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 The analogue of the classical Khintchine-Groshev theorem, a fundamental result
 in metric Diophantine approximation, is established for smooth planar curves with
 non-vanishing curvature almost everywhere.
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 1. Introduction

 Let : N -4 IR+ be a decreasing function. The Khintchine-Groshev theorem (see
 theorem 12 in Sprindzuk (1979) for details but note that the notation here differs
 slightly) in the plane asserts that the set of points x E R2, which obey the inequality

 Iq' x + qol b(H(q))H(q)-1

 for infinitely many vectors q = (qo, ql,q2) E 23, has zero or full Lebesgue measure
 according to whether the sum Z- =1 b(r) converges or diverges, respectively (H(q) =
 max{lqol, Iql1, 1q21}, the height of q). In this paper the analogue of this theorem is
 established for smooth planar curves with non-zero curvature almost everywhere.

 Theorem 1.1. Let I C R be an interval and suppose that the functions fi, f2:
 I - R are C3 and satisfy fi(x)f'(x) - f'(x)f2(x) # 0 for almost all x E I. Then,
 for almost all x E I the inequality

 lq2f2(x) + qlfi(x) + qol < H(H(q))H(q)-1 (1.1)
 holds for infinitely many or only finitely many integer vectors q according to whether
 the sum

 00

 E %b(r) (1.2)
 r=-

 diverges or converges, respectively.

 Schmidt's theorem on the extremality of planar curves (Schmidt 1964) corresponds
 to b(r) = r1-v with v > 2 and is clearly a special case of the above result. The case
 of convergence was proved in Bernik et al. (1998), which we also refer to for historical
 details. The complementary case of divergence is now proved.

 Proc. R. Soc. Lond. A (1999) 455, 3053-3063 ? 1999 The Royal Society
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 V. V. Beresnevich and others

 Throughout this article the Lebesgue measure of a measurable set E will be
 denoted by {El. Since the curvature vanishes only on a set of measure zero we take
 I, without loss of generality, to be a sufficiently small closed interval with III < 1
 on which the curvature does not vanish. By the implicit function theorem we can,
 again without loss of generality, take the curve {(f2(x), fi(x)) : x E I} to be of the
 form {(f(x), x) : x E I}. Thus instead of the linear form q2f2(x) + qlfl(x) + qo we
 consider

 F(x) = qo + qix + q2f(x),

 where (qo, ql,q2) E 23 \ {0} and f : I -+ IR is a smooth function with non-zero
 second derivative everywhere. We write H(F) = max{Iq2 , Iqil, IqoI}. Thus it suffices
 to prove that

 IF(x)I < i(H(F))H(F)1

 for infinitely many F for almost all x when the sum (1.2) diverges.
 Since I is a closed interval, the constant

 M = max sup If()(x) + 1 (1.3)
 0(i(3 xEI

 is finite. Also If"(x)l > c > 0 for all x E I. Let

 F = {F = q2f(x) + qlx + qo: q2, ql, qo E Z, q 0}

 be the family of non-zero F and let

 F = {y E I: there exists F E ., F(y) = 0}. (1.4)

 If q2 = 0, then F"(x) = q2f"(x) 0, and it follows that F has at most two roots in
 I and hence that the set F is countable. For each y E F, define the height h(y) of y
 to be the positive integer

 h(-) = min{H(F): F E Y with F(y) = 0}.

 The proof of theorem 1.1 is based on the following result, which deals with the
 approximation of real numbers by elements of F.

 Theorem 1.2. For almost all x E RI the inequality

 x - YI < h(y)-2^(h(y)) (1.5)

 has infinitely many or only finitely many solutions 7 E F according to whether the
 sum (1.2) diverges or converges, respectively.

 Using the Borel-Cantelli lemma it is not difficult to prove that if ]^hL (h) < oo
 then, for almost all x E I, inequality (1.5) has at most finitely many solutions 7 E F.
 The proof of theorem 1.2 in the case of divergence is based on some facts concerning

 the distribution of F. To investigate this distribution, the concept of regular systems,
 introduced by Baker & Schmidt (1970) in their study of Hausdorff dimension and
 Diophantine approximation, is used.

