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Abstract

For each real number α, let E(α) denote the set of real numbers with exact order
α. A theorem of Güting states that for α ≥ 2 the Hausdorff dimension of E(α) is
equal to 2/α. In this note we introduce the notion of exact t–logarithmic order
which refines the usual definition of exact order. Our main result for the associated
refined sets generalizes Güting’s result to linear forms and moreover determines the
Hausdorff measure at the critical exponent. In fact, the sets are shown to satisfy
delicate zero–infinity laws with respect to Lebesgue and Hausdorff measures. These
laws are reminiscent of those satisfied by the classical set of well approximable real
numbers, for example as demonstrated by Khintchine’s theorem.

§1 Background and statement of results.

§1.1 The classical theory.

For each real number τ , let W (τ) denote the set of real numbers which are τ–well
approximable, that is

W (τ) := {x ∈ R : |x− p/q| ≤ |q|−τ for infinitely many rationals p/q} .

For a real number x, its exact order τ(x) is defined as follows:

τ(x) := sup{τ : x ∈ W (τ)} .

It follows from Dirichlet’s theorem in the theory of Diophantine approximation that
τ(x) ≥ 2 for all x ∈ R. For α ≥ 2, let E(α) denote the set of numbers with exact
order α; that is

E(α) := {x ∈ R : τ(x) = α} .
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The set E(α) is equivalent to the set of real numbers x for which Mahler’s
function θ1(x) is equal to α − 1; the general function θn(x) is central to Mahler’s
classification of transcendental numbers (see [1, 4]). In [4], Güting proved the fol-
lowing result:

Theorem (Güting). For α ≥ 2, dimE(α) = 2/α .

Throughout, dimX will denote the Hausdorff dimension of the set X. For
further details regarding Hausdorff dimension and measure see §1.3. At this point
it is worth mentioning the classical result of Jarńık and Besicovitch which states
that dimW (α) = 2/α. Thus, Güting’s result says that the ‘size’ of the sets E(α)
and W (α) expressed in terms of Hausdorff dimension are the same. In this note we
give a short proof of Güting’s theorem and show that the s-dimensional Hausdorff
measure of the set E(α) at the critical exponent is infinity, that is

H 2
α (E(α)) = ∞ .

These exact order results are a simple consequence of our results on exact t–
logarithmic order.

§1.2 Linear forms and exact t–logarithmic order.

Let ψ : R+ → R+ be a real positive function. An m×n matrix X = (xij) ∈ Rmn

is said to be ψ–well approximable if the system of inequalities

|q1 x1j + q2 x2j + . . . + qm xmj − pj | ≤ ψ (|q|) |q| (1 ≤ j ≤ n)

is satisfied for infinitely many vectors q ∈ Zm , p ∈ Zn . Here |q| denotes the
supremum norm of the vector q ; i.e. |q| = max{|q1| , . . . , |qm|} . The system

q1 x1j + q2 x2j + . . . + qm xmj (1 ≤ j ≤ n)

of n real linear forms in m variables q1 , . . . , qm will be written more concisely as

qX ,

where the matrix X is regarded as a point in Rmn . In view of this notation, the
set of ψ–well approximable points will be denoted by

W (m,n; ψ) := {X ∈ Rmn : |qX − p| ≤ ψ (|q|) |q| for i.m. (p,q) ∈ Zn × Zm} ,

where ‘i.m.’ means ‘infinitely many’. By definition, |qX−p| = max1≤j≤n |q.X(j) −
pj | where X(j) is the j’th column vector of X. In the case when ψ(r) = r−τ we
denote W (m,n; ψ) by W (m,n; τ) and note that when m = n = 1 the set W (1, 1; τ)
corresponds to W (τ) in the one dimensional theory.

We now refine and extend the definition of exact order to linear forms. For t ≥ 1,
suppose αo, α1, . . . , αt−1 ∈ R are given. Then for τ ∈ R\{0} denote by Wt (m,n; τ)
the set of X in Rmn for which the inequality

|qX − p| ≤ |q|−αo+1
t−1∏

i=1

(logi |q|)−αi × (logt |q|)−τ
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is satisfied for infinitely many (p,q) ∈ Zn×Zm . Here and throughout logi r denotes
the iterated logarithm

log . . . log︸ ︷︷ ︸ r

i times
.

When t = 0, we put
Wo (m,n; τ) := W (m,n; τ) .

For X in Rmn and t ≥ 0, let

τt(X) := sup{τ : X ∈ Wt (m,n; τ)}

denote the exact t–logarithmic order of X. Furthermore, for αt 6= 0 let

Et (m,n; αt) := {X ∈ Rmn : τt(X) = αt}

denote the set of ‘points’ X with exact t–logarithmic order αt. Here in the definition
of Et (m,n;αt) it is understood that on fixing αt we have already fixed the real
numbers αo, α1, . . . , αt−1 . Notice that in the case when m = n = 1 and t = 0, the
set Et (m,n; αt) is precisely the classical set of real numbers with exact order αo.
In view of the analogue of Dirichlet’s Theorem for linear forms, for any X ∈ Rmn

there exist infinitely many (p,q) ∈ Zn × Zm such that

|qX − p| ≤ |q|−m+n
n

+1 .

This implies that for any αo < m+n
n , the set Et (m,n; αt) is empty. Thus without

loss of generality we will always assume that

αo ≥ m + n

n
.

