and other constructions have proved illuminating and useful in
many cases, it is important to note that there are exotic spheres for which no
explicit construction is known. We will say a little more about this is Section 3.

The term homotopy sphere is often used when discussing exotic spheres, and it
is important to define this. A homotopy sphere Σn is a smooth manifold with the
same homotopy type as Sn. Thus every exotic sphere is a homotopy sphere. Of
course any standard sphere is trivially a homotopy sphere. In dimensions at least
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five, any smooth manifold with the homotopy type of a sphere must be homeomor-
phic to a sphere. This is the Generalised Poincaré Conjecture, proved by Smale
in [Sm1]. Thus in these dimensions the set of diffeomorphism classes of homotopy
spheres is precisely the union of the diffeomorphism class of the standard sphere
with the diffeomorphism classes of the exotic spheres. In dimensions one and two,
homotopy spheres are always diffeomorphic to the standard spheres. In dimension
three, it has been known for many years that the differentiable structure on S3

is unique; in other words there is no exotic S3. Moreover every 3-manifold has a
unique differentiable structure, and any two homeomorphic 3-manifolds are neces-
sarily diffeomorphic [FQ, 8.3]. On the other hand, it was not known if a homotopy
S3 was necessarily homeomorphic (and therefore diffeomorphic) to S3. This is the
famous Poincaré conjecture, which has recently been resolved in the affirmative by
Perelman ([P1], [P2], [P3]). Thus any homotopy 3-sphere is diffeomorphic to S3. In
dimension four, Freedman [Fr] showed that any homotopy 4-sphere is homeomor-
phic to S4; however as indicated above, the question of whether such a manifold
is necessarily diffeomorphic to S4 still remains mysterious. Note that it is often
more convenient to deal with homotopy spheres (as opposed to exotic spheres) as
the set of diffeomorphism classes of oriented homotopy spheres in any given dimen-
sion (with the possible exception of dimension four) has an algebraic structure: it
is a finite abelian group under the connected sum operation, with the standard
sphere playing the role of the identity element. For example, Kervaire and Mil-
nor [KM] identify the number of exotic spheres in each dimension (except four) by
determining the order of this group. In actual fact, Kervaire and Milnor consider
the group of h-cobordism classes of homotopy spheres, as opposed to the group
of diffeomorphism classes. However, it follows from Smale’s h-cobordism theorem
[Sm2] that in dimensions greater than four, two homotopy spheres are h-cobordant
if and only if they are diffeomorphic. As mentioned, in dimension three this fol-
lows from Perelman’s work. In dimension four it is shown in [KM] that the group
of h-cobordism classes of homotopy spheres is trivial, but of course the possible
differentiable structures are unknown.

We now turn our attention briefly to Riemannian geometry, and in particular to
the notion of curvature. Any smooth manifold can be equipped with a smooth Rie-
mannian metric, that is, a smoothly varying inner product on each tangent space.
A Riemannian metric allows us to do geometry on the manifold. In particular, a
Riemannian metric endows the manifold with shape, and, therefore, it makes sense
to try and quantify the curvature of such an object. Any smooth manifold will
admit a huge family of Riemannian metrics. The metrics in this family will dis-
play varying curvature characteristics. Of interest to geometers are manifolds that
admit metrics satisfying some special curvature condition. The ‘special conditions’
on which this article focuses require the curvature to have a particular sign.

The most widely known measure of curvature is the Gaussian curvature in dimen-
sion two. This is a (smooth) real-valued function on the manifold. Heuristically, if
the Gaussian curvature at a point is positive, then the geometry in a neighbourhood
of the point resembles that of a sphere; if the Gaussian curvature is zero, the local
geometry is that of a Euclidean plane, and if the Gaussian curvature is negative,
the local geometry resembles that of a saddle. A more concrete interpretation of
the sign can be given in terms of triangles. In a surface of positive Gaussian curva-
ture, the angles of a geodesic triangle sum to more than π; in a surface where the
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Gaussian curvature vanishes, the angles sum to exactly π; and in the case where
the Gaussian curvature is negative, the angles of such a triangle sum to less than
π.

It is not surprising that the possible geometries of a surface are deeply linked
to the surface’s topology. The Unformisation Theorem for surfaces says that every
closed compact surface admits a metric with constant Gaussian curvature. This,
combined with the Gauss–Bonnet Theorem (applied to the oriented double cover if
the surface is not orientable) shows that the only closed compact surfaces admitting
a metric of strictly positive Gaussian curvature are the 2-sphere and the real projec-
tive plane. The only closed compact surfaces admitting a metric of identically zero
Gaussian curvature are the torus and Klein bottle. The remaining closed compact
surfaces are precisely those admitting a metric of strictly negative Gaussian curva-
ture. However, the simplicity of this topology-curvature relationship in dimension
two is not mirrored in higher dimensions.

The first geometric issue to deal with in higher dimensions is that there are three
common, competing ways in which the curvature can be measured. First, there is
a natural generalisation of the notion of Gaussian curvature. Consider a point p in
a Riemannian manifold Mn, n ≥ 2. Choose a two-dimensional subspace S in the
tangent space TpM . Locally, we can find an embedded surface in M containing p,
which is tangent to S at p. (We find such a surface by projecting S onto M using the
exponential map at p.) Restricting the Riemannian metric to this surface, we can
compute a Gaussian curvature. This number is the so-called sectional curvature of
M at p corresponding to the tangent plane S [doC, p. 132]. The sectional curvature
is therefore a real-valued function on the set of tangent 2-planes to M .

The other measures of curvature are obtained from the sectional curvature by
averaging processes. The next curvature to be introduced is the Ricci curvature.
Given a unit tangent vector u, extend u to an orthonormal frame {u, e1, e2, . . . ,en−1}
for the tangent space. The Ricci curvature of u is defined to be the sum of the sec-
tional curvatures of the planes spanned by u and ei, for i between 1 and n − 1.
The resulting value is independent of the way in which u is extended to a frame.
For non-unit vectors, the Ricci curvature varies quadratically with the norm, that
is Ric(λu) = λ2Ric(u). This algebraic property is a consequence of the more usual
definition of the Ricci curvature in terms of the Riemann curvature tensor. Thus
the Ricci curvature is a smoothly varying real-valued quadratic form on the tangent
bundle.