 Proc. R. Soc. Lond. A (1999)
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 Definition 1.3. Let Q be a countable set of real numbers and N: Q - R+i+ be a
 function. The pair (2, N) is called a regular system on an interval I if there exists
 a constant C1 - Ci (2, N, I) > 0 such that for any finite interval J C I there exists
 a sufficiently large number To = To(Q2, N, J) > 0 such that for any T ? To there are
 7y,..., t in Qn J such that

 N(7yi) T (1 < i < t), (1.6)
 7Yi-7 lj T-1 (1 ~< i < j << t), (1.7)

 t C IJ[T. (1.8)

 In order to establish theorem 1.2 the following refinement of the lower-bound part
 of theorem 3 in Baker (1978) will be proved.

 Theorem 1.4. Let N(y) = h(y)3 for each ? E r (defined in (1.4)). Then (F, N)
 is a regular system on I.

 2. Proof of theorem 1.4

 We begin with a brief outline of the proof. Let the interval J = [a, b] C I and the
 sufficiently large integer Q be given. The intervals

 {x J: IX- 7<< Q-3},
 where y runs over F n J with h(y) << Q, will be shown to cover a subset G(J, Q)
 of J having measure IG(J,Q) 1 lJI in order to deduce that (F,N) is a regular
 system. This will be done by finding, for each x E G(J, Q), a function F E T such
 that H(F) < Q, IF(x)l < EQ and IF'(x)l > Q for some EQ satisfying Q-2 < Q c
 Q-2. Indeed, it will be proved (see lemma 2.1) that this function F has a root y
 approximating x with error Q-3, where < b means a < cb for some constant c > 0.
 It will also be shown that if IF'(x)l < Q, then H(F) < Q; this ensures that

 the condition H(F) > Q guarantees that IF'(x)l > Q. In addition, we will restrict
 ourselves to points x E J, which are at least eQ from the boundary of J, so that
 7 E F n J. We define G(J, Q) to be the set of points x in (a + cQ, b - EQ) such that
 for any F E T satisfying IF(x)I < CQ we have H(F) > Q. We will choose EQ so that
 the set B(J, Q) = J\G(J, Q) has measure at most 1|JI for Q sufficiently large. Thus
 the first step is to show that a suitable eQ exists and to obtain an upper bound for
 IB(J, Q).

 The cases of large and small derivatives are considered separately. From now on
 let Q E N, e > 0 and J = [a, b] be a subinterval of I. Let

 Y(Q) = {F E : H(F) < Q}

 and let Bj(Q, e) be the set of x E J for which there exists a function F E .F(Q) such
 that

 IF(x)l < e, IF'(x)l > 2JI-1. (2.1)

 For any F E T(Q) define o(F) as the set of all the solutions of (2.1) belonging to J.
 It is necessary to show that IBJ(Q, e) is relatively small.
 Lemma 2.1 shows that if the height H(F) of F exceeds M (given in (1.3)), then

 within a small interval the derivative of F is bounded away from zero. Recall that
 without loss of generality III < 1.

 Proc. R. Soc. Lond. A (1999)
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 Lemma 2.1. Fix Q > M and 0 < e < Q-2. Then for any F E f(Q) such that
 r(F) 7 0, at least one of the following statements is true for any xo E a(F).

 (1) There exists a number y c J such that F(y) = 0 and

 IF'(M)l > |F'(xo)l/2 > IJI-',

 1o - 71 < F()' (2.2)
 (2) min{|Ixo - al, Io - bl) ? E.

 Proof. Fix a function F E J(Q) such that a(F) 7 0. Then choose xo c a(F). We
 may assume without loss of generality that Ixo - al > E and Ixo - bl > e as otherwise
 the lemma is true. Then for any x such that Ix - xol < e we have x c J. By the
 mean value theorem (MVT), F'(x) = F'(xo) + F"(xi)(x - xo), where x1 is a point
 between x and xo. It is readily verified from (1.3) that

 IF"(x1)I = Iq2f"(x1)l MH(F) < MQ.

