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1 Introduction

One would ultimately like to understand which complete Riemannian manifolds admit
metrics of everywhere positive Ricci curvature. However, this is a very difficult prop-
osition and out of range at present. In fact very little is known about the topological
consequences of positive Ricci curvature, and examples of positive Ricci curvature
manifolds are relatively thin on the ground. The aim of this paper is to present a
construction technique which yields infinitely many new examples of such manifolds.

In [5], Sha and Yang showed that connected sums of the form

�k
i=1 Sn × Sm

admit metrics of positive Ricci curvature for n, m ≥ 2. Note that connected sums
between Ricci positive manifolds will not in general support a metric of positive Ricci
curvature, as can be seen from Myers’ Theorem [4; p. 245]. (This is in contrast to
the situation for positive scalar curvature, where connected sums of positive scalar
curvature manifolds admit positive scalar curvature metrics provided the dimension
is at least three [3].) The result of Sha and Yang is a consequence of the fact that
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their manifolds admit an alternative description in terms of performing surgeries (of
dimension greater than zero) on a fixed Ricci positive manifold.

This paper is also concerned with connected sums between products of spheres.
However, the factor spheres are now allowed to have different dimensions to those
in other products. The main aim of this paper is to establish the following result.

Theorem A The manifold

(Sn1 × Sm1)�(Sn2 × Sm2)�....�(Snk × Smk)

admits a metric of positive Ricci curvature for any ni, mi ≥ 3 such that ni +mi = nj +mj
for all 1 ≤ i, j ≤ k.

The simplest new example occurs in dimension 10, namely (S3×S7)�(S4×S6)�(S5×S5).
The essential difficulty in establishing Theorem A is that different products of spheres
display different symmetries.

Note this this result is not sharp. Sha and Yang show that connected sums of the
form (S2 × Sn)� · · · · �(S2 × Sn) admit positive Ricci curvature metrics for n ≥ 2. As
explained in Sect. 4, so do manifolds such as (S2×S4)�(S3×S3). It would be interesting
to know whether Theorem A would still be true if we were to allow any number of S2

factor spheres in our products.
It is not difficult to extend Theorem A to more general situations. We present two

such extensions.

Theorem B Suppose that M has the structure of an Sm-bundle over a compact base
Xn, with a Lie structural group. If X admits a metric of positive Ricci curvature and
m > n ≥ 3, then any connected sum

M�(Sn1 × Sm1)� · · · · �(Snk × Smk)

admits a metric of positive Ricci curvature for ni, mi ≥ 3 and ni + mi = n + m for all i.

Note that if we allow m ≤ n in Theorem B, this will restrict the possible factor sphere
dimensions.

Theorem C Consider M as in Theorem B, with the additional requirement that m ≥
n+5. Let E1,…,Ek be sphere bundles with base Sdi , fibre Sn+m−di , and structural group
SO(n + m − di + 1), where m − 1 ≥ di ≥ n + 4 for i = 1, . . . , k. Then

M�E1�....�Ek

admits a metric with positive Ricci curvature.

The results in this paper are produced using surgery. As explained in Sect. 2,
(Sn × Sm)�(Sp+1 × Sn+m−p−1) can be created from Sn × Sm by performing a sur-
gery on a suitably embedded Sp. We choose to embed this Sp in the Sm factor of
the product. Similarly for further connected sums. To the best of the author’s knowl-
edge, these are the first examples of Ricci positive manifolds to be constructed by
performing surgeries of different dimensions on the starting manifold.

To ensure our constructions admit positive Ricci curvature metrics, we work explic-
itly with metrics of cohomogeneity two.

The rest of this paper is laid out as follows. In Sect. 2 we sketch the topology behind
our examples. In Sect. 3 we give a brief overview of the metric construction process.
Some existing Ricci positive surgery results are noted in Sect. 4, and in Sect. 5 we list
the relevant Ricci curvature formulas. The main metric construction is described in
Sect. 6, and the main theorems are proved in Sect. 7.
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2 Constructing the connected sums

We begin by describing the process of surgery. Consider a smooth embedding

ι : Sn −→ Mn+m.

Assume the normal bundle of ι(Sn) is trivial. This means we can extend ι to an
embedding

e : Sn × Dm −→ M.

Performing surgery involves cutting something out—the interior of the image of the
embedding e—and stitching something in—a copy of Dn+1 × Sm−1. (Note that the
boundary of Sn × Dm = Sn × Sm−1 = boundary of Dn+1 × Sm−1.) The dimension of
such a surgery is n, and the codimension is m.

On the assumption that p < m, the manifold (Sn × Sm)�(Sp+1 × Sn+m−p−1) can be
constructed from Sn × Sm by performing a single p-surgery. Specifically, we perform
surgery on {∗} × Sp ⊂ Sn × Sm, which is contractible within Sn × Sm. More generally,

Mm�(Sp+1 × Sm−p−1)

can be constructed by performing a surgery on a contractibly embedded p-sphere in
M. To see this, first note that

M ∼= M�Sm.

Now

Sm = (Sp × Dm−p) ∪ (Dp+1 × Sm−p−1) [= ∂(Dp+1 × Dm−p)].
Therefore

M ∼= M�(Dp+1 × Sm−p−1) ∪ (Sp × Dm−p).

The result of performing the obvious surgery is

M�(Dp+1 × Sm−p−1) ∪ (Dp+1 × Sm−p−1)

= M�(Sp+1 × Sm−p−1).

Our examples will be produced by performing a sequence of surgeries on spheres
embedded in distinct copies of Sm within the product Sn × Sm.

3 A metric overview

We will begin with a product of round metrics on our starting manifold Sn × Sm. Let
us assume that on Sn the round metric has unit radius, and on Sm the radius will be
small and fixed at a later point in the construction.