The scalar curvature at a point is simply the sum of Ricci curvatures over any or-
thonoral frame of tangent vectors at that point. Like the Ricci curvature, the scalar
curvature is independent of the choice of frame. The scalar curvature is therefore a
smooth real-valued function on the manifold. Clearly, in the process of averaging,
we would expect to lose information. Thus the scalar curvature is a weaker notion
of curvature than the Ricci curvature, and in turn, the Ricci curvature is a weaker
notion than the sectional curvature. (See [P, §2.2] for a detailed introduction to
these notions of curvature.)

These higher-dimensional measures of curvature are more difficult to interpret
than the Gaussian curvature in dimension two. Roughly speaking, the sectional
curvature controls distance (see for example the Toponogov Triangle Comparison
Theorem [P, §11.2]). On the other hand, the Ricci curvature is closely related to
volume: in particular a lower bound on the Ricci curvature leads to an upper bound
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on the volume of (geodesic) balls of any given radius in the manifold [P, §9.1]. This
means, for example, that a unit radius ball in a manifold of positive Ricci curvature
has a smaller volume than a unit ball in the Euclidean space of the same dimension.
Note that a manifold for which the Ricci curvatures are positive and bounded away
from zero must be compact, by the Myers Theorem [My]. These results are no longer
true if we replace the Ricci curvature by the scalar curvature. The scalar curvature
controls volume only locally (compare [B, 0.60]), but existence of a positive scalar
curvature metric on a manifold also does have topological implications (see for
example [St]); however, these are quite weak. For instance, if we form the product
of a compact positive scalar curvature manifold with any other compact manifold,
this product will also admit a positive scalar curvature metric. As will become clear
in subsequent sections, when studying the curvature of exotic spheres, we will be
interested primarily in positive (or at least non-negative) curvature.

A major problem in Riemannian geometry is to understand the interrelationship
of curvature and topology. Since homotopy spheres have a very straightforward
topology (as opposed to smooth topology!) it seems reasonable to focus on this
family in order to explore this relationship. The standard (round) sphere is the
classic example of a manifold with positive curvature: the n-dimensional sphere of
radius R has constant sectional curvature 1/R2, Ricci curvature (n − 1)/R2, and
scalar curvature n(n− 1)/R2. By studying the curvature of exotic spheres, we gain
some insight into the extent to which the geometry of these objects resembles that
of the standard sphere. As we will see, in some cases the geometry is very different
indeed.

The following sections focus on the sectional curvature, the Ricci curvature, and
scalar curvature, respectively. There are many different topological descriptions of
exotic spheres. These different descriptions suggest different approaches to con-
structing metrics. In turn this is (at least partly) responsible for the diversity of
results described in this article. We have attempted to give as comprehensive a
picture as possible, and as a consequence in many places have kept details to a
minimum. It is hoped that the interested reader will use the many references to
develop a deeper understanding of the results described.

Note that throughout this article, all Riemannian metrics are assumed to be
complete.

The authors would like to thank Charles Boyer, Jost Eschenburg, Hansjörg
Geiges, Thomas Püttmann, Stephan Stolz, Stefan Bechtluft-Sachs, and Burkhard
Wilking for reading the preliminary versions of this article, and for their very helpful
comments and suggestions.

2. Sectional curvature

We begin our discussion of exotic spheres and the sectional curvature by recalling
the Hadamard–Cartan Theorem [Ch, p. 174]. This states that the exponential map

exp : TpM → M

based at any point p in a Riemannian manifold Mn with non-positive sectional cur-
vature has maximal rank everywhere in TpM . It follows that exp is a covering map,
and that TpM ∼= R

n is the universal covering space. As an immediate corollary, we
see that no exotic sphere can admit a metric of non-positive sectional curvature.
Therefore, we turn our attention to metrics of non-negative and positive sectional
curvature.
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The following question is fundamental:1

Question. Does at least one exotic sphere support a metric with everywhere
(strictly) positive sectional curvature?

If we replace ‘positive’ with ‘non-negative’ in the above question, the answer is
yes. In [GM], Gromoll and Meyer produced the first example of an exotic sphere
with a metric of non-negative sectional curvature. For a long time this was the
only known example. Indeed at the time of writing, only a handful of other ex-
amples are known. We will now discuss the Gromoll–Meyer sphere and subsequent
developments in some detail.

The Gromoll–Meyer sphere is a seven-dimensional exotic sphere. Recall from the
Introduction that the diffeomorphism classes of oriented homotopy spheres form a
finite abelian group in any given dimension (with the possible exception of dimen-
sion four) under the connected sum operation. For details of the structure and
order of these groups, see [KM]. Those homotopy spheres of dimension n which
bound a parallelisable manifold form a cyclic subgroup denoted bPn+1. In dimen-
sion seven, the group of oriented homotopy spheres is cyclic of order 28, and the
subgroup bounding parallelisable manifolds is in fact the whole group.

The Gromoll–Meyer sphere is a generator of the group of homotopy spheres in
dimension seven. It is realised as a biquotient of Lie groups. Let Sp(n) denote
the group of (n × n)-matrices with quaternion entries satisfying AA� = A�A = In,
where A� denotes the transpose of the quaternion conjugate of A.

We have an action of S3 × S3 ∼= Sp(1) × Sp(1) on Sp(2) given by

(q1, q2)A =
(

q1 0
0 q1

)
A

(
q�
2 0
0 1

)
,

where q�
2 is the quaternion-conjugate of q2. This action is free, and hence restricting

the action to the diagonal D in Sp(1)×Sp(1) also gives a free action. The Gromoll–
Meyer sphere is the quotient manifold Sp(2)/D.

As Sp(2) is a compact Lie group, it admits a bi-invariant metric with non-
negative sectional curvature (see [M2, §21]). The quotient of Sp(2) by the free
action of D has a unique metric making the projection

π : Sp(2) → Sp(2)/D

into a Riemannian submersion. For the theory of Riemannian submersions, see
[B; Ch9]. As a consequence of the O’Neill curvature formulas for Riemannian
submersions ([ON] and [B; 9.29]), we see that the submersion metric on the quotient
space also has non-negative sectional curvature.

It is interesting to note that almost all known compact Riemannian manifolds of
non-negative sectional curvature are biquotients with metrics obtained in a similar
fashion to the above. In fact, all known examples of compact simply connected
manifolds with (strictly) positive sectional curvature are biquotients. It was shown
in [To] and independently in [KZ] that the Gromoll–Meyer sphere is the only ex-
otic sphere that can be expressed as a biquotient. For definitions and a general
discussion of biquotients, [E2] is a basic reference. Subsequent contributions to the
theory of biquotients include, for example, [E4] and [Si] as well as [KZ] and [To].