Suppose for the moment that t ≥ 1 and X ∈ Et (m,n; αt). It follows, by
definition, that for any ε > 0

|qX − p| ≤ |q|−αo+1
t∏

i=1

(logi |q|)−αi × (logt |q|)ε

for infinitely many (p,q) ∈ Zn × Zm , and that

|qX − p| ≥ |q|−αo+1
t∏

i=1

(logi |q|)−αi × (logt |q|)−ε

for all (p,q) ∈ Zn × Zm with |q| sufficiently large. Thus, given αo, α1, . . . , αt with
αt ≥ 0 we have the inclusion

Et (m,n; αt) ⊆ Et−1 (m,n; αt−1) .

Thus as t increases, the ‘order’ of approximation of points in Et (m, n; αt) becomes
more and more precise. The aim of this note is to completely describe the metric
structure of the sets Et (m,n;αt). In terms of dimension, we will see that the ‘size’
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of Et (m, n; αt) is only dependent on αo regardless of the precision of approximation
induced by the presence of log terms. However, the log terms do influence the
Hausdorff measures.

§1.3 The metric structure of the sets Et (m,n; αt) .

The appropriate notion to ‘best’ describe the structure of the sets Et (m,n;αt) is
that of generalized Hausdorff measures. By this we mean, Hausdorff measures with
respect to various dimension functions. A dimension function f : R+ → R+ is an
increasing, continuous function such that f(r) → 0 as r → 0 . The Hausdorff mea-
sure with respect to the dimension function f will be denoted throughout byHf and
is defined as follows. Suppose F is a non–empty subset of k–dimensional Euclidean
space Rk. For ρ > 0, a countable collection {Ci} of Euclidean cubes in Rk with
sidelength L(Ci) ≤ ρ for each i such that F ⊂ ⋃

i Ci is called a ρ-cover for F . For a
dimension function f define Hf

ρ(F ) = inf {∑i f(L(Ci)) : {Ci} is a ρ−cover of F} ,
where the infimum is over all ρ-covers. The Hausdorff measure Hf (F ) of F with
respect to the dimension function f is defined by

Hf (F ) := lim
ρ→0

Hf
ρ(F ) = sup

ρ>0
Hf

ρ(F ) .

A simple consequence of the definition of Hf is the following useful fact:

Fact. If f and g are two dimension functions such that f(r)/g(r) → 0 as r → 0,
then Hf (F ) = 0 whenever Hg(F ) < ∞.

In the case that f(r) = rs (s ≥ 0), the measure Hf is the usual s–dimensional
Hausdorff measure Hs and the Hausdorff dimension dimF of a set F is defined by

dim F := inf {s : Hs(F ) = 0} = sup {s : Hs(F ) = ∞} .

In particular when s is an integer Hs is comparable to s–dimensional Lebesgue
measure. For further details see [2, 3].

Returning to the problem of describing the metric structure of Et (m, n; αt), the
following function will play a crucial role. For any δ ≥ 0, we consider the dimension
function fδ given by

fδ(r) := rd+δ if t = 0 ,

where
d := (m− 1)n +

m + n

αo

and

fδ(r) := rd
t−1∏

i=1

(
logi r

−1
)u(αi) ×

(
logt r−1

)u(αt)−δ
if t ≥ 1 ,

where for 1 ≤ i ≤ t

u(αi) :=
αi(m + n)

αo
− 1 .

4



As mentioned in the previous section we assume without loss of generality that
αo ≥ (m + n)/n . For the case αo strictly greater than (m + n)/n we are able to
give a complete metric description of the sets Et (m,n; αt):

Theorem 1 For αo > m+n
n , dimEt (m,n; αt) = d . Furthermore

Hfδ(Et (m,n; αt)) =





∞ if δ = 0

0 if δ > 0
.

Recall that the dimension functions fδ depend on the values of αo, . . . , αt. Thus
the measure part of the theorem shows that the Hausdorff measure with respect to
these functions gives a precise and natural tool for distinguishing between the sets
Et (m,n; αt) even though for a fixed αo they have the same Hausdorff dimension.
Also notice that d < mn, so the mn–dimensional Lebesgue measure of Et (m,n; αt)
is always zero.

In the case when αo = (m + n)/n, our approach yields partial results for the
dimension and measure of Et (m,n;αt) . Recall that mn–dimensional Hausdorff
measure Hmn is comparable to mn–dimensional Lebesgue measure.

Theorem 2 Suppose αo = m+n
n . If t = 0 or αi = 1/n for all 1 ≤ i ≤ t, then

dimEt (m,n;αt) = mn and

• Hmn(Et (m,n;αt)) = ∞
• Hh(Et (m,n; αt)) = 0 if r−mnh(r) → 0 as r → 0 .

In all other cases Hmn(Et (m,n;αt)) = 0. In particular, if

α1 = . . . = αk−1 = 1/n and αk > 1/n

for some 1 ≤ k ≤ t; then dimEt (m,n; αt) = mn and

Hfδ(Et (m,n; αt)) =





∞ if δ = 0

0 if δ > 0
.

In the classical ‘exact order’ situation (t = 0), Theorems 1 and 2 together give
a complete metric description of the set Eo(m,n;αo).

For t ≥ 1, Theorem 2 is to some extent unsatisfactory. For example, when α1 <
1/n the result gives no information regarding the dimension of Et (m,n; αt) – all we
know is that Et (m,n; αt) is of zero mn–dimensional Lebesgue measure. However,
if α1 > 1/n the result provides a complete metric description of Et (m, n; αt).
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§1.4 A general formalism.