We first decide how many surgeries (connected sums) we wish to perform. We
then remove that many disjoint copies of Dn × Sm from our product. We assume that
all disks are geodesic disks of the same radius. The number of surgeries will then
determine an upper bound for the disk radius.
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Our idea is then to replace these by inserting a ‘lid’ into each of the holes. Each
lid is also a copy of Dn × Sm, so topologically this achieves nothing. However, met-
rically these lids will be somewhat different to those removed. Each lid will have
non-negative Ricci curvature, and have a metric near the boundary, which can be
smoothly joined with the ambient metric within positive Ricci curvature. Moreover,
the lid metric will be such as to allow a Ricci positive surgery of the desired dimension
at its centre. To perform this surgery we use the result of Sha–Yang, which will be
outlined in Sect. 4 below. The fact that some Ricci curvatures are zero is not a problem,
because at many points all Ricci curvatures are positive. Under these circumstances a
result of Ehrlich [2] guarantees the existence of a positive Ricci curvature metric on
the whole manifold. The precise metric details of the lid are described in Sect. 6.

4 Ricci positive surgery

Consider the following situation. Suppose we are given a Riemannian manifold Mp+d

having positive Ricci curvature and an isometric embedding ι : Sp(ρ)×Dd
R(N) −→ M

where Dd
R(N) denotes a geodesic ball of radius R in the d-sphere with the round

metric of radius N. Sp(ρ) is the p-sphere with the round metric of radius ρ. We can
regard ι as a trivialisation of the normal bundle of ι(Sp × {0}).
Theorem (Sha, Yang [5]). Let M̂ be the result of performing surgery on ι(Sp × {0})

using the trivialisation ι, and assume p ≥ 1, d ≥ 3. Then there exists κ(p, d, RN−1) > 0
such that if ρ

N < κ then M̂ can be equipped with a Ricci positive metric.

This result will be a vital ingredient in the proof of Theorem A.
As mentioned in Sect. 1, Sha and Yang used this result to establish the existence

of Ricci positive metrics on �k
i=1 Sn × Sm for n, m ≥ 2. It is not difficult to adapt the

result to produce different examples.
Consider a product of spheres Sn × Sm, which is equipped with a product metric

consisting of a round metric on Sn, and on Sm a metric of the form

dt2 + f 2(t)ds2
p + h2(t)ds2

m−p−1

for t ∈ [0, π2 ]. Here we need to assume n ≥ 2 and m − 2 ≥ p ≥ 1. Set h(t) = sin t.
Suppose f (t) = cos t, for t ≥ δ′, some δ′ close to π

2 ; f (t) = δ, a small constant, for
t ∈ [0, π4 ]; and that f ′′(t) ≤ 0 for all t. Suppose we want to perform surgery on the
copy of Sp corresponding to t = 0. Topologically, a neighbourhood of this sphere is
Sp × Dn+m−p, and metrically we have a product metric between a round metric of
radius δ on Sp and a Ricci positive metric on Dn+m−p. As noted in [5; p. 134], we
can locally deform the metric on Dn+m−p within Ricci positivity so that it is round
of some radius in a neighbourhood of the origin. It is clear that f (t) and in particular
the constant δ can be chosen independently of the metric on Dn+m−p. Therefore,
by choosing δ small enough, Sha-Yang guarantees the existence of a Ricci positive
metric on the manifold obtained by performing surgery on this Sp. Thus we see that
(Sn × Sm)�(Sp+1 × Sn+m−p−1) admits a Ricci positive metric.

Observe also that where our normal disk is round, we can in fact perform multiple
Ricci positive p-surgeries, by choosing δ smaller if necessary. Indeed, with a little more
work it can be shown that

(�k
i=1Sn × Sm) � (�l

j=1Sp+1 × Sn+m−p−1)

admits a Ricci positive metric, as pointed out in [5].
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It is difficult to see how to adapt this approach to deal with connected sums between
products of spheres where we have products of three or more different types. The sym-
metry of the metric described above seems to obstruct further surgeries of differing
dimensions.

In our construction below, we produce a new method which deals with this prob-
lem. The underlying reason why our method is able to succeed in this situation is that
we work explicitly with metrics of cohomogeneity two. The metrics constructed by
Sha and Yang only have cohomogeneity one, and so are less flexible.

5 The curvature formulas

In our metric construction of the lid, we will consider a metric of the form

ds2 + dt2 + f 2(s, t)ds2
p + g2(t)ds2

q + h2(s)ds2
n−1 (∗)

on

[0, ∞)× [0,
π

2
] × Sp × Sq × Sn−1.

The Ricci curvature formulas for this metric are easily calculated, for example using
[1; p. 266], and we omit the details.

With f , g and h satisfying suitable boundary conditions (see Sect. 6), we can regard
(∗) as a metric on Dn × Sp+q+1.

In the following, let {Xi} denote a local orthonormal frame field on Sp, let {Vj} be
an orthonormal frame field for Sq, and let {Wk} denote an orthonormal frame field
for Sn−1. (Here, orthonormal means with respect to the above metric.)

Ric
(
∂

∂s
,
∂

∂s

)
= −p

fss

f
− (n − 1)

hss

h
.

Ric
(
∂

∂t
,
∂

∂t

)
= −p

ftt

f
− q

gtt

g
.

Ric
(
∂

∂s
,
∂

∂t

)
= −p

fst

f
.

Ric(Xi, Xi) = − fss + ftt

f
+ p − 1

f 2 (1 − f 2
s − f 2

t )− q
ftgt

fg
− (n − 1)

fshs

fh
.

Ric(Vj, Vj) = −gss + gtt

g
+ q − 1

g2 (1 − g2
s − g2

t )− p
ftgt

fg
.

Ric(Wk, Wk) = −hss

h
+ (n − 2)

1 − h2
s

h2 − p
fshs

fh
.

All other Ricci curvature terms vanish.