1On May 6, 2008, P. Petersen and F. Wilhelm announced [PW] that they have constructed a
positive sectional curvature metric on the Gromoll-Meyer sphere.
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Topologically, the Gromoll–Meyer sphere is a Milnor sphere, that is, an S3-
bundle with base S4. The fibre is Sp(1) × Sp(1)/D, which is easily identifiable
with S3. The base of the bundle is Sp(2)/(Sp(1)× Sp(1)). It is possible to give an
explicit diffeomorphism between this quotient and S4 (see [GM]).

As noted in Section 1, the S3-bundles over S4 are classified by π3(SO(4)) ∼= Z⊕Z

via an explicit correspondence. Under this correspondence, the Gromoll–Meyer
sphere is associated to the pair (2,−1).

The metric on the Gromoll–Meyer sphere admits an effective isometric action
from O(2) × SO(3). It has strictly positive sectional curvature for all planes in a
neighbourhood of π(e), where e ∈ Sp(2) is the identity element. However, it can
also be shown that for other planes, the sectional curvature is zero. A natural
question arising is whether there exists a metric close to the Gromoll–Meyer metric
in some sense, but with everywhere positive sectional curvature.

In [Wi2], Wilhelm studied the Gromoll–Meyer metric and deformations of the
Gromoll–Meyer metric in some detail. Gromoll and Meyer had claimed that their
metric had positive sectional curvature almost everywhere. They did not justify this
claim, and Wilhelm showed it to be false. In fact their metric has zero curvatures on
an open set of points. However, Wilhelm shows that their metric can be deformed
to one with positive curvature almost everywhere, and that it admits an effective
isometric SO(3) action. He also shows that there is no further smooth deformation
of his modified Gromoll–Meyer metric that has positive sectional curvature to first
order. This then casts a doubt as to whether it is possible to perturb the metric to
one with positive sectional curvature everywhere.

Subsequently, Eschenburg [E5] described a family of metrics on the Gromoll–
Meyer sphere, apparently different from the Wilhelm metric, which all have positive
sectional curvature almost everywhere. (The paper [E5] contains an omission which
was later fixed in [EK]). The original claim about the existence of such metrics was
actually made in [E2], though without proof. The approach is to consider bi-
invariant metrics on Sp(2)×K, where K = Sp(1)×Sp(1), and then to quotient by
the diagonal action of K. The resulting space is diffeomorphic to Sp(2), and the
resulting metric is normal homogeneous (and therefore has non-negative sectional
curvature). For an appropriate choice of bi-invariant metric on Sp(2) × K, the
normal homogeneous metric will induce a well-defined metric on the Gromoll–Meyer
sphere Sp(2)/D. By the O’Neill formulas for Riemannian submersions [B, 9.29], this
resulting metric will also have non-negative sectional curvature. Eschenburg shows
that the points possessing zero curvature planes essentially form a hypersurface, and
therefore must have measure zero. It should be noted that all known examples of
positively curved manifolds can be obtained by this general approach. The method
was pioneered by Eschenburg, who constructed the first inhomogeneous examples
in 1982 [E1].

As a final remark on the Gromoll–Meyer sphere, we should mention the paper of
Rigas [Ri]. In this paper the author studies principal bundles over spheres, and some
associated bundles. Using the theory of Riemannian submersions, he constructs
bundles with non-negative sectional curvature. The Gromoll–Meyer sphere appears
as the total space of the two of the bundles constructed, providing this sphere with
two metrics of non-negative sectional curvature. However, it is not clear if these
metrics are different from those discussed above, or indeed from the Grove–Ziller
metrics described below.
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Grove and Ziller’s paper [GZ1] represented a major advance in study of curvature
on exotic spheres. They showed that in fact all exotic spheres in dimension seven
which are S3-bundles over S4 (the Milnor spheres) admit metrics with non-negative
sectional curvature. It should be noted that previously, Wilhelm [Wi1] had shown
the existence of a sequence of metrics gi on every Milnor sphere for which the
diameter is bounded above by 1, the sectional curvature is strictly positive at some
point, and the lower bound for the sectional curavture is −1/i. Like the Gromoll–
Meyer metric, these also admit an effective isometric O(2) × SO(3) action.

The Grove–Ziller results are achieved by studying manifolds of cohomogeneity-
one. A manifold of cohomogeneity-one admits a smooth action by a Lie group for
which the space of orbits is one-dimensional. In the Riemannian case, where we
insist that all actions are by isometries, the orbit space of a compact cohomogeneity-
one manifold can either be a circle (in which case all orbits are principal) or an
interval (in which case there are two singular orbits). If all orbits are principal,
it is easy to see that the manifold admits an invariant metric with non-negative
curvature. The fundamental group of such a manifold is, however, infinite, so the
manifold cannot admit a metric of positive sectional or positive Ricci curvature by
the Myers Theorem. It is therefore the situation where the orbit space is an interval
which Grove and Ziller study.

Topologically, a cohomogeneity-one manifold with two singular orbits is a union
of two disk bundles. The base of each disk bundle is a singular orbit, and the
boundary (along which they are glued to form the union) is a principal orbit. Note
that the orbits, both principal and singular, are homogeneous spaces equipped with
homogeneous metrics.

The Milnor spheres are associated (via the associated bundle construction) to
certain SO(4)-principal bundles over S4. These principal bundles admit cohomo-
geneity-one actions from SO(4) × SO(3) with codimension-two singular orbits.
Grove and Ziller show that every cohomogeneity-one manifold with codimension-
two singular orbits admits an invariant metric with non-negative sectional curva-
ture. The Milnor spheres result now follows since each Milnor sphere can be de-
scribed as the base of submersion (arising from the associated bundle construction)
in which the total space has non-negative curvature. Grove and Ziller also investi-
gate the symmetries of their exotic sphere metrics, and show that on each Milnor
sphere there exists infinitely many inequivalent, isometric, almost-free actions of
SO(3).

Recently, Durán, Püttmann and Rigas [DPR] have described an explicit con-
struction of all exotic spheres in dimension seven, which in some sense generalises
the construction of the Gromoll–Meyer sphere. However, at the present time, no
new curvature-related results have been obtained from this construction.