The Diophantine approximation properties of points X in Et (m,n;αt) are sand-
wiched between two approximating functions which are a product of iterated loga-
rithms differing at the t–iterated logarithm. This is clearly a ‘natural’ refinement
of the standard exact order situation. However, a more general, and in some sense
a more natural approach is to characterize the approximation properties of points
X in Rmn with respect to two arbitrary approximating functions – clearly not all
functions can be written as a product of iterated logarithms. More precisely, given
two real, positive decreasing functions ϕ and ψ with ϕ in some sense ‘smaller’ than
ψ, consider the set D (m,n; ψ, ϕ) of points X in Rmn for which

|qX − p| ≤ |q| ψ(|q|) infinitely often ;

and that
|qX − p| ≥ |q| ϕ(|q|) for all |q| sufficiently large .

In short,
D (m,n;ψ,ϕ) := W (m,n; ψ) \W (m,n; ϕ) .

In such generality one can not expect to describe the metric structure of D (m,n; ψ, ϕ)
as completely as in the exact t–logarithmic situation where the functions ϕ and ψ are
explicit. However, under reasonably mild conditions on the growth of the function
ψ and the degree to which ϕ is smaller than ψ we are able to completely describe
the metric structure of D (m,n; ψ, ϕ). The general philosophy is that the more ex-
plicit the functions the finer the metric description of D (m,n; ψ, ϕ) one expects to
obtain.

The notion of ‘order’ of a real, positive, decreasing function ψ : R+ → R+ will
be significant to our general framework. The order λ(ψ) is defined as follows:

λ(ψ) := lim
r→∞

− log ψ(r)
log r

.

In the exact t-logarithmic order situation, the approximating functions are of
the form ψ(r) = r−αo

∏t
i=1 (logi r)

−αi . Clearly in this case the order exists and
λ(ψ) = αo. To simplify matters we will only state and prove an analogue of Theorem
1 in which we assumed αo > (m + n)/n. Recall that this assumption ensured that
Hausdorff dimension of the sets under consideration is strictly less than mn (the
dimension of the ambient space) and therefore of mn–dimensional Lebesgue measure
zero. Here we impose the condition that λ(ψ) > (m + n)/n .

Theorem 3 Let ψ : R+ → R+ be a strictly decreasing and continuous function
such that λ(ψ) > (m + n)/n. Let ϕ : R+ → R+ be a decreasing function such that

ϕ(r) ≤ ψ(r logk r) (A)

for some integer k ≥ 1 and r sufficiently large. If rm+nψ(r)n ∏k−1
i=1 logi r is non–

increasing then

Hfδ(D (m,n;ψ,ϕ)) =





∞ if δ = 0

0 if δ > 0
,
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where fδ is the dimension function given by fδ(r) := r(m−1)n (ψ−1(r))−m−n−δ if
k = 1 and if k ≥ 2, then

fδ(r) := r(m−1)n (ψ−1(r))−m−n
k−2∏

i=1

(logi ψ
−1(r))−1 × (logk−1 ψ−1(r))−1−δ.

Furthermore

dimD (m,n; ψ, ϕ) = n(m− 1) + (m + n)/λ(ψ) .

Remark. For the zero–infinity law, which is the main content of the theorem and
the upper bound for the dimension we only require that lim infr→∞− log ψ(r)/ log r >
(m + n)/n; i.e. a condition on the lower order of ψ. Also, any dimension func-
tion which is comparable to the explicit function fδ stated in the theorem will
have the desired properties. In fact, if λ(ψ) < ∞ then for r sufficiently small
log ψ−1(r) ³ log r−1 (see §2.4). Thus, within the iterated logarithms of fδ(r), we
could replace ψ−1(r) by r−1 and thereby simplify the aesthetics of fδ.

The theorem shows that if condition (A) is satisfied then the sets D (m,n;ψ,ϕ)
can be classified precisely via the dimension functions fδ which are explicit in terms
of ψ−1 – the inverse of ψ which exists since ψ is strictly decreasing and continuous.
Notice that if (A) is satisfied for some k′, then it is also satisfied for any k > k′ since ψ
is a decreasing function. However, the larger the k, the more intricate the dimension
functions, and the stronger the condition becomes that rm+nψ(r)n ∏k−1

i=1 logi r is
non-increasing. This latter condition is natural given our context – in the classical
statements concerning the metric structure of the sets W (m,n; ψ) (see §2.1) the
condition that rm+nψ(r)n is non–increasing is standard and excludes the possibility
of W (m, n; ψ) being the whole ambient space Rmn. In these classical statements the
dimension function is simply a power of r so in our situation if we were to exclude
the iterated logarithms in fδ (which is the case when k =1) then the two conditions
naturally coincide.

We suspect that if condition (A) in Theorem 3 were to be replaced by any thing
weaker, then given the generality, one would lose the delicate ‘zero–infinity’ law
with respect to explicit dimension functions fδ. However, one should still be able to
draw precise conclusions regarding the dimension of D (m,n; ψ, ϕ). We will return
to this discussion later.

Example 1: The exact t-logarithmic order situation. With αo > (m + n)/n and
t ≥ 1, consider the functions

ψ(r) = r−αo

t∏

i=1

(logi r)
−αi and ϕ(r) = ψ(r)/(logt r)α (α > 0) .

So, for r sufficiently small, we have that

ϕ(r)
ψ(r logk r)

¿ (logk r)αo

(logt r)α
< 1 if k ≥ t + 1 .
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It is easy to check that λ(ψ) = αo and that ψ−1(r) ³ r−
1

αo
∏t

i=1

(
logi r

−1
)− αi

αo .
Thus, with k = t+1 in condition (A), Theorem 3 implies the zero–infinity law with
respect to the dimension function fδ as defined in §1.3 and that dimD (m, n; ψ, ϕ) =
n(m− 1) + (m + n)/α0.