6 Constructing the ‘lid’

From now on we will make the following dimensional assumptions:

n ≥ 3,

p ≥ 2,

q ≥ 1.
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Topologically, the lid is a product Dn × Sp+q+1, with p + q + 1 = m. Geometrically, we
assume a metric of the form (∗). We will supppose that we wish to perform surgery on
a copy of Sp ⊂ Sm in the centre of the lid. It follows from our dimensional assumptions
that the surgeries we aim to perform have dimension at least 2 and at most m − 2.

In this section we show how to choose the functions f , g and h. We begin by detailing
the boundary conditions we require these functions to satisfy.

We want the ds2 + h2(s)ds2
n−1 part of the metric (∗) to be our metric on Dn. For

this to be a well-defined smooth metric at the origin of Dn, we require h(s) to be
everywhere smooth and odd at s = 0. For h to be odd at s = 0 we demand:

h(0) = 0;

h(2i)(0) = 0

for every integer i ≥ 1. These conditions are necessary but not sufficient for smooth-
ness at the origin of Dn. For sufficiency (see [4; p. 13]) we also require:

h′(0) = 1.

We want dt2 + f 2(s, t)ds2
p + g2(t)ds2

q to give a metric on Sp+q+1. For this (see [4; p. 14])
we need for every integer i ≥ 1 and for every s ≥ 0:

∂(2i−1)f

∂t(2i−1)
(s, 0) = 0,

f (s, 0) > 0,

g(2i)(0) = 0,

g′(0) = 1,

g(0) = 0;

∂(2i)f
∂t(2i) (s,π/2) = 0,

∂f
∂t
(s,π/2) = −1,

f (s,π/2) = 0,

g(2i−1)(π/2) = 0,

g(π/2) > 0.

Recall from Sect. 3 that we will require our lid to be glued into Sn × Sm − Dn × Sm,
where Sn × Sm is equipped with a product of round metrics. With this in mind we
will demand that for large s, our Sp+q+1 metric will be the unit radius round metric.
For this we need f (s, t) = cos t and g(t) = sin t. Since g is a function of t only, we are
therefore led to the following definition.

Definition 6.1 For all t ∈ [0,π/2], let g(t) = sin t.

In order to perform surgery on some Sp ⊂ Sm in the centre of the lid, we will demand
that the metric in a neighbourhood of the centre of the lid take the form of a product
between a round metric on Sp of some (small) radius δ and some Ricci positive normal
metric. As we will outline later, this will allow us to use the Sha–Yang surgery result.
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These metric requirements place restrictions on our choice of function f . Precisely,
we demand that for sufficiently small s, f (s, t) should be independent of s and satisfy:

(i) f (s, t) = δ (a constant) for t ∈ [0, π4 ], s ≤ ε
10 , some ε > 0;

(ii) f (s, t) = cos t for t ∈ [δ′, π2 ], some δ′ very close to π
2 , s ≤ ε

10 ;
(iii) ftt(s, t) ≤ 0 for all t ∈ [0, π2 ], s ≤ ε

10 ;
(iv) fs(s, t) = 0 for all t ∈ [0, π2 ], s ≤ ε

10 .

The values of ε, δ and δ′ will be fixed later (Definitions 6.4, 6.8 and 6.9).
For values of s between these two extremes, we must show how to define f to obtain

a smooth function of both s and t which agrees with the above. With curvature issues
in mind, we do this in such a way that

(a) f (s, t) = cos t for t ∈ [δ′, π2 ] and for all s,
(b) ftt(s, t) ≤ 0 for all s and t,
(c) fs(s, t) ≥ 0 for all s and t.

We are now in a position to begin our construction of f and h.

Definition 6.2 Let r0 ∈ (0, π2 ) be the desired radius of the factor Dn in our lid Dn ×Sm.

Definition 6.3

(a) The constant H is defined to be 1
2 (1 + cos r0).

(b) The constant H′ is defined to be 1
2 (1 + H).

We will construct the function h so as to have constant slope H at the boundary of the
lid. The value of H is chosen so that the Dn factor of the lid can be glued within Ricci
positivity into its position in the main manifold. (This glueing is discussed in Sect. 7.)

Definition 6.4 The constant ε ∈ (0,π/2) is fixed at any value for which cos ε > H′.

Definition 6.5 The function h0: [0, ∞) → [0, ∞) is chosen to be any smooth function
satisfying the following requirements:

(i) h0(s) = sin s for s ∈ [0, ε];
(ii) h′

0(s) = H′ for s ≥ 2ε;
(iii) h′′

0(s) ≤ 0 for all s ≥ 0.

Observation 6.6 It is clear from the definitions of h0 and g, and requirement (i) for f ,
that the metric ds2 + dt2 + f 2(s, t)ds2

p + g2(t)ds2
q + h2

0(s)ds2
n−1 must have positve Ricci

curvature at least for s, t ≤ ε
10 .

Lemma 6.7 There exists κ = κ(p, q, n, ε) > 0 such that surgery can be performed on
the copy of Sp corresponding to s = t = 0 preserving the local Ricci positivity, whenever
δ, the radius of this Sp, satisfies δ < κ .

Proof For s, t ≤ ε
10 , the metric on the lid is a product between the round metric of

radius δ and a Ricci-positive normal metric. As noted in [5; p. 134] we can deform
the metric in normal directions to a round metric of some radius inside a small disk.
Notice that the normal metric, and hence the size and curvature of the round disk
only depend on n, q, ε and the functions g(t) = sin t and h0(s) = sin s. By Sha–Yang
([5, Lemma 1]) there exists κ = κ(p, q, n, ε) such that if δ < κ , then we can perform
surgery on our Sp within Ricci positivity, as claimed. ��
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Definition 6.8 Fix δ (see condition (i) for f ) to be any number in the interval (0, κ).

Definition 6.9 Fix δ′ (see condition (ii) for f ) to be any number in (0,π/2) such that
cos δ′ < δ.

We now give more details about the construction of f . First some more definitions.

Definition 6.10 Let f1: [0,π/2] → [0, 1] be given by f1(t) = cos t.