 Hence IF"(x)(x - xo)l < MQe < MQ-1 < IJK-1 since Q > M and IJI < IIl < 1.
 Since IF'(xo)l ) 21JI-1, we have

 IF'(x) > IF'(xo) - IF"(xi)(x - xo)l > IF'(xo). (2.3)
 Thus, by continuity, F' does not change sign in the interval [xo - e, xo + E]. Further,
 by the MVT, for any x satisfying [x-xo I < e we have F(x) = F(xo)+F'(x2)(x-xo),
 where x2 = x2(x) is a point between x and xo. Putting x = xo ? e gives

 IF'(x2)(x - xo)I ' I[F'(xo) I> E.
 Moreover, one of the values of F'(x2)(x- xo) is positive and the other is negative.
 Since IF(xo)l < E, the expression F(x) = F(xo) + F'(x2)(x - xo) has different signs
 at points xo ? e. It follows that there exists a point 7y [XQ - e, xo + e] C J such
 that F(y) = 0 and, as we have already proved, IF'(^y)l > IF'(xo)l > IJK-1. Next,
 by Taylor's formula,

 F(xo) = [F'(y) + F"(x3)(x - y)](x0 - ). (2.4)

 Using the same method as for (2.3) above, it can be shown that

 IF'(y) + F(x)(xo -7)1 y) l (F' (y) .
 Together with (2.4) this gives (2.2) and lemma 2.1 is proved. I

 Next, an estimate for IBj(Q, )I is obtained.

 Lemma 2.2. Let Q > Qi = max{3, M, JI-1} and E > 0. Then

 IBj(Q,e) ?< 35eQ21JI.

 Proof. First note that if E ) Q-2 there is nothing to prove; we therefore assume
 that e < Q-2. Consider the non-empty interval J' = [a + E, b - e]. Given F C F(Q),
 define r'(F) = a(F) n J' and a"(F) = a(F) \ a'(F). Since a" c ([a, a + ] U [b - e, b])
 it is readily verified that

 U c r(F)| < 26. (2.5)
 FE.(Q)

 Proc. R. Soc. Lond. A (1999)
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 Now we proceed to estimate the measure of the union of u'(F) over F(Q). Fix ql
 and q2 not both zero and such that Iql , Iq2 < Q and consider R(x) = q2f(x) + qlx.
 There exists a cover of J consisting of two intervals [wi-1, wi], i = 1, 2 such that R'
 is monotonic (it has at most one turning point) and of constant sign in each one, one
 of which could be just one point. For any function F(x) = R(x) + qo C F(Q), define
 the sets

 Zi(F) = {7 c [wi_-,wi]: F(7) = 0, IF'(y) > IJ-1}, i = 1,2,

 with Z(F) = Z (F) U Z2(F) and

 Zi(R)= U Zi(F), i=1,2
 F=R+qo
 Iqo\l<Q

 with Z(R) = Z1(R) U Z2(R). Finally, let (7y, F) denote the set

 x c J' Ix- < IF'(2E )

 For any F E .F(Q), lemma 2.1 implies that

 a'(F) c U a(y,F).
 yEZ(F)

 Since the derivatives of F = R + qo and R coincide, a(y, R) = a(7y, F). Ordering the
 elements in the sets Zi(R), i = 1, 2 as follows,

 Zi(R)= {i, '''i }~
 we have

 U '(F) < U U a(7,F)
 F=R+qo EF(Q) F=R+qo E.(Q) tyEZ(F)

 2 ki

 Z ~ c (R,R) IEZZk( j),R)I
 7yE(R) i=l j=1
 2 ki 4

 <Ez 3 (2.6)
 i=1 j=1 |R'(RIj)) )

 Choose i such that ki > 1, and consider two sequential roots 7j) and (j+l) of
 R + qoj and R + q~'+l say, respectively. Without loss of generality assume that R'
 is positive and increasing on (wi_1, wi). Using the MVT and the monotonicity of R'
 we find that

 1 I q0j - q-j+l I IR((i)) - R( '))
 [ RI ( (j ) (j + i ) Ri ) ( (j + i )

 where (j) is a point between 7y) and yj+l). It follows that

 w1here0(j +l1) (j
 RI,(j + ))|

 Proc. R. Soc. Lond. A (1999)
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 Summing this over all j 1,..., ki - 1 gives

 ~ki~-1 ki-1 E~- 1 ;< v(?+1) _jJ) (k ) (1) < W
 ^ wr^1'i 'Y - 1 j=l )\ j=i

 further implying that

 ki 1
 E I (Wi - wi- + )) wi - Wi-1 +-t JI.