Example 2: Functions not expressible as a product of iterated logarithms. With
τ > (m + n)/n and t ≥ 1, consider the functions

ψ(r) = r−τ (log r)log log r and ϕ(r) = ψ(r)/(logt r)α (α > 0) .

So, for r sufficiently small, we have that

ϕ(r)
ψ(r logk r)

=
(log r)log log r

(log(r logk r))log log(r logk r)
× (logk r)τ

(logt r)α
< 1 if k ≥ t + 1 .

It is easy to check that λ(ψ) = τ and that ψ−1(r) ³ r−
1
τ

(
log r−1

) 1
τ

log log r−1

. Thus,
with k = t+1 in condition (A), Theorem 3 implies the zero–infinity law with respect
to the dimension function fδ given by

fδ(r) = rn(m−1)+m+n
τ (log r−1)−

m+n
τ

log log r−1
t−1∏

i=1

(logi r
−1)−1 (logt r−1)−1−δ ,

and that dimD (m,n;ψ,ϕ) = n(m− 1) + (m + n)/τ .

Example 3: Exponential functions. With τ > 0 and t ≥ 1, let

ψ(r) = exp(− rτ ) and ϕ(r) = exp(− rτ logt r) .

So, for r sufficiently small, we have that

ϕ(r)
ψ(r logk r)

= exp (− rτ (logt r − (logk r)τ ) ) < 1 if k ≥ t + 1 .

It is easy to see that λ(ψ) = ∞ and that ψ−1(r) = (log r−1)
1
τ . Thus, with k = t+1 in

condition (A), Theorem 3 implies the zero–infinity law with respect to the dimension
function fδ given by

fδ(r) = rn(m−1) (log r−1)−
m+n

τ

t∏

i=2

(logi r
−1)−1 (logt+1 r−1)−1−δ ,

and that dimD (m,n;ψ,ϕ) = n(m − 1) . Notice, that if λ(ψ) = ∞ then the di-
mension of D (m,n; ψ, ϕ) is only dependent on m and n. Thus, in such cases the
discriminating information concerning the ‘size’ of the sets D (m,n;ψ,ϕ) is com-
pletely contained within the dimension functions fδ via the zero–infinity laws.

Acknowledgments. SV would like to thank Martin Collins for doing all those
‘other things’ while this paper was coming together – thank you. He would also like
to thank Duncan Bennett for reading through the final drafts.
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§2 Proof of Theorems.

We begin by stating two key results which are central to our approach.

§2.1 Auxiliary Results.

We require the following results concerning the ‘size’ of the set of ψ–well ap-
proximable points lying within the mn–dimensional unit cube Imn := [0, 1]mn. This
‘restricted’ set of ψ–well approximable points will be denoted by W̃ (m,n;ψ), thus
W̃ (m,n; ψ) := W (m,n; ψ) ∩ Imn. The first of these results relates the size of
W̃ (m,n; ψ), expressed in terms of mn–dimensional Lebesgue measure, to the be-
haviour of a particular ‘volume’ sum [5].

Theorem (Khintchine–Groshev). Let ψ : R+ → R+ be a positive decreasing
function and suppose that for m = 1 and m = 2, rm+n ψ(r)n is decreasing. Then

|W̃ (m,n; ψ)|mn =





0 if
∑

ψ (r)n rm+n−1 < ∞

1 if
∑

ψ (r)n rm+n−1 = ∞ .

The next result is a Hausdorff measure version of the above theorem [2].

Theorem (DV). Let f be a dimension function such that r−mn f(r) → ∞ as
r → 0 and r−mn f(r) is non–increasing. Let ψ : R+ → R+ be a decreasing
function such that rm+nψ(r)n → 0 as r → ∞ and rm+nψ(r)n is non–increasing.
Furthermore, suppose that rm+nψ(r)−(m−1)nf (ψ(r)) is non–increasing. Then

Hf
(
W̃ (m,n;ψ)

)
=





0 if
∑∞

r=1 f (ψ(r)) ψ (r)−(m−1)n rm+n−1 < ∞

∞ if
∑∞

r=1 f (ψ(r)) ψ (r)−(m−1)n rm+n−1 = ∞
.

Notice, that the case when Hf is comparable to mn–dimensional Lebesgue mea-
sure (i.e. f(r) = rmn) is excluded by the condition r−mn f(r) →∞ as r → 0 . This
will be significant in establishing Theorem 2. The condition rm+nψ(r)n → 0 as
r →∞ is a natural one as if this condition was not obeyed then the set would have
full Lebesgue measure by the Khintchine–Groshev theorem. The proofs of Theorem
1 and 3 make use of only the latter result, while Theorem 2 relies on both.

A comment on the convergence part. Most of the conditions on f and ψ
in the above theorem are only required in establishing the divergence case. The
convergence case follows from a straightforward application of the standard Borel–
Cantelli lemma and for this the only necessary condition is that ψ is decreasing and
tending to zero (see [2]). This fact will be used in proving Theorem 3.
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Remark. It is easy to verify that ψ–approximability is not affected under transla-
tions by integer matrices and that the measures Hf are invariant under translation.
Thus Hf (W (m,n; ψ)) = 0 whenever Hf (W̃ (m,n; ψ)) = 0 and Hf (W (m,n;ψ)) =
∞ whenever Hf (W̃ (m,n; ψ)) > 0. In particular, if |W̃ (m,n; ψ)|mn = 1 then
|W (m,n; ψ)|mn = ∞. Clearly, the same statements are valid for the sets Et (m,n;αt)
and Ẽt (m,n;αt).