Definition 6.11 Let f2: [0,π/2] → [0, 1] be any smooth function satisfying

f2(t) = δ for t ∈ [0,π/4];
f2(t) = cos t for t ∈ [δ′,π/2];
f2

′′(t) ≤ 0 for all t ∈ [0,π/2].
f1(t)− f2(t) > 0 for all t ∈ [0, δ′).

We set

f (s, t) = f1(t)φ(s)+ (1 − φ(s))f2(t)

with f1(t) and f2(t) as above, and with φ(s) a smooth ‘bump’ function satisfying the
following:

φ(s) = 0 for s ∈ [0, ε/10],
φ(s) = 1 for all suitably large s,
φ′(s) ≥ 0 for all s,
φ′′(s) ≥ 0 for all s ∈ [ε/10, ε] and φ′′(s) ≤ 0 for all s > ε.

(With curvature issues in mind, note that f (s, t) has the following derivatives:

fss(s, t) = φ′′(s)(f1(t)− f2(t)),
fst(s, t) = φ′(s)(f ′

1(t)− f ′
2(t)),

ftt(s, t) = φ(s)f ′′
1 (t)+ (1 − φ(s))f ′′

2 (t).)

Thus defining f (s, t) boils down essentially to choosing the function φ(s). Note that
because of the choices of f1 and f2, and the above restrictions of φ, the resulting
function f will automatically satisfy all the requirements set out above.

Definition 6.12 Let α0 > 0 be any number satisfying the following conditions:

(i)

α0 <
(n − 1)ε

2p
cos δ′;

(ii)

α0 <
n − 1

p
cos δ′ tan(ε/10);

(iii)

α0

[2
ε

+ (p − 1)α0 + (n − 1) cot
ε

10

]
< (p − 1) cos4 δ′;



Ann Glob Anal Geom (2007) 32:343–360 351

(iv)

p2α2
0 + 2pq cos δ′ α0

ε
< (n − 1)q cos2 δ′.

(It is clear that such a number exists.)

Lemma 6.13 For each α ∈ (0,α0] there exists a smooth function φ1 : [0, ε] → [0, 1)
satisfying the following conditions:

(i) φ1(s) = 0 for s ∈ [0, ε/10];
(ii) φ′

1(ε) = α;
(iii) φ′′

1 (s) ∈ [0, 2α/ε] for all s ∈ [0, ε].
Proof It is clear that we can construct concave up functions with derivative 0 at
s = ε/10 and devivative α at s = ε, keeping the maximum value of the second deriva-
tive arbitrarily close to 10α/9ε. In particular it is possible to construct such functions
keeping the maximum value of the second derivative less than 2α/ε. ��
Proposition 6.14 The metric

ds2 + dt2 + [f1(t)φ1(s)+ (1 − φ1(s))f2(t)]2ds2
p + g2(t)ds2

q + h2
0(s)ds2

n−1

on

[0, ε] ×
[
0,
π

2

]
× Sp × Sq × Sn−1

has strictly positive Ricci curvature.

Proof We will check each of the curvature formulas (see Sect. 5) in turn, splitting
our considerations into the cases t ≥ δ′ and t < δ′.

For notational simplicity, let us write θ(s, t) = f1(t)φ1(s)+ (1 − φ1(s))f2(t).
First we consider the term

Ric
(
∂

∂s
,
∂

∂s

)
= −p

φ′′
1 (s)

θ(s, t)
(f1(t)− f2(t))− (n − 1)

h0
′′(s)

h0(s)
.

Note that 1 > f1(t) − f2(t) ≥ 0 for all t. Since h0(s) = sin s for s ∈ [0, ε] this formula
reduces to

Ric
(
∂

∂s
,
∂

∂s

)
= −p

φ′′
1 (s)

θ(s, t)
(f1(t)− f2(t))+ (n − 1).

The problem here is that φ′′ ≥ 0, together with the fact that θ(s, t) → 0 as t → π
2 .

For t ≥ δ′ we have f1(t) = f2(t), and hence the curvature term reduces to

Ric
(
∂

∂s
,
∂

∂s

)
= n − 1.

For t < δ′ we have θ(s, t) > cos δ′. It is clear that provided we demand

φ′′
1 (s) <

(n − 1)
p

cos δ′.

Ricci positivity will be achieved. But this is an immediate consequence of condition
(iii) in the definition of φ1 (Lemma 6.13) and condition (i) in Definition 6.12.
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As g(t) = sin t and θtt ≤ 0, it is clear that the term

Ric
(
∂

∂t
,
∂

∂t

)
> 0

for all s and t.
Let us now consider the ‘mixed’ Ricci curvature term Ric

(
∂
∂s , ∂

∂t

)
. As shown above,

for s ∈ [0, ε] we know that the Ricci curvature in both ∂/∂s and ∂/∂t directions is
strictly positive. From elementary linear algebra, we know that the mixed curvature
term will not upset positive Ricci curvature provided

Ric
(
∂

∂s
,
∂

∂s

)
Ric

(
∂

∂t
,
∂

∂t

)
>

(
Ric

(
∂

∂s
,
∂

∂t

))2

; (†)

or more explicitly:

(
−p

φ′′
1 (s)

θ(s, t)
(f1(t)− f2(t))− (n − 1)

h′′
0(s)

h0(s)

)(
−p

θtt(s, t)
θ(s, t)

+ q
)

> p2
(
φ′

1(s)

θ(s, t)

)2

(f ′
1(t)− f ′

2(t))
2.

First note that for t ≥ δ′ and for all s we have θst(s, t) = 0, and so our inequality (†) is
automatically true.

For t < δ′ is clearly suffices to check that

[
− p

cos δ′
supφ′′

1 + n − 1
]

q > p2 φ
′
1(ε)

2

cos2 δ′
,

which will certainly be the case if

p2α2 + pq cos δ′ supφ′′
1 < (n − 1)q cos2 δ′.

But this follows from condition (iii) in the definition of φ1 (Lemma 6.13) together
with condition (iv) in Definition 6.12.

