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The rate of approximation of real numbers by ratio-
nals allows one to draw many conclusions on the arith-
metic nature of numbers. In this way, the existence of
transcendental numbers was first proved, the theory of
Thue equations was constructed, the irrationality of

 

ζ

 

(3)

 

 was shown, etc. However, some problems remain
unsolved. At the same time, real numbers are amaz-
ingly similar from the point of view of measure theory.
It was noted by Borel, and Khintchine [1] proved his
famous theorem. Let 

 

Ψ

 

(

 

x

 

)

 

 be a monotonically decreas-
ing function defined on 

 

R

 

+

 

, 

 

µ

 

A

 

 be the Lebesgue mea-
sure of a measurable set 

 

A

 

 ⊂ 

 

R

 

,

 

 and 

 

I

 

 = [

 

a
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b

 

]

 

 be an
interval.

 

Khintchine’s theorem.
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If the series 

 

(

 

q

 

)

 

 converges, the monotonicity

assumption for 

 

Ψ

 

(

 

q

 

)

 

 can be dropped; otherwise, the
theorem does not hold without this assumption. Ine-
quality (1) can be rewritten as

 

(2)

 

Then we deal with the solvability of inequality (2) in
first-degree polynomials with integer coefficients. Let

 

(3)

 

Denote by 

 

L

 

n

 

(

 

Ψ

 

)

 

 the set of 

 

x

 

 

 

∈ 

 

R

 

 for which the ine-
quality

 

(4)

 

has infinitely many solutions in integer polynomials

 

P

 

(

 

x

 

)

 

. The problem of the measure of 

 

L

 

n

 

(

 

Ψ

 

)

 

 has a long
history. Specifically, in 1932 Mahler [2] conjectured
that 

 

L

 

n

 

(

 

Ψ

 

)

 

 has measure zero for 

 

Ψ

 

(

 

H

 

) = 

 

H

 

–

 

λ

 

,

 

 where

 

λ

 

 > 1. His conjecture was proved by Sprindzhuk [3].
Baker [4] somewhat improved Sprindzhuk’s result and
conjectured that Khintchine’s theorem holds for 

 

L

 

n

 

(

 

Ψ

 

)

 

in the case of convergence. This conjecture was proved
in [5], and, in the case of divergence, in [6]. Soon after-
wards, these results were extended to the fields of com-
plex and 

 

p

 

-adic numbers [7, 8].

This work deals with simultaneous approximation
of zero in all three metrics. Hereafter, 

 

µ

 

1

 

 is the Leb-
esgue measure in 

 

R

 

, 

 

µ

 

2

 

 is the measure in the field of
complex numbers, 

 

µ

 

3

 

 is the measure in 

 

Q

 

p

 

, and 

 

µ

 

 = 

 

µ

 

1

 

 

 

×
µ

 

2

 

 

 

× µ

 

3

 

. Let 
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3
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 and 
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λ

 

1

 

, 

 

λ

 

2

 

, 

 

λ

 

3

 

)

 

 be vec-
tors with positive real coordinates, and let 

 

T

 

 = 

 

I

 

 

 

×

 

 

 

K

 

 

 

×

 

 

 

D

 

be a parallelepiped in 

 

R

 

 

 

×

 

 

 

C

 

 

 

×

 

 

 

Q, where I ⊂ R is an
interval, K ⊂ C is a disk in C, and D is a cylinder in Qp.
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Denote by Ln( , , Ψ) the set of  = (x, z, w) ∈ T for
which the system of inequalities

(5)

has infinitely many solutions in polynomials (3).

Theorem 1. Under conditions (5) and n ≥ 3,

if (H) < ∞.

Theorem 2. Under conditions (5), n ≥ 3, ν1 + 1 =
ν2 + 1 = ν3, and λ1 = λ2 = λ3,

if (H) = ∞.

Remark 1. The conditions imposed on  and  are
not final. They cover the most interesting range of 

and  and make it possible to explain the idea behind
the proof of the theorem.