§2.2 Proof of Theorem 1.

We begin by establishing the measure part of the statement for the dimension
function fδ with δ = 0. To simplify notation we will write f for fo throughout.

For αo ≥ m+n
n and η ≥ 0, consider the function:

ψη(r) = r−αo

t∏

i=1

(logi r)
−αi × (

logt+1 r
)− αo

m+n
(1+η)

. (1)

We now calculate the f–dimension Hausdorff measure Hf of the set W (m,n; ψη)
of ψη–well approximable points. In order to apply Theorem DV the expression

f(ψη(r))(ψη(r))−(m−1)nrm+n−1 (2)

must be considered.
If t = 0 then f(r) = rd and

• f(ψη(r)) = r−αod(log r)−
αod
m+n

(1+η)

• ψη(r)−(m−1)n = rαo(m−1)n(log r)
αo(m−1)n

m+n
(1+η).

Thus for t = 0, expression (2) is equal to r−1(log r)−(1+η) . Now suppose that t ≥ 1,
so

f(r) := rd
t∏

i=1

(
logi r

−1
)u(αi)

.

For 1 ≤ j ≤ t and r sufficiently large

logj ψη(r)−1 = logj−1

(
αo log r +

t∑

i=1

αi logi+1 r +
αod

m + n
(1 + η) logt+2 r

)

³ logj r .

Hence for r sufficiently large

f(ψη(r)) ³ r−αod
t∏

i=1

(logi r)
−αid+u(αi)(logt+1 r)−

αod
m+n

(1+η) ,

giving that expression (2) is comparable to

r−1
t∏

i=1

(logi r)
−1(logt+1 r)−(1+η) .
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Thus for t ≥ 0, the sum in Theorem DV diverges if η = 0 and converges for
η > 0. Now clearly

r−mn f(r) = r
m+n
αo

−n
t∏

i=1

(
logi r

−1
)u(αi)

, (3)

rm+n ψη(r)n = r−αon+m+n
t∏

i=1

(logi r)
−αin × (logt+1 r)−

αon
m+n

(1+η) , (4)

and for r sufficiently large

f(ψη(r)) (ψη(r))−(m−1)n rm+n ³
t∏

i=1

(logi r)
−1(logt+1 r)−(1+η) → 0 as r →∞ .

When t = 0, the above product terms for i = 1 to t are set to one. Here, we have
stated the obvious but (3) and (4) are central to the conditions imposed in Theorem
2 and also clarify the following. Under the assumption that αo > (m + n)/n, it is
easily seen that the functions f and ψη satisfy the conditions of Theorem DV. Thus

Hf (W (m,n; ψo)) = ∞ and Hf (W (m,n; ψη>0)) = 0 .

Now, for η > 0 consider the set

Dt (m,n; ψη) := W (m, n; ψo) \ W (m,n;ψη) .

The above argument implies that

Hf (Dt (m,n;ψη)) = ∞ . (5)

Suppose X ∈ Dt (m,n;ψη), then

|qX − p| ≤ |q|−αo+1
t∏

i=1

(logi |q|)−αi × (
logt+1 |q|

)− αo
m+n

for infinitely many (p,q) ∈ Zn × Zm , and

|qX − p| ≥ |q|−αo+1
t∏

i=1

(logi |q|)−αi × (
logt+1 |q|

)− αo
m+n

(1+η)

for all (p,q) ∈ Zn ×Zm with |q| sufficiently large. It follows from the definition of
Et (m,n; αt), that X ∈ Et (m, n; αt) and so Dt (m,n; ψη) ⊆ Et (m,n; αt). Thus, in
view of (5) we obtain that

Hf (Et (m,n; αt)) = ∞ .

The dimension part of the theorem will now be established. For any ε > 0 and
r sufficiently small f(r) ≤ rd−ε . Hence

Hd−ε(Et (m,n;αt)) ≥ Hf (Et (m,n; αt)) = ∞ ,

11



which implies that dimEt (m,n;αt) ≥ d − ε . However, ε > 0 is arbitrary and so
on letting ε → 0 the lower bound

dimEt (m,n; αt) ≥ d (6)

is obtained. For the upper bound, we first note that for any ε > 0 ,

Et (m,n; αt) ⊆ W (m,n;αo − ε) .

Now on applying Theorem DV, it is easy to verify that

dimEt (m,n; αt) ≤ dimW (m,n; αo − ε) = (m− 1)n +
m + n

αo − ε
;

essentially, Theorem DV implies that dimW (m,n;ψ) is the exponent of convergence
of

∑
ψ(r)s−(m−1)n rm+n−1 – see [2] if necessary. Thus, on letting ε → 0 we obtain

the upper bound dimEt (m,n; αt) ≤ d . This together with (6) completes the proof
of the dimension part.

To complete the proof of the theorem we must show that Hfδ(Et (m,n; αt)) = 0
for dimension functions fδ with δ > 0 . When t = 0, fδ(r) := rd+δ and the required
statement follows trivially from the definition of Hausdorff dimension. Without loss
of generality assume that t ≥ 1. For ε > 0, consider the function ψε given by

ψε(r) := r−αo

t∏

i=1

(logi r)
−αi × (logt r)ε . (7)

It follows, by definition, that Et (m,n; αt) ⊆ W (m,n;ψε) and so

Hfδ(Et (m,n; αt)) ≤ Hfδ(W (m,n; ψε)) .