We now consider the Ric(Wk, Wk) term. Recall that

Ric(Wk, Wk) = −h′′
0

h0
+ (n − 2)

1 − (h′
0)

2

h2
0

− p
θsh′

0

θh0
.

First note that the term −p
θsh′

0
θh0

is non-positive. Now θs(s, t) = φ1
′(s)(f1(t)− f2(t)), and

as f1(t) = f2(t) for t ∈ [δ′, π2 ], and φ1(s) = 0 for s ∈ [0, ε/10], θs is identically zero for s
close to 0 and t close to π/2. Therefore this ‘bad’ term cannot blow up.

As h0(s) = sin s for s ∈ [0, ε], we have −h′′
0

h0
= 1−(h′

0)
2

h2
0

= 1. We therefore need to

guarantee that

n − 1 > p
(f1(t)− f2(t))φ′

1(s) cot s

θ
.

As noted above, φ′
1(s) = 0 for s ∈ [0, ε/10], and f1(t) − f2(t) = 0 for t ∈ [δ′,π/2].

It suffices therefore to check that

n − 1 >
p cot(ε/10)

cos δ′
sup

s∈[0,ε]
φ′

1(s).
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Since φ1
′ ≥ 0 and φ1

′(ε) = α, this is equivalent to requiring

α <
n − 1

p
cos δ′ tan(ε/10),

which is guaranteed by condition (ii) in Definition 6.12.
We now come to the Ric(Xi, Xi) term. It is easy to see that when t ≥ δ′, Ric(Xi, Xi) =

p + q. Let us therefore consider t < δ′. Note that the term −q θtgt
θg is non-negative.

As 1 ≥ θ ≥ cos δ′ and θs = 0 for s ∈ [0, ε
10 ], the ‘bad’ curvature terms − θss

θ
,

−(p − 1) θ
2
s
θ2 and −(n − 1) θsh′

θh are at worst

− sups∈[0,ε] φ′′
1

cos δ′
, −(p − 1)

φ′
1(ε)

2

cos2 δ′
and − (n − 1)φ′

1(ε)

cos δ′
cot

ε

10

respectively. To guarantee Ricci positivity it suffices to check that

(p − 1)
θ2 (1 − θ2

t ) >
1

cos δ′
supφ′′

1 + (p − 1)
(φ′

1(ε))
2

cos2 δ′
+ (n − 1)φ′

1(ε)

cos δ′
cot

ε

10
.

Since

(p − 1)
θ2 (1 − θ2

t ) > (p − 1) cos2 δ′

it therefore suffices to check that

(p − 1) cos2 δ′ > 1
cos δ′

supφ′′
1 + (p − 1)

α2

cos2 δ′
+ (n − 1)α

cos δ′
cot

ε

10
,

which is certainly the case if

α
[2
ε

+ (p − 1)α + (n − 1) cot
ε

10

]
< (p − 1) cos4 δ′.

But this is guaranteed by condition (iii) in Definition 6.12.
The final curvature expression we have to consider is

Ric(Vj, Vj) = −gss + gtt

g
+ q − 1

g2 (1 − g2
s − g2

t )− p
θtgt

θg
.

It is clear that the first two terms in this are strictly positive, and since θt ≤ 0 the final
term is non-negative. Hence Ric(Vj, Vj) > 0 for all s and t. This concludes the proof
of Proposition 6.14. ��

Lemma 6.15

sup
t∈[0,δ′)

[
(f ′

1(t)− f ′
2(t))

2

f1(t)− f2(t)

]
< ∞.

Proof First note that by the last condition in the definition of f2 (Definition 6.11),
we have that

(f ′
1(t)− f ′

2(t))
2

f1(t)− f2(t)
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is defined for all t < δ′. It then clearly suffices to check that

lim
t→δ′−

(f ′
1(t)− f ′

2(t))
2

f1(t)− f2(t)
< ∞.

By l’Hôpital’s Rule, this limit is equal to lim
t→δ′−

2(f ′′
1 (t)− f ′′

2 (t)), and clearly this latter

limit is 0. ��
Definition 6.16 Fix η > 1 to be any number satisfying the following four requirements:
(i)

η >
p

q cos δ′
sup

t∈[0,δ′)

[
(f ′

1(t)− f ′
2(t))

2

f1(t)− f2(t)

]
;

(ii)

η >
p

(n − 2) cos δ′H′ sin2 ε
;

(iii)

η >
1

ε2 cos δ′
[
1 + n − 1

(p − 1)H′ cos δ′
]
;

(iv)

η >
1
εα0

.

Definition 6.17 For any given choice of φ1, let φ2 : [ε, ∞) → (0, ∞) be given by

φ2(s) = φ1(ε)+ 1
η

ln
s
ε

.

Note that for all s ≥ ε, φ′′(s) < 0 and φ′(s) > 0.

Lemma 6.18 There exists s0 > 0 such that φ2(s0) = 1.

Proof This is immediate since φ2(ε) = φ1(ε) < 1 and lims→∞ φ2(s) = ∞. ��
Proposition 6.19 The metric

ds2 + dt2 + [f1(t)φ2(s)+ (1 − φ2(s))f2(t)]2ds2
p + g2(t)ds2

q + h2
0(s)ds2

n−1

on

[ε, s0] ×
[
0,
π

2

]
× Sp × Sq × Sn−1

has non-negative Ricci curvature, and strictly positive Ricci curvature for s suitably
close to ε.

Proof For notational simplicity we set ψ(s, t) = f1(t)φ2(s) + (1 − φ2(s))f2(t). We
check each curvature formula in turn.

