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I INTRODUCTION

Analogues of the Jarnik-Besicovitch theorem and its generalisations have been
proved for the p-adic field Q, and for Q; (details are in [1] and [9]). The p-adic
norm of a point £ = (§,.. .. §,) in Q; will be written |¢], = max; <, <, |{,], and
for any rational integer vector q = (qi.. .., 4n), the usual supremum metric will
be denoted by |q| = max, |¢;|. We identify the set of m x n matrices on Z, with
Z," and consider the set

W(m.n;7) ={X € 2, :1qX|, < |q|”" for infinitely many q € Z"},

where X represents a system of # linear forms over Z, in m variables. This set
is not a direct analogue of the set in the general Jarnik—Besicovitch theorem [4]
which involves the distance from Z” rather than the distance from the origin.
Indeed W(1,1;7) reduces to {0}. If the p-adic distance from Z" is taken, then
the corresponding set has full measure since for each X, |qX — r| can be made
arbitrarily small by taking r to be a rational integer vector with the appropriate
number of leading terms taken from the p-adic expansion of qX. Hence the
p-adic distance to the origin is considered instead; W (m, n: 1) is a p-adic ana-
logue of the set Wy(m, n; 1) considered in [6].

The Hausdorff dimension of W (2, 1; ) was obtained by Melnichuk in [9] for
the case x = (x, 1) and this result was extended in two ways by Abercrombie [1].
The first extension was to a more general version of Melnichuk’s result and in
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the second he showed that when 7 > m/n, the Hausdorff dimension of
W(m,n;7) was

(1) dmwwmmnqu_1m+g

for m > n. Using ideas from [6] we will complete Abercrombie’s result by ob-
taining the Hausdorff dimension of W (m. n: 1) for the case m < n.

Theorem 1.

(m—1n+ % forr>m/n,
dim Wim,n;7) =
mn otherwise.

> HAUSDORFF DIMENSION AND HAAR MEASURE

A ball B(a;p~") in Z, with diameter diam B(a;p~*) = p " is defined as
Blaip™y={x€Z,:|x—d|, <p™"}

and a ball in Z,, is similarly defined as
Blaip™) ={xe Z,:|x —al, <p~"} = Blay;p™") x - x Blawp™")

where a = (ay,...,dn).

Let 6 > 0. A 6-cover of a set Fin Z, is a family of balls B(a,;p~") such that
F C U, B(a,;p™) and p~ < 6. Write H](F) = inf 3_, p~" where the infimum
is taken over all é-covers of F. The Hausdorff outer s-measure of Fis defined to
be

H*(F) = sup H}(F)
6>0

and the Hausdorff dimension of F to be

dim F = sup{s: H*(F) = oo} = inf{s: H*(F) = 0}.
Let 1 be the unique Haar measure on @;’ such that ¢(Z,) = 1 and let xp be the
characteristic function of a ball B. Then

Zf x5(x)dp(x) = pu(B) = (diam (B))".

A more general definition of Hausdorff dimension with respect to Haar mea-
sure is given in [1] but for p-adic space it is equivalent to the one above.

3 PROOF OF THEOREM |

In order to obtain the Hausdorff dimension of W(m,n;7) we will consider

upper and lower bounds for the dimension separately.

Lemma 1.

(m—-Dn+2 if r>m/n,
dim W(m,n:7) <
mn otherwise.
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The first inequality is proved using a standard covering and counting argument
and is Lemma 4.5 in [1]. The Hausdorff dimension of Z,” is mn, whence
dim W{m,n; 1) < mn.

For the case m > n, the lower bound has already been established in [1] and
thus from now on we assume that m < n. To avoid excessive technical detail we
first prove the result for m = n and then sketch the extension to n > m. The main
idea is to map W (m,m;7) to the Cartesian product of two spaces, namely 7 -
and the set W{(m,m — 1. 7) for which we already know the dimension by (1).
Then it will be shown that the map between W{m,m:7) and the Cartesian
product is bi-Lipschitz. Using the lemmas below this gives the Hausdorff
dimension.

Definition 1. A function f : E — F is (p-adically) bi-Lipschitz on E if there
exist positive constants ¢ and C such that

cx—yl, <If(x) =f¥, < Clx—yl,

We need two more lemmas:

Lemma 2. Let f : E — F be a bi-Lipschitz function which is one-one and onto.
Then

dimE =dimF.