We now turn our attention to a different family of homotopy spheres: the Ker-
vaire spheres. These spheres have dimension 4n + 1, and can be defined as the
boundary obtained by plumbing together two copies of the tangent disk bundle of
S2n+1; see [LM, p. 162]. Plumbing is a construction whereby disk bundles are glued
together to create a new manifold with boundary. The basic idea is as follows. Con-
sider two disc bundles, and for each bundle choose a locally trivial neighbourhood
over a disc in the base. We glue the bundles by identifying these neighbourhoods.
To do this we use a diffeomorphism that identifies the base disc of one neighbour-
hood with the fibre disc of the other, and vice versa. (Of course, this can only
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work if the dimensions match.) The resulting object is the so-called plumbing of
the disc bundles, and can be made differentiable by simply straightening out the
angles. For the basics of plumbing and applications to exotic sphere construction,
see [Br, V.2].

In some dimensions (e.g., 5, 13, 29, 61) the Kervaire sphere is diffeomorphic to
the standard sphere; it is known that this can only happen in dimensions taking
the form 2k −3 for k ≥ 3, but the precise values of k for which this happens are not
known. This problem has become known as the “Kervaire invariant one problem”;
see for example [La, Thm 5.6]. In the remaining dimensions the Kervaire sphere
is exotic. The exotic Kervaire spheres are known to be the most symmetric of all
exotic spheres [HH]. In dimensions 4n+1, there are at most two homotopy spheres
which bound a parallelisable manifold. The standard sphere is of course one of
these. When it exists, the other sphere is a Kervaire sphere.

With a view towards giving a useful alternative description of Kervaire spheres,
we next introduce the concept of a Brieskorn manifold.

Let P (a0, . . . , an+1) be the complex polynomial

P (a0, . . . , an+1) = za0
0 + · · · + z

an+1
n+1

and define the Brieskorn manifold B(a0, . . . , an+1) to be the intersection of the zero-
locus of P (a0, . . . , an+1) with the unit sphere in Cn+2. This is a smooth manifold
of dimension 2n + 1, which can be shown to be (n − 1)-connected [M4, Thm 5.2].

For n even and d ≡ 3 or 5 mod 8, Brieskorn showed that the manifold
B(d, 2, . . . , 2) is a Kervaire sphere [Bk], and indeed every Kervaire sphere arises in
this way. The Kervaire spheres admit a cohomogeneity-one action by SO(n+1)×S1.
The singular orbits have codimension 2 and 2n. It is easy to see this action using
the Brieskorn model: if A ∈ SO(n + 1) and θ ∈ S1 is viewed as the group of unit
modulus complex numbers, then

(A, θ)(z0, . . . , zn+1) = (θ2z0, A(θdz1, . . . , θ
dzn+1)).

In [GVWZ], Grove, Verdiani, Wilking and Ziller show that the Kervaire spheres
in all dimensions at least five admit no invariant metrics of non-negative sectional
curvature for the cohomogeneity-one action. (This provides a counterexample to
a conjecture of Grove and Ziller [GZ1] which suggested that all compact cohomo-
geneity-one manifolds should admit an invariant metric of non-negative sectional
curvature.) Note that it had been known since 1987 [BH] that Kervaire spheres of
dimension at least nine do not admit SO(n + 1)× S1 invariant cohomogeneity-one
metrics of strictly positive sectional curvature.

Moving away from cohomogeneity-one actions, the following sphere theorem due
to Berger and Klingenberg is well known (see for example [Au] or [S] for a general
discussion, or [E3] for a short direct proof). If Mn is a compact simply connected
Riemannian manifold for which the sectional curvature K satisfies 1

4 < K ≤ 1,
then M is homeomorphic to Sn. (Of course this does not exclude the possibility
that M is an exotic sphere.) Of more relevance to exotic spheres are differentiable
analogues of this result: so-called differentiable sphere theorems. The idea here is
that by a suitable choice of lower bound for K, we can force M to be diffeomorphic
to Sn. To the best of the authors’ knowledge, the smallest lower bound found
to date giving a differentiable sphere theorem is 0.654 by Suyama (see [Su]). Of
course this means that no exotic sphere can have a metric which is ‘0.654-pinched’
in this way. It might be possible that some exotic sphere admits a quarter-pinched
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metric (that is, for which 1
4 < K ≤ 1), though since we do not yet know if any

exotic sphere admits positive sectional curvature, the answer to such a pinching
question is probably quite distant! On the other hand, in [We], Weiss shows that
the Gromoll–Meyer sphere cannot support a quarter-pinched metric.

To conclude our survey of sectional curvature and exotic spheres, let us remark
that there are other results that rule out the existence of positive sectional curvature
metrics on exotic spheres in the presence of certain other geometric conditions. See
for example [GP] and [GW] (especially Theorem C).

3. Ricci curvature

As a starting point for discussing the Ricci curvature of exotic spheres, let us
recall a result of Lohkamp [Lo] according to which any manifold of dimension at
least three admits a complete metric with (strictly) negative Ricci curvature. In
particular this means that every exotic sphere admits such a metric.

Although the statement concerning negative Ricci curvature is straightforward,
its proof is anything but that. In the case of positive Ricci curvature however, there
is no easy existence statement. There are exotic spheres, starting in dimension 9,
that do not admit any metric of positive Ricci curvature. This follows from a result
of Hitchin [Hi] which asserts that these spheres in fact admit no metric of positive
scalar curavture. For more detail see Section 4. The only known obstruction to
positive Ricci curvature that is not an obstruction to positive scalar curvature comes
from the classical theorem of Myers [My]. This states that the fundamental group
of a compact manifold with positive Ricci curvature must be finite. Of course for
exotic spheres, the fundamental group cannot obstruct positive Ricci curvature.

For the sectional curvature, we have examples of exotic spheres with K ≥ 0
and K > 0 at some point, but no examples with K > 0 everywhere. For the
Ricci curvature, the equivalent situation could not arise. If a manifold admits a
metric with non-negative Ricci curvature that is strictly positive at one point, then
the metric can be deformed to one with positive Ricci curvature everywhere. This
is a result of Ehrlich [Eh]. (The result was first claimed by Aubin [Au], though
there was an error in his proof.) In fact more can be said: if the original metric
admits an isometric group action, it can be arranged that the deformed metric
with positive Ricci curvature also admits an isometric action from the same group.
(In the absence of such a point of Ricci positivity, there is no guarantee that the
manifold can support a Ricci positive metric—even in the simply connected case.
For example, a K3 surface supports a Ricci flat metric but no metric of positive
Ricci (or even positive scalar) curvature. It is unknown whether a simply connected
manifold with a metric of non-negative Ricci and positive scalar curvature must
always admit a Ricci positive metric.) All the results surveyed below concern the
case of strictly positive Ricci curvature.