It is immediate that we have

Ric
(
∂

∂s
,
∂

∂s

)
≥ 0.
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Note that the Ricci curvature in this direction is zero for s ≥ 2ε (when h′′(s) = 0) and
t ≥ δ′ (when f1(t)− f2(t) = 0). However, since h′′(ε) = − sin(ε) and φ2

′′(ε) = −η−1ε−2

we certainly have strictly positive Ricci curvature for s close to ε.
It is clear that we have

Ric
(
∂

∂t
,
∂

∂t

)
> 0

for all s ≥ ε and t ∈ [0,π/2].
We now consider the mixed Ricci curvature term. Since the Ricci curvatures in the

∂/∂s and ∂/∂t directions are at worst non-negative, the mixed curvature term will not
upset Ricci non-negativity provided

Ric
(
∂

∂s
,
∂

∂s

)
Ric

(
∂

∂t
,
∂

∂t

)
≥

(
Ric

(
∂

∂s
,
∂

∂t

))2

. (‡)

For t ≥ δ′ and for all s ≥ ε we have ψst(s, t) = 0, and so (‡) is true. In fact for t ≥ δ′
and s suitably close to ε, strict inequality holds in (‡) since Ric

(
∂
∂s , ∂

∂s

)
> 0 for such

values of s, as noted above. We obtain equality in (‡) for t ≥ δ′ and s ≥ 2ε since h0
′′ is

zero for these values of s.
For t < δ′ we obtain strict inequality in (‡) provided

−φ′′
2 (s) >

p
q

1
cos δ′

(f ′
1(t)− f ′

2(t))
2

f1(t)− f2(t)
(φ′

2(s))
2.

Using the definition of φ2, we can reduce this to

η >
p
q

1
cos δ′

(f ′
1(t)− f ′

2(t))
2

f1(t)− f2(t)
.

But this is guaranteed by condition (i) in the definition of η. Note that since we have
Ricci positivity in the ∂/∂s and ∂/∂t directions and strict inequality in (‡) for s suitably
close to ε, the mixed curvature term cannot upset Ricci positivity at these values of s.

We now come to the term Ric(Wk, Wk):

Ric(Wk, Wk) = −h′′
0

h0
+ (n − 2)

1 − (h′
0)

2

h2
0

− p
ψsh′

0

ψh0
.

The first two terms in this expression are non-negative and positive respectively for all
s ≥ ε. For t ≥ δ′ the third term is identically zero, so overall we have Ricci positivity
for these values of t.

For t < δ′ we can bound ψ(s, t) below by cos δ′. Recall that φ′
2(s) = 1/ηs. Also

notice that h0(s) > H′s. We can now make the following estimate:

ψsh′
0

ψh0
<

1
ηs

1
H′s

1
cos δ′

.

Now

1 − (h0
′)2 ≥ 1 − h′

0(ε)
2,

and h0(s) < s, so

1 − (h′
0)

2

h2
0

≥ 1 − h′
0(ε)

2

s2 .
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Since h′
0(ε) = cos ε we can make the following estimate:

Ric(Wk, Wk) ≥ (n − 2)
sin2(ε)

s2 − p
ηs2H′ cos δ′

.

We therefore have strict Ricci positivity provided

η >
p

(n − 2)H′ cos δ′ sin2 ε
.

But this is just condition (ii) in the definition of η.
For the Ric(Xi, Xi) term we have Ric(Xi, Xi) = p + q for t ≥ δ′. For t < δ′ we need

to note that φ′′
2 (s) < 0, so φ2(s) is decreasing with s, ψ(s, t) is bounded above by 1 for

s ∈ [ε, s0], and ψt is bounded above by sin δ′ for all s ≥ ε and t < δ′. We can therefore
bound the curvature expression below as follows:

Ric(Xi, Xi) > (p − 1)[cos2 δ′ − (φ′
2(ε))

2] − (n − 1)
φ′

2(ε)

cos δ′
1

H′ε
.

Strict positivity of the right-hand-side is guaranteed if

n − 1
H′ε cos δ′

φ′
2(ε)+ (p − 1)(φ′

2(ε))
2 < (p − 1) cos2 δ′.

But φ′
2(ε) = 1

ηε
, so this condition is equivalent to

n − 1
ηH′ε2 cos δ′

+ p − 1
η2ε2 < (p − 1) cos2 δ′.

Since η > 1 it suffices to check that

1
η

( n − 1
H′ε2 cos δ′

+ p − 1
ε2

)
< (p − 1) cos δ′.

But this is equivalent to condition (iii) in the definition of η.
The final curvature term, Ric(Vj, Vj) is easily seen to be strictly positive. This con-

cludes the proof of Proposition 6.19. ��
Lemma 6.20 There exists α ∈ (0,α0) and a corresponding function φ1: [0, ε] → [0, 1)
satisfying the conditions laid out in Lemma 6.13 such that the function φ3: [0, ∞) →
[0, ∞) defined by

φ3(s) =
{
φ1(s) for s ≤ ε,
φ2(s) for s > ε

is C1 at s = ε.

Proof By definition of φ2 we see φ3 is C0 at s = ε for any choice of α and φ1. Now
φ′

2(ε) = 1
ηε

and φ′
1(ε) = α. Since by condition (iv) in the definition of η we have

α0 > 1/ηε, we are free to choose α = 1/ηε, making a C1 join between φ1 and φ2. ��
We now fix this value of α and the corresponding functions φ1 and φ2.