We now show that Hfδ(W (m,n; ψε)) = 0 which together with the above statement
implies the desired result. In terms of the function f := fo, we have that fδ(r) =
f(r) (logt r−1)−δ . It can be verified that for r sufficiently large

fδ(ψε(r)) ³ r−αod
t∏

i=1

(logi r)
−αid+u(αi)(logt r)−δ+εd ,

and so

fδ(ψε(r)) (ψε(r))−(m−1)n rm+n−1 ³ r−1
t∏

i=1

(logi r)
−1 × (logt r)

(m+n)ε
αo

−δ .

Now assume that 0 < ε < δ αo
m+n . Since αo > (m + n)/n, the functions fδ

and ψε satisfy the conditions of Theorem DV and with ε as above we have that∑
fδ(ψε(r)) (ψε(r))−(m−1)n rm+n−1 < ∞ . Hence, Theorem DV implies that

Hfδ(W (m, n; ψε)) = 0

and completes the proof of Theorem 1. ♠
12



§2.3 Proof of Theorem 2.

Since αo = (m + n)/n, we have that u(αi) = αi n− 1 and d = mn.

First, suppose that t = 0 or αi = 1/n for all 1 ≤ i ≤ t. Then fo(r) = rmn and
the measure Hfo is comparable to mn–dimensional Lebesgue measure. Let ψη be
given by (1) and notice that

rm+n ψη(r)n =
t∏

i=1

(logi r)
−1 × (logt+1 r)−(1+η) → 0 as r →∞ .

Hence, the Khintchine–Groshev Theorem implies that

|W̃ (m,n; ψη)|mn =





0 if η > 0

1 if η = 0
.

On following the same line of arguments as in the proof of Theorem 1, we find
that the above statement implies that

|Ẽt (m,n; αt) |mn = 1 . (8)

This in turn, implies that |Et (m,n; αt) |mn = ∞ (if necessary, see remark at end
of §2.1) and that dimEt (m,n;αt) ≥ mn . Equality for the dimension now follows
trivially since Et (m,n; αt) ⊆ Rmn . Next, let h be any dimension function such
that r−mnh(r) → 0 as r → 0 . Then (8) together with the fact in §1.3, implies that
Hh(Ẽt (m,n; αt)) = 0 . This completes the proof of the theorem in the case t = 0 or
αi = 1/n for all 1 ≤ i ≤ t. We now show that in all other cases |Et (m,n; αt) |mn =
0.

With t ≥ 1 , let k be the unique integer in [1, t] such that αk 6= 1/n and αi = 1/n
for all 1 ≤ i ≤ k − 1 . If αk > 1/n, the result that |Et (m,n; αt) |mn = 0 follows
directly from the last part of the theorem (proved below). More precisely, for
δ > 0, since rmn/fδ(r) → 0 as r → 0 (one needs that δ < αtn − 1 if k = t) and
Hfδ(Et (m,n; αt)) = 0 the fact in §1.3 implies the desired conclusion. So, assume
without loss of generality that αk < 1/n and for 0 < ε < 1/n− αk set

ψ±ε(r) = r−αo

t∏

i=1

(logi r)
−αi × (logt r)±ε .

Note that ψε is the standard function given in (7). By definition Ẽt (m,n; αt) ⊂
W̃ (m,n; ψε) \ W̃ (m,n;ψ−ε) . Suppose for the moment that

rm+nψ−ε(r)n =
t∏

i=1

(logi r)
−αin × (logt r)−εn → 0 as r →∞ ,

then the Khintchine–Groshev Theorem implies that |W̃ (m,n;ψ−ε)|mn = 1. If
rm+nψ−ε(r)n 6→ 0 as r →∞ (for example if k = 1 and α1 < 0) then W̃ (m,n; αo) ⊆
W̃ (m,n; ψ−ε) and Dirichlet’s Theorem for linear forms implies that W̃ (m,n; ψ−ε) =

13



Imn. The upshot of this is that |W̃ (m,n;ψ−ε)|mn = 1 always. Since W̃ (m,n; ψ−ε) ⊆
W̃ (m,n; ψε) we also have that |W̃ (m,n;ψε)|mn = 1 and so |Ẽt(m,n; αt)|mn = 0 as
claimed.

To complete the proof of theorem we need to establish the ‘in particular’ part.
So let k be defined as above with αk > 1/n. Then,

r−mnfo(r) =
t∏

i=k

(logi r
−1)u(αi) →∞ as r → 0 ,

and so with ψη given by (1) the conditions of Theorem DV are satisfied. On following
exactly the same line of arguments as in the proof of Theorem 1 we deduce that
Hfo(Et(m, n; αt)) = ∞ and that dimEt(m,n; αt) ≥ mn. Of course, the upper
bound for the dimension is trivial since Et(m,n; αt) ⊆ Rmn.

We now show that Hfδ(Et(m,n;αt)) = 0 for the dimension function fδ with
δ > 0. Let ψε be given by (7), so by definition Et(m,n; αt) ⊆ W (m,n;ψε) and hence
it is only necessary to show that Hfδ(W (m,n; ψε)) = 0. The proof is essentially the
same as in Theorem 1 with a slight twist.