Historically, the first result concerning exotic spheres and positive Ricci curva-
ture metrics was due to Cheeger [C]. He studied the Kervaire spheres, using the
description as Brieskorn manifolds outlined in Section 2. Since these spheres admit
a cohomogeneity-one action, topologically they split as a union of two disk bun-
dles. Cheeger constructs a Ricci non-negative metric on each bundle isometric to a
product near the boundary and invariant under the cohomogeneity-one action from
SO(n + 1) × S1. The union of the two bundles then acquires a Ricci non-negative
metric. Cheeger observes that the Ricci curvature of the metric is strictly posi-
tive in some neighbourhood, so the result of Ehrlich mentioned above guarantees
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that the Ricci non-negative cohomogeneity-one metric can be deformed into a Ricci
positive cohomogeneity-one metric.

Around the same time, Hernández-Andrade demonstrated in his thesis the ex-
istence of an infinite family of exotic spheres admitting Ricci positive metrics
(see [Hz]). The results are obtained by viewing the exotic spheres in question as
Brieskorn manifolds; however, the techniques involved differ from those of Cheeger.

The starting point is Brieskorn’s paper [Bk] (see [H] for an English summary),
which shows that every exotic sphere which bounds a parallelisable manifold can be
described as a Brieskorn manifold (and not just the Kervaire spheres!). As noted in
Section 2, with the possible exception of dimension four, the diffeomorphism classes
of oriented homotopy spheres which bound a parallelisable manifold form a finite
cyclic group under the connected sum operation. It was shown in [KM] that in
even dimensions, the only homotopy sphere bounding a parallelisable manifold is
the standard sphere. In dimensions congruent to 1 modulo 4, we have the standard
sphere and possibly a Kervaire sphere, as discussed in Section 2. The real interest
from a curvature point of view, therefore, lay in dimensions congruent to 3 modulo
4. In these dimensions the number of exotic spheres bounding a parallelisable
manifold grows more than exponentially with dimension. An explicit description
of each of these spheres as a Brieskorn manifold can be given as follows. Brieskorn
shows that in these dimensions the manifold B(6k − 1, 3, 2, . . . , 2) (as defined in
Section 2) is a homotopy sphere bounding a parallelisable manifold for all k ≥ 1,
and in fact every such sphere can be realised as one of these Brieskorn manifolds
for a suitable choice of k.

Hernández-Andrade’s approach is to consider the metrics induced on Brieskorn
manifolds from the ambient Euclidean metric. Since the Brieskorn manifolds can
be described entirely by polynomial equations, one can write down relatively simple
formulas for the Ricci curvature. Even so, these formulas are too complicated to al-
low easy detection of positive Ricci curvature. For this reason, Hernández-Andrade
considers a deformation of the standard embedding. He replaces the zero-locus of
P by an explicit nearby variety diffeomorphic to the original. He also replaces the
unit sphere in C

n+1 by an explicit ellipsoid diffeomorphic to the sphere. The point
is that the intersection between these two new manifolds is diffeomorphic to the
original Brieskorn manifold, but the intersection is now Hermitian-orthogonal. It
is this orthogonality that allows the curvature formulas to be simplified to a point
where analysis is possible. The main result is that given integers a0, . . . , am ≥ 2,
there is some integer N(a0, . . . , am) such that for p ≥ N , the Brieskorn manifold
B(a0, . . . , am, 2, . . . , 2) with p copies of 2 after am has a metric of positive Ricci
curvature. The implication for exotic spheres is that in dimensions congruent to
3 modulo 4 the number of exotic spheres bounding a parallelisable manifold that
admit a positive Ricci curvature metric grows without bound with the dimension.
Note that this method is not sufficiently strong to show that every sphere bounding
a parallelisable manifold in these dimensions admits a Ricci positive metric. For
example the Gromoll–Meyer metric has positive Ricci curvature, but this cannot
be established from Hernández-Andrade’s approach.

A general approach to constructing Ricci positive metrics is to use bundle tech-
niques. Given a compact fibre bundle with a Lie structure group, a metric for the
base, a metric for the fibre for which the structure group acts by isometries, and a
principal connection on the associated principal bundle, the construction of Vilms
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[Vi] shows that there is a canonical metric on the total space such that the projec-
tion to the base is a Riemannian submersion and the fibres are totally geodesic. It
follows from the O’Neill formulas that if the base and fibre metrics have positive
Ricci curvature, then there exists a Ricci positive metric on the total space of the
bundle. This metric is obtained from the Vilms metric by uniformly shrinking fi-
bres, that is, scaling the metric in fibre directions by a small constant t. The effect
of this shrinking is to diminish the influence of the (principal) connection on the
curvature. For the curvature formulas in this situation, see [B, 9.70].

It is an immediate corollary that all Milnor spheres admit metrics of positive
Ricci curvature. It also follows that certain 15-dimensional exotic spheres, which
can be expressed as 7-sphere bundles over the 8-sphere (see [Sh]), admit positive
Ricci curvature metrics. This was essentially the approach taken by Poor [Po] and
Nash [Na] who established the existence of Ricci positive metrics on these objects.

A further general approach to constructing Ricci positive manifolds is to use
surgery. Surgery is an operation which alters the topology of a manifold in a precise
way, and was introduced as a tool for use in problems relating to the classification
of manifolds. A good introduction to the subject is [R]. We describe the basic idea.
Begin with a manifold Mn+m and a smooth embedding

ι : Sn −→ Mn+m.

Assume the normal bundle of ι(Sn) is trivial. This means we can extend ι to an
embedding

e : Sn × Dm −→ M.

Performing surgery involves cutting something out—the interior of the image of the
embedding e—and stitching something in, namely a copy of Dn+1 × Sm−1. Note
that the boundary of Sn ×Dm equals Sn ×Sm−1, which agrees with the boundary
of Dn+1 × Sm−1. This gluing-in is performed in the obvious manner determined
by e. We say that the dimension of such a surgery is n, and the codimension is m.
There is a subtlety with the above construction, however: In general the extended
embedding e is not unique. Viewing Sn × Dm as a bundle with base Sn and fibre
Dm, we can compose e with a bundle isomorphism Sn ×Dm → Sn ×Dm to obtain
a new embedding. In general, performing surgery using this new embedding will
result in a manifold which is different from that obtained using e. Therefore, when
performing surgery, it is imporant to specify the trivialisation of the normal bundle
(that is, the choice of embedding Sn × Dm → Mn+m) being used.