The proof of this lemma follows that for the real case which can be found in
[7, page 30].

The next result is a p-adic analogue of a lemma which appears in [3] and [8];
the proof uses ideas from [3].

Lemma 3. Let D be an r-dimensional ball, and E a set in Z é’ with Hausdorff di-
mension d, then the Hausdor[f dimension of the Cartesian product E x D is

dim(E x D) =d +r.

Proof. The proof will be done for r = 1 and a simple induction argument ex-
tends it for general r.

Let the Hausdorff dimension of E x D be s and assume that s < d + 1. Then
for each £ > 0 there exists a positive 6 and a cover C of E x D by k + 1-dimen-
sional balls B,, such that

(diam B ™' 7" < e.

M

(2)

=1

It

For each § € D there is a cover C(6) = {B,(0) = B,N (Z} x {6}): B, € C} of
E x {6} by k-dimensional balls, obtained by taking the cross-section of C
through 6. Define B, by B,(6) = B; x {#}. In what follows B, will be a k + 1-di-
mensional ball in the cover C and B} will be a ball in Z, such that B, = B, x B}.
Let x, : Z, — R be defined by
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I if8c B ie.,if B.N(Z) x{0}) #0
Yt(e) =

0 otherwise,

so that
f x:(8)du(8) = diam B! = diam B,

and
f;l (diam B,(0))?~* = i} xo(6)(diam B!~

Then, by the Monotone Convergence Theorem,
fifdmmb»d%w X%fm 0)(diam By~

=3 (diam B) "' " < e

Hence for some #in D, E x {6} has a cover C(#) such that

(diam B,(8))* " <e.

gk

Translating C(6) appropriately gives a cover of E with

ng
Z (diam B)? " * <e

which, as ¢ is arbitrarily small, implies by definition that the Hausdorff dimen-
sion of E is strictly less than d. It follows from this contradiction that s > d + 1.

Next, we prove that s < d + 1. By definition, given positive 6 and ¢ there ex-
ists a cover C of E of k-dimensional balls B, with

H(C) i (diam B)*"" < ¢/u(D)

with diam B, = p~" < 6. For each B, in C, construct a cover C; of D by p'iu(D)
one-dimensional balls B of diameter p~" and let

B;=BxB, 1<i < piu(D).
The collection

C*={B,:B €C B €(}
covers E x D and hence

S (diam B,)?* ' < w(D) ¥ (diam B))'(diam B,)**' "’
B, ccC* B eC

= (D) 3 (diam B <,

s
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whence s < d + 1 and the lemma is proved. [

3.1. Auxilliary results. Itis only possible determine a lower bound for the case
m > nonasmall ballin Z;", but clearly this will also be a lower bound for Z".
The method uses Abercromble s result [1] for Z"’ m=1 he actually proves the
result for any ball in Z”’ ~1 Without loss of gencrahty we restrlct ourselves to
a ball for which all the points in the ball (defined in Z”’ Y have linearly in-
dependent columns. To show that such a ball exists, con51der the following two
lemmas.

Lemma 4. Let A be a matrix in Z,:’: such that |det 4|, = p~' for some fixed in-
teger t. Then

|det (4 +¢)|, = |det 4], =p~"

Jor any matrix € = (e,;) with |e,;|, < p~'

Proof. By expanding the determinant in the usual way it is readily verified that

an+en anteEn ... anteEn
det(A4 + ) = det : :
Ay + €51 Ayt €2 ... Ayt Epn
=det 4 + R(e),

where R(¢) is the sum of the remaining terms of the determinant, in which each
term contains an ;, for some / and j. Thus |R(¢)|, < p~* whence | det(4 +¢)|, =
|det4],. O

For the rest of this paper, M will denote a k x (k + r) matrix M with some r
rows deleted. The next result states in essence that linear independence is an
open property in Z," and is a familiar fact for Euclidean space.