 IJ j))I I RI

 Summing the last inequality over all i gives

 2 ki 2

 EL 1 < E(w))] (Wi- i- + IJI) W=2-wo+2IJI 31JI i=i j=1 \Rj= ) i--1=

 and hence, by (2.6),

 Q Q

 U '(F) 16 = 12|lJI12EJI(Q+ 1)(2Q+ 1).
 FEY(Q) q2=0 ql=-Q

 The last estimate together with (2.5) gives the required result and completes the
 proof. U

 Let eQ = 2Q-2 and B1(J, Q) = BJ(Q, eQ). Then by lemma 2.2 IB1(J, Q)|I < IJI
 when Q > Q1 for some Q1 sufficiently large.

 Now we turn to the case of small derivatives. Consider the set of x E J such that

 IF(x) < EQ, IF'(x) < 21J-1' (2.7)

 for some F in ,. This set will be divided into two, the first for which H(F) is large
 and the second for which H(F) is small; both will be shown to have small measure.
 The following lemma will be needed.

 Lemma 2.3. Let J be a finite interval. For almost all x E J the system

 IF(x)I < H(F)-2, IF'(x) < 21JI-1 (2.8)

 has at most finitely many solutions F E F.

 This lemma follows from a result in Beresnevich (1996) but can also be proved by
 using the following.

 Lemma 2.4. Given 6 > 0, for almost all x the system

 IF(x)l < H(F)-1-6, IF'(z)] < H(F)-'

 has at most finitely many solutions F E T.

 Lemma 2.4 is proved in Beresnevich & Bernik (1996). In addition lemma 2.3 can
 be obtained from lemma 2.4 by adapting the argument in ? 2 of Beresnevich & Bernik
 (1996).

 Proc. R. Soc. Lond. A (1999)
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 For any function F E F, denote the set of points x E J that satisfies the system
 of inequalities (2.8) by r2(F) and let

 B2 (J,Q')= U 2 (F).
 FE.

 H(F)> Q'

 By lemma 2.3, IB2(J, Q')[ - 0 as Q' -+ oo. Hence there exists a number Q2 such
 that IB2(J, Q2) 1 < I JI. It is straightforward to verify that if x satisfies system (2.7)
 for some F E F(Q) with H(F) > Q2, then x E B2(J,Q2) for any Q > Q2. This
 leaves the case H(F) < Q2. Let T3(F,Q) = {x E J : F(x)l < EQ}. It is easy to
 see that 1T3(F, Q)I - 0 as Q -> oo. Then it follows that IB3(J, Q)I - 0 as Q -+ oo,
 where

 B3 (J,Q)= U 3(F,Q).
 FEF(Q2)

 Thus, there exists Q3 such that for any Q > Q3 we have IB3(J, Q)I < \IJI
 Define the set B(J, Q) = B (J, Q) U B2(J, Q2) U B3(J, Q) U [a, a + EQ] U [b - Q, b].

 Then from above

 IB(J,Q) < IJI

 for Q sufficiently large.
 Define the constant L = max{M, supXEJ IxI} > 1 (by the definition of M) and fix

 a point x in J \ B(J, Q). Consider the system

 Iq2f(x) + qlx + qo0 < sQ, Iq2f'(x) + q1i < 840L2Q, 1q21 < 32Q. (2.9)

 By Minkowski's linear-forms theorem, there exists a non-zero integer solution (qo,
 q, q2) of the system (2.9). From now on we assume that F(x) = q2f(x) + qlx + qo
 where (q, ql, 2) is the solution of (2.9). By working backwards in (2.9) starting
 with the third inequality it can be readily verified that the system (2.9) implies that
 H(F) < 841L3Q. If

 1

 Iq2f'(x) + ql < LQ

 then, by (2.9), H(F) < Q. In this situation the point x would belong to B(J,Q)
 contradicting x E J \ B(J, Q). Hence

 F'(x) 1Q

 From now on Q will be assumed to be sufficiently large. By lemma 2.1 there exists
 a root y E J of the function F such that

 I -71 - 4 Q2( Q) < kL2Q-3

 Therefore, by definition, h(y) < H(F) < 841L3Q. Thus, for any x E J \ B(J, Q)
 there exists y E F n J such that h(y) < 841L3Q and Ix- 7 y< LL2Q-3.