Fix δ > 0 and choose ε < δ/n. Assume for the moment that either k < t or k = t
and δ < nαt − 1. It can then be verified that the conditions of Theorem DV are
satisfied for the functions fδ and ψε. In particular the sum in Theorem DV converges
and so Hfδ(W (m,n; ψε)) = 0 as required. Now suppose that k = t and δ > nαt− 1.
In this case r−mnfδ(r) → 0 as r → 0 and so Theorem DV cannot be applied.
However, with 0 < ε < αt−1/n the conditions of the Khintchine–Groshev Theorem
are satisfied and as a consequence we obtain that |W (m,n; ψε)|mn = 0 since the sum
converges. This together with the fact from §1.3 implies that Hfδ(W (m, n; ψε)) = 0
as required.

The proof of Theorem 2 is now complete.
♠

§2.4 Proof of Theorem 3.

We will prove the theorem under the assumption that k ≥ 2 in condition (A).
The case when k = 1 follows with the obvious modifications and no new ideas are
required.

We begin by studying the function fδ stated in the theorem; in particular the
behaviour of fδ(r) as r tends to zero since this together with the measure part of
the theorem implies the dimension part. The fact that the function fδ given by

fδ(r) := r(m−1)n (ψ−1(r))−m−n
k−2∏

i=1

(logi ψ
−1(r))−1 × (logk−1 ψ−1(r))−1−δ

is a dimension function is easily seen. As ψ(r) is strictly decreasing, continuous
and tending to zero as r →∞ (since the order λ(ψ) > 0) we have that the inverse
ψ−1(r) is also strictly decreasing, continuous and tending to infinity as r → 0. Thus

14



(ψ−1(r))−m−n and
∏k−2

i=1 (logi ψ
−1(r))−1(logk−1 ψ−1(r))−1−δ are all continuous, in-

creasing with r and tend to zero as r → 0. Thus, the function fδ is continuous,
increasing with r and fδ(r) → 0 as r → 0; i.e. fδ is a dimension function. By the
definition of λ(ψ), it follows that

lim
r→0

log(ψ−1(r))
− log r

=
1

λ(ψ)
.

This in turn implies that for the function fδ (δ ≥ 0)

lim
r→0

log fδ(r)
log r

= d(ψ) := n(m− 1) + (m + n)/λ(ψ) ;

i.e. given any ε > 0 we have that for r sufficiently small

rd(ψ)+ε < fδ(r) < rd(ψ)−ε. (9)

On assuming the measure part of the theorem, we conclude that for any ε > 0

∞ = Hfo(D (m,n; ψ,ϕ)) ≤ Hd(ψ)−ε(D (m,n;ψ,ϕ))

=⇒ dimD (m,n;ψ,ϕ) ≥ d(ψ)− ε ;

and if δ > 0 then

0 = Hfδ(D (m, n; ψ, ϕ)) ≥ Hd(ψ)+ε(D (m, n; ψ, ϕ))

=⇒ dimD (m,n;ψ,ϕ) ≤ d(ψ) + ε .

The dimension part of the theorem now follows on letting ε → 0 in the above
inequalities for dimD (m,n; ψ, ϕ). Alternatively, as in the proof of Theorem 1,
the upper bound for dimension can also be easily deduced from the fact that
D (m,n;ψ,ϕ) ⊆ W (m,n; λ(ψ)− ε) .

We now establish the measure part of the theorem, i.e. the zero–infinity law
with respect to the dimension functions fδ. The strategy is simple enough and to
some extent follows the proof of Theorem 1. The basic idea is to show that

Hfδ(W (m,n;ψ)) = ∞ and Hfδ(W (m,n; ϕ)) = 0 if δ = 0,

and that
Hfδ(W (m,n; ψ)) = 0 if δ > 0 .

The stated zero–infinity law then follows from the definition of D (m,n; ψ, ϕ) and
the trivial fact that D (m,n; ψ,ϕ) ⊆ W (m, n; ψ).

We begin by considering the sum which appears in Theorem DV. As fδ(ψ(r)) =
r−(m+n)ψ(r)(m−1)n ∏k−2

i=1 (logi r)−1(logk−1 r)−(1+δ) it follows that

∞∑

r=1

fδ(ψ(r)) (ψ(r))−(m−1)n rm+n−1





= ∞ if δ = 0

< ∞ if δ > 0
. (10)
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On the other hand, condition (A) implies that ψ−1(ϕ(r)) ≥ r logk r. Hence

∞∑

r=1

fδ(ϕ(r))(ϕ(r))−(m−1)nrm+n−1

≤
∞∑

r=1

rm+n−1(ψ−1(ϕ(r))−(m+n)
k−1∏

i=1

(logi ψ
−1(ϕ(r))−1

¿
∞∑

r=1

r−1
k−1∏

i=1

(logi r)
−1(logk r)−(m+n) < ∞ since m + n ≥ 2.

Now, both the functions ψ and ϕ are decreasing and tending to zero, thus the
convergence part of Theorem DV implies that Hfδ(W (m,n;ϕ)) = 0 for δ ≥ 0
and Hfδ(W (m,n;ψ)) = 0 for δ > 0 — see comment on the convergence part of
Theorem DV (§2.1). It remains to show Hfδ(W (m, n; ψ)) = ∞ when δ = 0. To
simplify notation write f for fo. In view of (10), the desired statement will follow
from the divergent part of Theorem DV provided that f and ψ satisfy the various
conditions of Theorem DV. These we now verify.