Lemma 6.21 It is possible to smooth φ3 to a function φ4 by making an arbitrarily small
adjustment in an arbitrarily small neighbourhood of s = ε such that the metric

ds2 + dt2 + [f1(t)φ4(s)+ (1 − φ4(s))f2(t)]2ds2
p + g2(t)ds2

q + h2
0(s)ds2

n−1
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has non-negative Ricci curvature on [0, s0]×[0, π2 ]×Sp ×Sq ×Sn−1, and strictly positive
Ricci curvature at least for s ∈ [0, ε].
Proof Suppose that the smoothing takes place over an interval (ε − ε′, ε + ε′) for
some ε′ 
 ε. Of course we are free to choose ε′ as small as we wish, and by Propo-
sitions 6.14 and 6.19 we see that provided ε′ is suitably small, this metric has strictly
positive Ricci curvature at both s = ε − ε′ and s = ε + ε′. It is clear that we can make
our adjustment to φ3 ensuring that φ′′

4 (s) interpolates between the values φ′′
3 (ε − ε′)

and φ3
′′(ε+ε′) for s ∈ (ε−ε′, ε+ε′), and the values of φ3 and φ′

3 are altered negligibly.
Since the only Ricci curvature terms for the above metric involving φ′′

4 depend linearly
on φ′′

4 , it is clear that the smoothing can be made within Ricci positivity. ��
Proposition 6.22 There exists a constant ε′′ > 0 and smooth functions φ, h : [0, ∞) →
[0, ∞) such that

(i) φ(s) = φ4(s) for s ≤ s0 − ε′′;
(ii) φ′′(s) ≤ 0 for s ≥ s0 − ε′′;
(iii) φ(s) = 1 for all s ≥ s0 + ε′′;
(iv) h(s) = h0(s) for s ≤ s0 − ε′′;
(v) h′′(s) ≤ 0 for all s ∈ [0, ∞);
(vi) h′(s) = H for s ≥ s0 + ε′′;

and the Ricci curvature of the metric

ds2 + dt2 + f 2(s, t)ds2
p + g2(t)ds2

q + h2(s)ds2
n−1

on

[0, ∞)×
[
0,
π

2

]
× Sp × Sq × Sn−1

has non-negative Ricci curvature, strictly positive at some points, where as before

f (s, t) = f1(t)φ(s)+ (1 − φ(s))f2(t).

Proof Notice first that the existence of functions φ and h satisfying requirements
(i)–(vi) above is trivial. We create the functions φ(s) and h(s) by performing concave-
down bends to φ4(s) respectively h0(s) over the interval s ∈ [s0 − ε′′, s0 + ε′′]. Notice
that if ε′′ is chosen sufficiently small, these deformations can be made with arbitrarily
small change to either the values taken by the functions or their first derivatives on
s ∈ [s0 − ε′′, s0 + ε′′].

We need to check the Ricci curvature claim. First note that for s ≥ s0 + ε′′ the
Ricci curvature is easily seen to be non-negative, since we have h′′(s) = 0 and for all
t ∈ [0,π/2] we have fss(s, t) = fst(s, t) = fs(s, t) = 0. For s ∈ [s0 − ε′′, s0 + ε′′] we need
to make a more detailed analysis, and as before consider the curvature expressions
on a case by case basis.

Ricci non-negativity for the Ric
(
∂
∂s , ∂

∂s

)
term is immediate since φ′′(s) ≤ 0 and

h′′(s) ≤ 0 when s ∈ [s0 − ε′′, s0 + ε′′].
The Ric

(
∂
∂t ,

∂
∂t

)
is trivially seen to be strictly positive at these values of s.

For the mixed curvature term, we need to give more detail about how φ4(s) should
be deformed to a constant function with value 1 over the interval [s0 − ε′′, s0 + ε′′] so
as not to introduce any negative Ricci curvature. We consider again the inequality (‡).

Notice that the size of the mixed derivative fst(s, t) = φ′(s)(f ′
1(t)− f ′

2(t)) is bounded
above (for example by 2α). As the slope of h(s) is H′ > H at the start of the interval,
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we can make a further concave-down bend to h, and still keep h′(s) > H at the end
of the interval. By choosing the interval (in other words ε′′) sufficiently small, we can
arrange for −q(n − 1)hss

h (a lower bound for the left-hand-side of (‡)) to dominate
the square of the mixed curvature term (which is independent of h). Within this h-
deformation interval, deform φ4 to a constant function with value 1 in a concave-down
manner. As such a deformation decreases the value of the squared mixed curvature
term, and does not affect −q(n − 1)hss

h , it is clear that (‡) holds throughout. Finally,
with a further concave-down deformation if necessary, ensure that h has (constant)
slope H. This final deformation clearly cannot cause (‡) to be violated.

The term Ric(Wk, Wk) will be strictly positive for s ∈ [s0 − ε′′, s0 + ε′′], provided ε′′
is chosen suitably small. To see this note that both fs and h′ decrease over this interval
(fixed t), but the corresponding change in fh can be assumed to be negligible, simply

by choosing the interval small enough. Thus (n − 2) 1−h′(s)2
h(s)2

, say, will still dominte the

−p fsh′
fh term.

The lower bound given for Ric(Xi, Xi) in Proposition 6.19 is still valid for
s ∈ [s0 − ε′′, s0 + ε′′], so we see the Ricci curvature in this direction is strictly positive
for these values of s.

Finally, Ric(Vj, Vj) is trivially seen to be strictly positive. This concludes the proof
of Proposition 6.22. ��
Observation 6.23 The functions f , g and h in Proposition 6.22 satisfy (by construction)
all the boundary conditions detailed at the start of Sect. 6. The function f satisfies the
additional requirements (i)–(iv) and (a)–(c) laid out after Definition 6.1. As a con-
sequence of Lemma 6.7 and the choice of δ (Definition 6.8) we can perform surgery
within Ricci positivity on the copy of Sp corresponding to s = t = 0.

Note that we can arrange for the boundary of the lid to correspond to s = s1, for
any s1 > s0 + ε′′. Of course we require the radius of the Dn factor of the lid to be
r0 (see Definition 6.2). This can be achieved by performing a global rescale of the
lid. Such a rescale does not affect the Ricci curvature. This completes our lid metric
construction.

7 Proofs of the main theorems

Proof of Theorem A As noted in Sect. 2, we can form (Sn × Sm)�(Sp+1 × Sn+m−p−1)

by performing surgery on {∗} × Sp ⊂ Sn × Sm, assuming of course that p < m.
As noted at the start of Sect. 3, we assume that Sn × Sm is equipped with a product

of round metrics: Sn of unit radius, and the radius of Sm to be determined later.
We remove a copy of Dn

r0
(1) × Sm from Sn × Sm for some r0 ∈ (0,π/2), and wish to

replace it with a ‘lid’, as constructed in Sect. 6.
For s > s0 + ε, the outer ‘annulus’ of our lid is metrically

(I × Sn−1 × Sp+q+1 ; ds2 + h2(s)ds2
n−1 + ds2

p+q+1)

for some s-interval I. The Ricci curvature of this is non-negative. As zero curvatures
arise precisely when h′′(s) = 0, we see that any concave-down bend of h will give Ricci
positivity during the bending.