 Proc. R. Soc. Lond. A (1999)
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 Fix a maximal collection = J(J, Q) = {71,... ,7t} C rF J satisfying the fol-
 lowing conditions:

 h(i) < 841L3Q and l i-yjl 2oL2Q-3 for i j.
 Then for any y Er n J such that h(y) < 841L3Q there exists yi in F such that

 17-yi I <, 1 L2Q-3.

 Hence for any x E J \ B(J, Q) there exists 7i E P such that

 Ix- yI LL2Q-3.

 The set J \ B(J, Q) is covered by the union of the intervals

 Ki = {x E J: Ix- Yi7 < 1 0L2Q-3} for 7i E ,

 with IKi] < L2Q-3 and i = 1,...,t. Thus,

 JI < IJ \ B(J, Q) < tL2Q-3

 so that t > 2L-2Q31J1. Taking T = (841QL3)3 gives (1.6)-(1.8) and completes the
 proof of the theorem.

 3. Proof of theorem 1.2

 For any y E F define

 a(y) = {x E I: Ix - 7 < h(y)-2b(h(-y))}
 Let F(P) denote the set of x E R, which belongs to infinitely many intervals (7y).
 Our aim is to prove that if E?1_ (h) = oo then F(<) has full measure. Without
 loss of generality we can assume that

 +(h) < h-1 for all h. (3.1)

 For each k let p(k) = 2k!,(2k). The monotonicity and divergence of 0 imply that
 00

 E W(k)=- oo. (3.2)
 k=l

 The following two lemmas will be needed. The first follows from the Lebesgue
 density theorem and the second is lemma 5 in Sprindzuk (1979, ch. 1). They can also
 be found in Harman (1998) as lemmas 1.6 and 2.3, respectively.

 Lemma 3.1. Let A c I be a measurable set. If there exists a positive constant
 C2 < 1 such that for any interval J C I the inequality IA n J\ > C21JI holds, then
 the set A has full measure.

 Lemma 3.2. Let Ei c I be a sequence of measurable sets and let E be the set
 of points x belonging to infinitely many Ei. If the sum =i IEilI diverges, then

 N 2

 (E lEil)
 |EI > limsup N N

 N-ioo= j=l

 i=1 j=1

 Proc. R. Soc. Lond. A (1999)
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 Fix any interval J C I. By theorem 1.4, there exist positive constants C1 and
 ko = ko(J) such that for any k / ko there exists a collection

 rk(J)= ({l< <. Ytk c rnJ

 satisfying the following conditions (taking T = 23k and N(y) = h(7)3):

 h(^y) < 2k for all y E Fk(J), (3.3)
 1y - f31 2-3k for any numbers /, E k(J) with y P3, (3.4)

 C123klJI < tk < 23kJl. (3.5)
 Moreover, Fk(J) can be chosen so that the distance between any 7y C Fk(J) and the
 boundary of J is more than 2-3k. From now on, unless otherwise stated, 7y E Fk(J).
 Let

 Ek= U {xG: x-yl < 2-2k(2k)}= U Ek(Y),
 EFek (J) Yerk (J)

 say, and consider the set E(J) = N= ko Uk=N Ek. The monotonicity of b together
 with (3.3) implies that Ek(7) C a(7). It follows that E(J) C r(b) n J, whence

 Pr(') n J>I IE(J)I. (3.6)
 It is readily verified that

 |Ek()| = 2 2 2-2k(2k) =2 2-3k((k). (3.7)

 By (3.1) and (3.4), the intersection Ek(7y) n Ek(/3) is empty if y # 3. Thus, IEkj =
 tkIEk(7)l and hence, by (3.5) and (3.7), we have

 2Cip(k)Jlj < \Ek l < 2p(k)jJj. (3.8)

 It follows that

 N N N

 2C,lJ1 p p(k) < I [EkI < 21|J| E ((k), (3.9)
 k=ko k=ko k=ko

 and so from (3.2) that Lk=ko EkI = 00.
 We proceed to estimate the measures of the intersections Ek and El. In general
 Ek n Ell will not be comparable with EkI|ElI, but 'on average' suitable estimates
 hold. Fix, as we may by (3.2), a number No > ko such that