Lemma5. LetaV,a? ... a" =V pe a set of linearly independent vectors in VA
Then the matrix

ap ap Ay m-1
7531 [723) az m-1
1 2 m—1 .
A=l a?®  am-Y)=
Am-11 Gm-12 ... Gm-1m-1
am am?2 e Am.m—1

is of maximal rank m — 1 with | det A| = p~! for some integer t and square matrix
A. Consider the ball

B(A;p7") = B(aV;p") x B(@®;p™") x - x B@a™ Y p™)

@

for any r > t. Then every set of vectors yV) y? ...y =1 jn B(A;p~") is linearly

independent.
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Proof. Asy") ¢ B(aY';p~')foreachj=1,...,m— 1, we have

ay tey
ax; +ey

n-1; T Em-1,
Ay + Emy

where [e,;|, < p™" < p~'. By relabelling if necessary we can take 4 to be A with
the bottom row deleted. Let Y represent the matrix ( }f MNfori=1,. -1
andj=1,....m — 1 and € the matrix £ without the botiom row. Then

|det Y|, = |det(4 + )|, = |det A|, =p™' >0

from Lemma 4 implying that the vectors y'!, y'?) ...y =1 are linearly in-
dependent. [

Now we give some definitions regarding continuously differentiable functions.
More details can be found in [10]. From now on F is a non-empty set without
1solated points.

Definition 2. Let F C Q,. The function f : F — @, is continuously differenti-
able at a point a € F if

fim fx) =f(»)

(x.3)— (a.a) xX—=)

exists. The function f is continuously differentiable if f is continuously differ-
entiable at a for alla € F.

In other words f'is continuously differentiable at a if f'is differentiable at « and if
for each € > 0 there exists a 6 > 0 such that if x, y € B(a; 6) with x # y then

Definition 3. Let F C Q,, f: £ — @, and k € {1,...,u}. Given a point x =

(x1,...,x,) In F, let X' = (x],...,x]) be another point in F such that x, = x/ for
i # k and x; # x), and then consider the limit

7
(o) = (asa) X — Xk

where a = (a;,...,a,) € F. If this limit exists it is called the partial derivative
of fwith respect to the k’th coordinate. If the partial derivatives exist for each
coordinate then f is continuously differentiable at a.
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Definition4. Let F C Qjand f; : F — Q, be p-adic functions fori = 1..... v If
£, is continuously differentiable ata € Ffori=1,...,vuthenf = (f}..... f)is
said to be continuously differentiable ata € F.

Let J(f)(a) denote the Jacobian matrix (f; ;(a)) of f at a. where £, , denotes the
j’th partial derivative of the function f,, that is

fii(@) = Y}’ilna, L(T)__QQ

where x; = x; forall/ # jand x; # x/.

Lemma6. Letf = (fi,....fi.,) be continuously differentiable at a € F (where F
is a bounded non-empty subset of Qlf) such that 0 <max|f,,(a)|, <1 and
J(f)(a) is of maximal rank k. Then there exists 6 > 0 such that f is bi-Lipschitz on
B(a: 8). More precisely there exists an integer t such that for any x,y € B(a; )

plx—yl, <fx) = f¥, < x—yl,

Proof. As J(f)(a)}is of maximal rank k, there exists a k x k& matrix with non-
zero determinant. Let this be

L faa@@) .. fu(a)
J(f)(a) = : : :
Saa@) o fikla)

where J; € {1,...,k +r} and let |det J(f)( ), =p". Suppose that x, y and a
are points in @A In what follows x’ will represent the point {x1,...,x,_1,¥,.
Xjflee oo XE). From the definition of continuous differentiability there exists
6, >0 such that if x,, y, € B(a;; 6,,) then

Six') - fi(x)

Yj - }*‘/

~ fi.i(a)

r

ie.,

TODI) _ f @)+ 3 e = fis(a) +e

X —Y; I=t+1

(4)

where ¢; € {0, 1....,p ~ 1} and |e;j|, < p~'. Let 6 = min(§,;). Then for any x,
x' € B(a;6), the equation (4) holdsforalli=1...., k+randj=1,... k Now
assume X, y € B(a: 6). Then

343



£(y) = fi(x) = filvi,ya,.000) = filxn, X2, x1)
= iy = Ay vk) il ya, )
—filxi X, 030 ) o = flx, e X
_ SO o) S )

'l — X
g (y1— 1)
AX Vo, oo o) =il xo, o0 vk
ACIE Yk) = filx1, x YA)(Q_V2)+
Y2 X2
Xy Xk~ 1. VE) — i\ X1y o0 0 X
A yk) =il )(yk_xk)