The disk Dn clearly fits into a round hole in Sn(1) to give a C0 join after rescaling.
Since h′(s) = H and h′′(s) = 0 at the boundary of the lid, a suitable concave-down
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bending of h in some arbitrarily small neighbourhood of the lid boundary will result
in a smooth join (after rescaling) without introducing any negative Ricci curvatures.

Notice that a global rescale of the lid affects neither the Ricci curvature, nor h′(s)
(both s and h(s)-axes are rescaled). Suppose that we require a metric rescaling factor
of β2 in order for Dn to fit. Then the whole lid can be glued into the hole in Sn × Sm

if we equip the latter with the product metric ds2
n + β2ds2

m.
As noted in Observation 6.23, a locally Ricci positive p-surgery can be performed

at the centre of the lid, yielding a Ricci non-negative metric on (Sn × Sm)�(Sp+1 ×
Sn+m−p−1) with strict Ricci positivity at many points. By [2] this metric can be
deformed to one with everywhere strictly positive Ricci curvature.

Suppose now we want to perform multiple surgeries and therefore have different
lids. In general these will have different values for h(s) at their boundaries. Recall
that we assume the holes into which we want the lids to fit have disks of identical
radii. Choose the lid with the biggest h(s) at its boundary. Extend the range of s for
all the other lids so their h(s) values agree with the largest. There is no problem with
doing this, metrically or otherwise. After these extensions, a single lid rescaling factor
will work for all lids, and therefore we can fix a metric Sn(1)× Sm(β) on the ambient
manifold.

As before, we want to perform surgery on a sphere at the centre of each of these
lids, and obtain a Ricci positive metric on a connected sum involving several terms.
It remains to establish that all connected sums of products of spheres, where each
individual sphere has dimension at least 3, can be obtained in this way.

First note that if n = m = 3, the only possible connected sums satisfying the
dimension requirements of Theorem A are those taking the form

S3 × S3� · · · · �S3 × S3.

These manifolds admit positive Ricci curvature metrics by Sha and Yang.
Let us now assume (without loss of generality) that m ≥ n. Since we have dealt

with the n = m = 3 case, we can assume also that m ≥ 4. As observed at the start of
Sect. 6, we can perform local Ricci positive surgeries of dimensions 2, 3,…,(m − 2) on
the Sm factor. One such surgery can therefore yield any of the following manifolds:
(Sn×Sm)�(S3×Sn+m−3), (Sn×Sm)�(S4×Sn+m−4),…, (Sn×Sm)�(Sm−1×Sn+1). Thus we
can produce Ricci positive connected sums with products involving S3, S4, . . . , Sm−1

and simultaneously Sn+1, . . . , Sn+m−3. If m > n, we see that all factor sphere dimen-
sions S3, . . . , Sn+m−3 are covered. However in any connected sum between products
of spheres (except (Sn × Sn)� · · · �(Sn × Sn) which admits a Ricci positive metric by
Sha–Yang) there must be a product Sn × Sm with m > n. By performing surgery on
such a product, we can clearly obtain all the desired examples. ��

Proof of Theorem B We can construct a submersion metric with totally geodesic
fibres on M by specifying a metric on X, a metric on Sm, and a connection on the
associated principal bundle, (see [1; p. 249] for details). Given any Ricci positive met-
ric on X and any choice of connection, there is a β > 0 such that choosing the round
metric of radius β on Sm will produce a Ricci positive metric on M. See [1; p. 253]. We
are free to choose the connection so that it is flat over some disjoint neighbourhoods
U1,…,Uk of B. This means that the corresponding submersion metric will locally be
a product over these regions. As noted earlier, we are also free to locally deform
the metric on X within each of these neighbourhoods so that we get a round metric
of radius Ni in a smaller neighbourhood of some radius Ri, without introducing any
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non-positive Ricci curvatures. In our construction to establish Theorem A, we assumed
that all disks chosen on Sn were of the same size r0. We can arrange for that again
here by setting r0 = inf i Ri, and restricting our attention to disks of this size. By setting
H = (1/2)[1 + supi cos(r0/Ni)] (see Definition 6.3), our lid construction and glueing
procedure can be applied simultaneously to all neighbourhoods, provided β is chosen
small enough. Surgery can then be performed to obtain the required examples. Note
that to obtain all the connected sums claimed we require m > n. This follows from
the argument given in the last paragraph of the proof of Theorem A. ��
Proof of Theorem C First note that any sphere bundle with base Sp+1, fibre Sn+m−p−1,
and structural group SO(n + m − p), can be constructed from two copies of Dp+1 ×
Sn+m−p−1 by gluing along their boundaries according to a smooth map T : Sp →
SO(n + m − p). Such a map T also specifies a trivialisation of the normal bundle of
Sp in our lid. (Note that this normal bundle has a canonical trivialisation preserving
the product metric structure. Any other trivialisation can be obtained from this one
by ‘twisting’ it using a suitable map T.) It is easy to see that performing surgery
on Sp using the trivialisation determined by T results in a connected sum with the
Sn+m−p−1−bundle over Sp+1 determined by T. The Theorem follows easily from The-
orem B if we replace the Sha–Yang surgery result by Theorem 0.3 of [6], which allows
us to handle other trivialisations of the normal bundle. However, to use this result
we need the dimension of the surgery > codimension ≥ 3. In other words we need
p > n + q + 1. Thus we obtain the extra requirements p ≥ n + 3 and m ≥ n + 5, which
result in the dimension restrictions for E1, . . . , Ek. ��
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