 No

 5 p(k) > 1. (3.10)
 k=ko

 Fix k and I such that ko < k < I < N, where N > No. For any - E r k(J),

 El nEk()= U EI(/) n Ek(y). (3.11)
 /EFr (J)

 The number of different f E l/ (J) satisfying El (3) nEk (y) -7 0 is less than or equal to

 2 + IEk(y) /2-31 2 2 23(1-k)(F(k)

 Proc. R. Soc. Lond. A (1999)

 3061

This content downloaded from 149.157.61.199 on Thu, 18 Oct 2018 15:46:26 UTC
All use subject to https://about.jstor.org/terms



 V. V. Beresnevich and others

 from (3.7). Using this, (3.7) and (3.11) give

 IEz n Ek(y)I < 4 . 2-31p(l)(l + 23(1-k?(k))

 and therefore from (3.5)

 jIE n Ek | < 4|J|kp(l)of(k) + 41J12-3(1-k)((l).

 Since Ek n E = E1 n Ek, we have
 N N N

 El=k k nko l =- k E=ko k=ko 1=ko

 (3.13)

 N L-1

 +2 E EIElnEEk.
 l=ko+l k=ko

 The double sum on the right-hand side of (3.13) is estimated with the help of
 (3.12):

 N I-1

 2 E
 I=ko+l k=ko

 N E-1 N 1-1

 EI n Ekl < 81JI E 1 E (l) +(k) + 81J| E 2 3(1- k)(l)
 1=ko+l k=ko l=ko+l k=ko

 N I-1 N 1-1

 < 81JI E E> W(l)(k) + 81J E c (l) 2-3(1-k)
 1=ko+l k=ko l=ko+l k=ko

 N I-1 N

 <81JI E o(1)p(k)++ 21JI E (l).
 I=ko+l k=ko l=-ko+l

 Thus, from (3.10), (3.9) and (3.14), we conclude that
 N N

 ? I EilnEkI
 l=ko k=ko

 N

 < 41JI 5 ((k)
 k=ko

 N

 < 41 J (S o (k
 'k=ko

 N I-1

 +81J1 E E p(l)o(k)
 =ko+l1 k=ko

 2 N N

 )) +4 41Jl E (p(l)(k) = 8IJi
 -/=ko k=ko

 This estimate and (3.9) gives
 N 2

 (Ei Ekl)
 k=ko >

 N N ?

 (E l IEkon l kk=ko l=ko /

 (2C IJl)2

 = IC2JI
 81J1

 It follows that IE(J)I >~ ?Cl2JI from lemma 3.2 and from (3.6) that Ir(4) nn JI >
 C1 I JI. This holds for any finite interval J. By lemma 3.1 the proof of theorem 1.2
 is complete.

 4. Proof of theorem 1.1

 Let F(b0) denote the set of real numbers x satisfying the inequality (1.1) for infinitely
 many F C F. Define 01 (h) = ((h)/(M + 1). It is clear that b1 (h) is monotonic and
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 that the sum n=i'1 1(h) diverges. By theorem 1.2, the set F(i1) has full measure.
 Given y c F, define the interval oa1(y) {x C I: Ix - 71 < h(y)-21'b(h(y))}. Then,

 00

 l=n u (y).
 k=l 7:h(y)>pk

 Given 7y E r, let Fy be the unique function in T with F(y) = 0 and h(y) = H(F).
 By the MVT,

 F (x) = F'(x) (x -),

 where x is a point between 7y and x. Thus IFy(x)l < H(F)(M + l)lx - 7I. Let
 x E ai (7). Then

 IF ) (x) I H(F)(M + 1)h(-y)-21i (h(-)) =H(F) -1(H(F)).

 Thus for any -y E F such that ai(7y) 0, Fy is a solution of (1.1) when x CE c1().
 It follows that if x E F('1), then the inequality (1.1) has infinitely many solutions,
 whence x belongs to .F('). Thus F(li) c F(/). It follows that fQ(b) has full measure
 and the proof is complete.

 The natural question of extending this result to curves and indeed to manifolds in
 higher dimensions is much more difficult and probably requires deeper arguments.
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