The relevance of surgery to problems involving curvature was shown by Gromov
and Lawson [GL], and Schoen and Yau [ScY]. Independently, they showed that
the result of performing surgery of codimension at least three on a manifold with
positive scalar curvature is again a manifold admitting a positive scalar curvature
metric. This result has had profound implications for studying the existence of
positive scalar curvature metrics, as we shall see in the last section.

Performing surgery within positive Ricci curvature is not quite so straightfor-
ward. The first major result in this direction was due to Sha and Yang [SY]. They
assume that a tubular neighbourhood of the sphere on which surgery is to be per-
formed is isometric to the product of a round metric on the sphere and a round
normal disk. Using this isometry as the trivialisation of the normal bundle, they
show that the manifold resulting from the surgery has positive Ricci curvature pro-
vided the dimension of the surgery is at least one, the codimension at least three,
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and the ratio of the radius of the sphere to the radius of the disk is sufficiently
small. This result was developed further in [Wr2], where is was showed that under
the same metric assumptions, Ricci positivity can be preserved if different triviali-
sations of the normal bundle are used. This generalisation comes at the expense of
tighter dimensional requirements.

This latter result was the key to proving that all exotic spheres which bound
parallelisable manifolds admit Ricci positive metrics. This result appeared in [Wr1],
and settled the existence question that the work of Hernández-Andrade had gone
some way to addressing. The result follows from the fact that all such exotic
spheres can be constructed from the tangent sphere bundle of an even-dimensional
sphere by a sequence of surgeries for which the surgery result in [Wr2] applies. The
appropriate sequence of surgeries can be identified by viewing the exotic spheres as
the boundaries of plumbed manifolds. (See Section 2 for an outline of the plumbing
construction for disc bundles.) If a disc bundle is plumbed with a disc bundle over a
sphere, the effect of this on the boundary of the original bundle is precisely a surgery.
Working with plumbed stably trivial disc bundles facilitates the construction of
exotic spheres, as it is straightforward to detect when the boundary is an exotic
sphere (and indeed which exotic sphere it is) in terms of topological invariants of
the bounding manifold. (Note that the bounding manifold is parallelisable in the
case that the disc bundles and base manifolds are all stably trivial.)

The results in [Wr1] actually go further than this: every manifold arising as
the boundary of a plumbing of disc bundles over spheres according to a simply
connected graph admits a Ricci positive metric. This includes more exotic spheres
than just those that bound parallelisable manifolds! The boundary of the manifold
obtained by plumbing (the disc bundle of) the five-dimensional vector bundle over
S4 generating KO(S4) with (the disc bundle of) the non-trivial four-dimensional
vector bundle over S5, is an exotic sphere of dimension eight which does not bound
a parallelisable manifold. However, by the above theorem it admits a metric of
positive Ricci curvature. This is the only known example of an exotic sphere not
bounding a parallelisable manifold that admits such a metric.

In Section 2 we discussed the work of Grove and Ziller on cohomogeneity-one
metrics with non-negative sectional curavture [GZ1]. Following on from this re-
sult, they studied the existence of cohomogeneity-one metrics with positive Ricci
curvature [GZ2] They show that a compact manifold with a cohomogeneity-one
action supports an invariant metric with positive Ricci curvature if and only if the
fundamental group is finite. (Recall that the fundamental group of any compact
manifold that admits a positive Ricci curvature metric must be finite, by the Myers
Theorem [My].) Their approach could be viewed as a generalisation of Cheeger’s
metric construction for the Kervaire spheres discussed at the start of this section.
This gives an alternative approach to the construction of Ricci positive metrics
on certain exotic spheres, including all Milnor spheres. It is not clear whether this
method generates Ricci positive metrics on any exotic spheres not previously known
to admit them.

The most recent general approach to constructing Ricci positive metrics having
applications to exotic spheres has its origin in the Calabi Conjecture [Ca]. This
asserts that if M is a compact Kähler manifold and ρ is a real, closed (1, 1)-form
on M with [ρ] = 2πc1(M), where c1(M) is the first (real) Chern class, then there
exists a unique Kähler metric on M with Kähler form cohomologous to the original
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Kähler form, for which the Ricci form is ρ. The conjecture was proved by Yau
in 1978 [Y]. In the case where c1(M) > 0, in other words when c1(M) can be
represented by a positive-definite real, closed (1, 1)-form ρ, the conjecture implies
that M admits a metric of positive Ricci curvature. Although there is no known
application of this result to the existence of positive Ricci curvature metrics on
exotic spheres, there is an odd-dimensional analogue which has proved useful.

Sasakian geometry is special subfield of contact geometry. See [G], [Et] or [Bl]
as a general reference. It can be viewed as an odd-dimensional analogue of Kähler
geometry. A Riemannian manifold (M, g) is called Sasakian if the holonomy group
of the metric cone (R+ × M, dr2 + r2g) reduces to a subgroup of U((n + 1)/2).
In this case, the above cone is Kähler, and if J is the complex structure, setting
ξ := J(∂/∂r) defines a unit Killing vector field with the property that the sectional
curvature of every plane containing ξ is one. From a different perspective, ξ can
be viewed as the Reeb vector field of a contact structure on M for which g is an
associated metric.

We should also mention the stronger concept of a 3-Sasakian manifold. Here, the
holonomy group of the above metric cone reduces to a subgroup of Sp((n+1)/4), and
the cone itself is hyper-Kähler. Thus 3-Sasakian geometry is an odd-dimensional
analogue of hyper-Kähler geometry. Note that the dimension of a 3-Sasakian man-
ifold must be congruent to 3 modulo 4. A 3-Sasakian manifold has a triple of
orthonormal Killing fields ξ1, ξ2, ξ3 which give rise to a locally defined free isomet-
ric SU(2) action on the manifold. Correspondingly, there exists a triple of contact
forms on the manifold with g as associated metric and ξ1, ξ2, ξ3 as the Reeb vector
fields. It is an open problem whether there exists 3-Sasakian metrics on exotic
spheres. In particular, the only known 3-Sasakian metric on any homotopy sphere
is the standard round metric. Every 3-Sasakian manifold is Einstein with positive
scalar curvature. Informally, an Einstein metric has constant Ricci curvature. More
precisely, the bilinear form associated to the Ricci curvature (the Ricci tensor) is
proportional to the metric itself. See [P, p. 31]. The scalar curvature of such a
metric is equal to the dimension of the manifold multiplied by the constant of pro-
portionality, so an Einstein metric with positive scalar curavture also has positive
Ricci curvature.