Remark 2. In the circle K for given δ > 0, we do not
need to consider the complex numbers z with |Imz| ≤ δ
since the measure of such z is small.

Proof sketch of Theorem 1. The standard tech-
nique in the proof is the transition in (5) to irreducible
polynomials with the conditions

(6)

In what follows, ε > 0 is a sufficiently small real num-
ber, T = T(ε, n) is a sufficiently large positive integer,

and ε1 = . Consider a vector  = (α1, β1, γ1), where

P(α1) = P(β1) = P(γ1) = 0, α1 ∈ R, β1 ∈ C, and γ1 ∈ Qp.
The remaining roots are arranged according to their dis-
tances to α1, β1, and γ1, respectively.

We solve the equations |α1 – αj| = , |β1 – βj| =

, and |γ1 – γj| =  (2 ≤ j ≤ n) and find integers kj,

lj, and mj such that  ≤ µ1j < ,  ≤ µ2j < , and
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 ≤ µ3j < . Define qi = , ri =

, and si = .

An important point in the proof is the relation

between  = q1 + , r1 + , s1 +  and  = (ν1 +

λ1, ν2 + λ2, ν3 + λ3). If all the coordinates of  are
smaller than those of , then the system of inequalities

(5) in the neighborhood of  is called (0, 0, 0)-linear;
otherwise, it is called (1, 1, 1)-linear. Clearly, there are
another six types of linearity. How to deal with these
two types of linearity can be explained as follows.
Denote by Fn the class of irreducible polynomials with

condition (6), and let Ft = . Define d1 = q1 +

2r1 + s1 and d2 = , and let d1 + d2 > n + ε.

From the inequalities for polynomials in (5), we can
proceed to estimates of |x – α1|, |z – β1|, and |w – γ1|p by
using well-known inequalities [3, 8]. On any of the par-

allelepipeds M =  ×  × , where system (5)
is solvable for P( f ) with f = (x, z, w), the polynomial
P( f ) in expanded in a Taylor series and all the expan-
sion terms are estimated from above to obtain

(7)

According to [9], the existence of more than one
polynomial on M with condition (5) leads to a contra-
diction. If there is no more than one polynomial on M,
the required estimate is derived by direct calculation.

The case 4 – ε < d1 + d2 ≤ n + ε is the key point in the
proof. Once again, T is divided into parallelepipeds M =

 ×  × , is expanded in a Taylor
series, and all the polynomials with condition (5) are
estimated on M. First, consider only those M that con-
tain no more than c(n) × 2tθ polynomials. Direct calcu-
lations show that there exists a bound for θ below which
the theorem holds true. If θ exceeds this bound, then,
using the Dirichlet principle and subtracting the poly-
nomials of degree n, we obtain lower degree polynomi-
als. As a result, we derive a system of form (7) with
polynomials R( f ), where degR ≤ n. For low-degree
polynomials, Theorem 1 can be proved by direct calcu-
lation.
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For (1, 1, 1)-linearity, the proof is close to that for
d1 + d2 > n + ε, but T is divided into smaller parallelepi-
peds.

To prove Theorem 2 on divergence, we need the so-
called optimal regular system. It is constructed using
the Dirichlet principle, applying which we can easily
prove that, for any Q > 1 and any  ∈ T, there exists c1 >
0 and a polynomial P( f ) that is not identically zero
such that

(8)

The basic difficulty is to prove the existence of c2 >
0 for which, along with (8), the inequality

(9)

holds for f ∈ B ⊂ T, µB > . We show that, if (9) is

violated, f belongs to a set of small measure. If (8) and
(9) are satisfied, it can be shown that there exists a vec-

tor  = (α, β, γ) with P(α) = P(β) = P(γ) = 0, α ∈ R,

β ∈ C, and γ ∈ Qp such that | |x – α| = c(n) , |z – β| =

c(n) , and |w – γ|p = . From the set of all

roots , we choose the maximum system with a given

distance between different . This system is an optimal
regular one. The rest of the proof is the same as in [6].
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