The conditions that rm+nψ(r)n → 0 as r →∞ and rm+nψ(r)n is non–increasing
follow respectively from the fact that the order λ(ψ) > (m+n)/n and our hypothesis
that

g(r) := rm+nψ(r)n
k−1∏

i=1

logi r

is non–increasing. Next,

rm+nψ(r)−(m−1)nf(ψ(r)) =
k−1∏

i=1

(logi r)
−1

which is certainly non–increasing. This leaves verifying the conditions on f , namely
that r−mnf(r) → ∞ as r → 0 and r−mnf(r) is non–increasing as r increases. It is
easy to see that

r−mnf(r) = r−n(ψ−1(r))−(m+n)
k−1∏

i=1

(logi ψ
−1(r))−1 = (g(ψ−1(r)))−1 .

The fact that this is non–increasing follows from our hypothesis that g(r) is non–
increasing. Briefly, (g(r))−1 is non–decreasing and hence (g(ψ−1(r)))−1 is non–
increasing, since ψ−1(r) is decreasing. It is worth mentioning that it is only in
establishing this condition that we need to impose as a hypothesis that g(r) is non-
increasing rather than the standard hypothesis that rm+nψ(r)n is non-increasing.
All that now remains to prove the zero-infinity law is to verify the condition that

r−mnf(r) →∞ as r → 0 .

Since λ(ψ) > (m + n)/n, we have that n − (m + n)/λ(ψ) > 0 . Choose 0 < ε <
n− (m + n)/λ(ψ) . Then by (9), it follows that

r−mnf(r) ≥ r
−n+m+n

λ(ψ)
+ε →∞ as r → 0 .
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This completes the verification of the conditions of Theorem DV and therefore
the proof of Theorem 3.

♠

§2.5 Concluding remarks.

A natural weakening of condition (A) in Theorem 3 is to replace it by the
condition:

limr→∞ 1
rψ−1(ϕ(r)) = ∞ ; (B)

i.e. for any constant C > 1, ∃ ro = ro(C) such that ϕ(r) ≤ ψ( Cr ) ∀ r > ro .
Obviously, condition (A) implies condition (B) and so (B) is less restrictive than
(A). For example, condition (B) allows us to consider step functions. We suspect
that in such generality, it is not possible to establish the delicate ‘zero–infinity’ law
with respect to explicit dimension functions as in Theorem 3. However, using the
same strategy as in the proof of Theorem 3, it should still be possible to prove the
following claim.

Claim: Let ψ be strictly decreasing and continuous with λ(ψ) > (m+n)/n and such
that rm+nψ(r)n is non–increasing. Let ϕ be decreasing such that ψ/ϕ is strictly
increasing and that condition (B) is satisfied. Then

dimD (m,n; ψ, ϕ) = n(m− 1) + (m + n)/λ(ψ) .

Of course the upper bound is obvious since D (m,n; ψ, ϕ) ⊆ W (m,n; λ(ψ)−ε) . The
lower bound would follow if we could prove the existence of a dimension function f
such that f and ψ satisfy the conditions of Theorem DV and

∞∑

r=1

f(θ(r)) (θ(r))−(m−1)n rm+n−1





= ∞ if θ = ψ

< ∞ if θ = ϕ
.

It is not too difficult to prove the existence of dimension function f so that
the above condition on the sum is satisfied. However, there are various technical
problems in establishing the two monotonicity conditions in Theorem DV. We hope
to overcome these problems in the near future.

For the sake of simplicity we restrict the following discussion to the case when
m = n = 1 and we simply write D (ψ, ϕ) for D (m,n;ψ,ϕ). We have shown that
under reasonably mild growth conditions on the functions ψ and ϕ and the degree
to which ϕ is smaller than ψ, then dimD (ψ, ϕ) = dimW (m,n; ψ) = n(m − 1) +
(m + n)/λ(ψ) . However, the techniques developed in this paper completely fail if
we let ϕ = c ψ where 0 < c < 1 is a constant. Essentially, as a minimum, we
have to assume that ψ(r)/ϕ(r) → ∞ as r → ∞ for our methods to succeed in
giving a lower bound for the dimension. The sets D(ψ, cψ) clearly have intrinsic
interest. Yet, in order to discuss their full relevance it is necessary to introduce the
set Bad(ψ). Define Bad(ψ) to be the set of x ∈ R such that

|x− p/q| ≤ ψ(q) infinitely often ;
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and that
|x− p/q| ≥ c(x) ψ(q) for all rationals p/q,

where c(x) > 0 is a constant dependent only on x. It is natural to think of Bad(ψ)
as the set of ‘badly approximable numbers’ with respect to the function ψ. To
clarify the use of this language consider the set Bad(ψ) with ψ(r) = r−2. Then
Bad(ψ) consists of real numbers x such that |x − p/q| ≤ q−2 infinitely often; and
|x−p/q| ≥ c(x) q−2 for all rationals p/q. By Dirichlet’s Theorem the infinitely often
statement is satisfied by all real numbers, so the set under consideration is precisely
the classical set of badly approximable numbers. It is well known that this set is of
zero Lebesgue measure but of Hausdorff dimension one. Now, the sets D(ψ, c ψ) are
rather interesting since D(ψ, c ψ) ⊂ Bad(ψ) and D(ψ, c ψ) → Bad(ψ) as c → 0 .
Thus, lower bounds for dimD(ψ, c ψ) are also lower bounds for dimBad(ψ) and
moreover

dimD(ψ, c ψ) → dimBad(ψ)

as c → 0. As far as we are aware, no metric results are known for the general sets
Bad(ψ). As a first step, it would be interesting to determine dimD(ψ, c ψ), and so
dimBad(ψ), in the case ψ(r) = r−α with α > 2 . As mentioned earlier, new ideas
and methods would have to be developed.
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