In the context of Sasakian geometry, one has a result similar to the Calabi
Conjecture (see [BGN1], and also [EKA] from which the result was developed).
It is a consequence of this result that if an odd-dimensional manifold admits a
positive Sasakian structure (see [BGN1]), then it must admit a metric of positive
Ricci curvature. Boyer, Galicki and collaborators have exploited this to produce
a very wide range of new examples of Ricci positive manifolds. Amongst these
examples are exotic spheres [BGN2]. In particular they were able to construct new
(Sasakian) metrics of positive Ricci curvature on all homotopy spheres which bound
parallelisable manifolds, thus providing an alternative proof to the main result of
[Wr1]. The exotic spheres are realised as Brieskorn manifolds, as described in §2
for dimensions 4n + 1 and above for dimensions 4n + 3.

Another ramification of this approach is that Boyer, Galicki and their collab-
orators have been able to determine the existence of Einstein metrics (actually
Sasaki–Einstein) with positive scalar curvature on certain exotic spheres. The first
examples of such Sasaki–Einstein metrics on exotic spheres were obtained in [BGK].
It was shown that all Kervaire spheres and all exotic spheres in dimension seven
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admit an Einstein metric with positive scalar curvature. In [BGKT] similar results
were obtained for all exotic spheres in dimension 11, and also those in dimension
15 bounding a parallelisable manifold. (All exotic spheres in dimension 11 bound a
parallelisable manifold.) The approach in these low dimensions is to perform a case-
by-case check using a computer. It is conjectured that all exotic spheres bounding a
parallelisable manifold admit an Einstein metric (indeed a Sasaki–Einstein metric)
with positive scalar curvature [BGK].

4. Scalar curvature

The scalar curvature is the weakest of the three curvature notions we consider.
Since the scalar curvature is the trace of the Ricci curvature form, the statements
on positivity of the Ricci curvature presented in the last section already give some
statements on positivity for the scalar curvature. In dimensions one and two there
is no essential difference between the various curvature notions, so we will generally
assume a manifold to have dimension at least three. A first good understanding
of the nature of scalar curvature is arrived at through the classification result of
Kazdan and Warner [K, Theorem 2.19] (proved in [KW1] and [KW2]). To state
the result, we divide the collection of all smooth connected closed manifolds into
three classes: those that have a Riemannian metric of non-negative scalar curvature
which is positive at least at one point, those that have a Riemannian metric of non-
negative scalar curvature but do not belong to the first class, and the remaining
ones. The result of Kazdan and Warner says that if M is a smooth connected
closed manifold of dimension at least three, then M is in the first class if and
only if every smooth function f ∈ C∞(M) can be realized as the scalar curvature
of an appropriate Riemannian metric on M . Furthermore, if M is in the second
class, then a smooth function f ∈ C∞(M) is the scalar curvature of a Riemannian
metric on M if and only if f(x) < 0 for some point x ∈ M or f ≡ 0, while if M
belongs to the third class, then a smooth function f ∈ C∞(M) can be realized
as the scalar curvature of a Riemannian metric if and only if there is some point
x ∈ M with f(x) < 0. Manifolds in the second class we call strongly scalar flat.
To have some examples in mind, any closed manifold with a metric whose scalar
curvature is positive everywhere is certainly contained in the first class. Thus
spheres or suitable quotients of spheres (e.g., lens spaces) are contained in this
class. A typical example for the second class is the torus: the existence of a flat
metric shows that it belongs to one of the first two classes. However, Gromov and
Lawson showed in [GL] that the torus does not admit a metric of positive scalar
curvature, thus the torus is a scalar flat manifold. Probably the most mysterious
class is the third one. In [KW3, Theorem 5.1] Kazdan and Warner gave a sufficient,
ad-hoc criterion for a manifold being contained in that class, which for example
shows that the connected sum of T 4 and a K3-surface is contained in it. For
simply connected manifolds whose dimension is at least five, however, there is a
completely satisfactory characterization of all three classes, due to results of Gromov
and Lawson [GL], Stolz [St], and Futaki [F] (see below).

As a result of the enormous flexibility in arranging scalar curvature functions
which follows from the Kazdan–Warner theorem, the only interesting question con-
cerning positive scalar curvature issues on exotic spheres is to decide to which one
of these classes they belong. We will see that there are no strongly scalar flat
exotic spheres except possibly in dimensions three and four, and that for exotic



EXOTIC SPHERES AND CURVATURE 611

spheres of dimension ≥ 5 there is a computable invariant, the so-called α-invariant,
which effectively determines whether or not a given homotopy sphere possesses a
Riemannian metric of positive scalar curvature.

The α-invariant is a generalization of the so-called Â-genus and evolves from spin
geometry. More precisely the α-invariant of a closed spin manifold M is the image of
the spin bordism class of M under the Atiyah–Bott–Shapiro homomorphism which
maps the spin bordism ring to the coefficients of real K-theory. In the case of an
exotic sphere, the invariant is trivial if the dimension of the exotic sphere is not equal
to 1 or 2 mod 8. In the remaining cases it is a Z/2-valued invariant which also can
be defined completely geometrically. For simplicity assume that M is a homotopy
sphere of dimension ≥ 2. In this case there is one and only one spin structure on
M . If the dimension of M is 1 mod 8 the real spinor bundle S comes equipped
with a complex structure which is respected by the Dirac operator D acting on the
smooth sections on S. It follows that Ker(D) naturally has a complex structure.
Similarly if the dimension of M is 2 mod 8, the real spinor bundle naturally has a
quaternionic structure which is respected by the Dirac operator so that Ker(D) is
a vector space over the quaterions H in natural way. The α-invariant then can be
computed as follows (compare [LM], §7):

α(M) =

⎧⎨
⎩

dimCKer(D) mod 2 if dim(M) ≡ 1 mod 8,

dimHKer(D) mod2 if dim(M) ≡ 2 mod 8.

The above interpretation of the α-invariant can be regarded as an enhancement of
the celebrated Atiyah–Singer index theorem. It is also the origin of its relationship
to scalar curvature. In [Hi] Hitchin observed that the α-invariant is an obstruction
to the existence of a positive scalar curvature metric on M . His observation is
based on a calculation of the Bochner–Weitzenböck curvature term for the spinor
bundle on M originally due to Lichnerowicz [Li] (however, see [LM], Theorem 8.8
for a more modern account). The latter yields the following expression of the
Bochner–Weitzenböck formula for the square of the Dirac operator

D2 = ∇∗∇ + 1
4scal,

where scal stands for the operator which multiplies by the scalar curvature function.
Since the connection Laplacian ∇∗∇ is a positive operator, it follows that D2 is a
strictly positive operator if scal > 0. So is in this case one has Ker(D) = 0 and
hence α(M) = 0.

One might ask whether there are exotic spheres which have a non-trivial α-
invariant. This question is answered in the affirmative by Adams and Milnor, who
showed that the α-invariant constitutes a surjective group homomorphism from
the group θn of homotopy n-spheres (with the addition induced by the connected
sum operation) onto the group Z/2, provided n ≡ 1, 2 mod 8 and n ≥ 9. Roughly
speaking, Adams has shown [Ad, Theorem 1.2] that a non-trivial α-invariant in
dimensions n ≡ 1, 2 mod 8 can always be realized through a stably framed closed
manifold, while Milnor has shown [M3, Proof of Theorem 2] that one can alter
an accordingly framed manifold to a homotopy sphere by a sequence of surgeries
without changing its α-invariant, provided n ≥ 9 (and n ≡ 1, 2 mod 8).

The next natural question to ask is which exotic spheres with trivial α-invariant
do have Riemannian metrics of positive scalar curvature. For exotic spheres of di-
mension ≥ 5, this question has been answered by Stolz in [St] where he shows that
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in fact any closed simply connected spin manifold of dimension ≥ 5 with vanishing
α-invariant does have a Riemannian metric of positive scalar curvature. His results
depend on a surgery result for scalar curvature which has been obtained indepen-
dently by Gromov and Lawson in [GL] and Schoen and Yau in [ScY]. The latter
states that if a closed manifold M of dimension ≥ 5 is obtained by a sequence of
surgeries of codimension ≥ 3 from another closed manifold which has a Riemannian
metric of positive scalar curvature, then M also can be furnished with a positive
scalar curvature metric. Gromov and Lawson already observed that the bordism
result implies that any simply connected closed manifold of dimension at least five
which is not spin has a metric of positive scalar curvature, the reason being that
each such manifold can be obtained by a sequence of surgeries as above from a
particular list of manifolds with standard metrics of positive scalar curvature. Ho-
motopy spheres of dimension at least three, however, are spin manifolds. In the spin
case the bordism result implies that a simply connected closed spin manifold M of
dimension at least five has a metric of positive scalar curvature if it is spin bordant
to some closed spin manifold which has a metric of positive scalar curvature. Stolz
then used methods from stable homotopy theory to show that in fact any closed
simply connected spin manifold M with α(M) = 0 is spin bordant to the total
space of a bundle with the quaternionic projective plane HP

2 as fibre and struc-
tural group Isom(HP

2), the group of isometries of HP
2. Given such a fibre bundle,

one can use the O’Neill formulas to produce a metric of positive scalar curvature on
the total space from the standard positive scalar curvature metric on HP

2 and an
arbitrary Riemannian metric on the base. Note that the base of such a fibre bundle
is compact, so one can squeeze the fibres so that at each point, the scalar curvature
contribution coming from the fibre dominates the contribution coming from the
base. Thus any HP

2-bundle of the above sort can be equipped with a metric of
positive scalar curvature on its total space. Hence if α(M) = 0, the surgery result
of Gromov and Lawson, respectively Schoen and Yau, can be used to construct a
metric of positive scalar curvature on M from a positive scalar curvature metric on
a spin bordant HP

2-bundle. These bordism results give a good description of those
simply connected manifolds of dimension at least five which belong to the first class
in the Kazdan–Warner classifaction; namely, such a manifold belongs to this class
unless it is spin and has a non-trivial α-invariant.

If the α-invariant of an exotic sphere M is non-trivial, it remains to ask whether
or not M is strongly scalar flat. We know that in dimensions one and two there
are no exotic spheres. On the other hand one knows that there are no scalar
flat exotic spheres in dimensions ≥ 5. This is a simple consequence of the main
theorem of Futaki in [F]. Futaki showed that a closed simply connected manifold
M of dimension ≥ 5 is strongly scalar flat if and only if α(M) �= 0 and M =
M1 × · · · × Mr, where each factor is a Ricci-flat Kähler manifold or a Riemannian
manifold with Spin(7)-holonomy. This statement in a way also follows from the
Bochner–Weitzenböck formula. If α(M) �= 0, one has Ker(D) �= 0. Thus if M is
equipped with a scalar flat metric, this implies that M has a parallel spinor, and
the latter by a result of Hitchin [H] yields that M must be Ricci-flat and must have
special holonomy (compare [F] on page 28). Note that a compact Kähler manifold
has a non-trivial second cohomology group, while a Riemannian manifold with
Spin(7)-holonomy has dimension eight. Since every homotopy sphere in particular
is a homology sphere, a homotopy sphere of dimension ≥ 5 with a non-vanishing
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α-invariant cannot have the same cohomology as a product of the above form. In
particular, homotopy spheres of dimension ≥ 5 with a non-vanishing α-invariant
are not strongly scalar flat. The last statement can also be found in [D, Proposition
1.1] where Dessai derives it from another implication of Futaki’s result.

In the remaining dimensions three and four, the scalar curvature classification of
homotopy/exotic spheres depends on various versions of the Poincaré conjecture.
As already mentioned in the Introduction, Perelman recently proved the classical
Poincaré conjecture in dimension three, thus there are no homotopy 3-spheres apart
from the standard 3-sphere. On the other hand, the smooth Poincaré conjecture
in dimension four which claims that there are no exotic 4-spheres has yet to be
resolved. Many people believe that it is not true since there are many 4-manifolds
which have non-isomorphic differentiable structures. However, to the best of the
authors’ knowledge, there is not even a candidate for a counterexample at the
present time. In particular, there is nothing to be said concerning special metrics
on exotic 4-spheres.
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(1966), 1-14. MR0206972 (34:6788)

[Bl] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress
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