Vi — Xk
= (fu(@) +e)0n —x1) + (fia(@a) +e2)(y2 —x2) + ...
oo (fue(@) + eu) (3 — xx)

with |e,;|, < p~'. Evidently

Sy) = (%) = (fi(y) /(%) L2(¥) = 2(X). - S r(¥) —Soes (X))
= (J(N)(@) +e)(x—y)
where ¢ is the matrix (e, ), implying that | f(x) — f(y)], < K|x =y,

For the other direction the inverse function must be determined. The func-

tion
g: B(a;6) — B(a: 6) x {0}
given by g(x) = (x,0....,0) is clearly one-one, onto and bi-Lipschitz. Define a
second function f : B(a:§) x {0} — @:“ by f(x,0,...,0) = f(x). Let I de-
note the following matrix: I’j, =0foreachi=1,..., kandj=1,....k+r;for
eachv, € {1,..., k+ri\{A..... B}, I, =1and I;IJ = 0 for i # j (this matrix
has been chosen for convenience). Let M; = M;(x.y) be the matrix J(f)(a) + ¢
augmented by I’ so that M 7 18 square. It can be readily verified that
X—-Yy

() ) S0 =F(¥) —f(x) = M;

and that the determinant of M i satisfies

|det M|, = | det(J (/) (@) + &), = |detJ(f)(@)|, = p~* >0
(from Lemma 4). Therefore the inverse matrix M /51 exists and
X—y
= M7 (f(%) ~f(y).
0
It follows that
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b ... bigyr

Mfl _ bk+r,1 bk+r,k+r
deth

where (b;,) is the adjoint matrix of M 7. Each b,; is the ij’th cofactor of M 7 im-
plying, by virtue of the ultrametric ||, < 1. Hence

Ix—yl, < If(x) =fW, =p1fx) =),

[det M7, th’

completing the proof. [

It would also be possible to prove this lemma using a p-adic maximal rank
theorem as in the real case [6]. Such a theorem exists over local fields when the
number of variables is at least the number of functions, see [2, Chapter 2, 10.12]
but it is not immediately obvious how to adapt the proof for the com-
plementary case. Inverse function theorems over local fields differ from those
of the real case, see [10, page 75, Example 26.6] and [2, Chapter 2, 10.10]. Re-
cently however de Smedt has obtained a C” p-adic higher dimensional inverse
function theorem [5] and it seems likely that this could be extended to a max-
imal rank result.

3.2. Completing the proof of the theorem. Let V(m,n;7) denote the set of
points X = (x(,. .., x") in Z;"" such that (x(V), ... x"=1) € W(m,m —1;7)
and x\/) = Z:":“ll w( )x with w Ve Z,forj =m,...,n Itisreadily verified, by
checking that |q-x|, < |q|”", that ¥V (m,n;7) C W(m,n;7). The rest of the
paper involves constructing a particular function f, proving that it is bi-
Lipschitz, and showing that

SW(m—1,my7) x 2"~ 00y € V(m,n; 7).

Then Lemmas 2 and 3 can be used to obtain the Hausdorff dimension of
V(m,n; ) and hence a lower bound for the Hausdorff dimension of W (m,n; 7).
For simplicity we start with the case m = n.

Let a),a®, .. a™~"Y be linearly independent column vectors in Z,". Then
the m x m — 1 matrix

A= (aha? . am-Dy

is of maximal rank with ldetAlp = p~! for some ¢ € Z, where by relabelling if
necessary A is the matrix A4 without its bottom row. Choose 8 such that every
matrix in the ball B(A; é) has m — 1 linearly independent column vectors (this is
possible by Lemma 5). Define the function

f 1 B(A;8) x me‘l — B(4;6) x 2]
by
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m—1
(x“’,xm,...,x(”””,wl,m....,w,,,_|)'—> (x(”,x‘z),...,x‘""), Z Wrx(r))_

r=1

This can be written more concisely as f(X,w) = (X, Xw7), where w’ denotes
the transpose of w. Now

S((W(m,m—1;7) N B(4;6)) x Z) ") = V(m,m;7) N (B(4;6) x Z)T")

and f'is one-one as points in B(4; ) have linearly independent column vectors.
Thus to obtain the Hausdorff dimension it suffices to prove that f is bi-
Lipschitz.

Lemma 7. There exists &6 > 0 such that for any (X,v),(Y,w) € B(A4;6) x Z[:"‘]
p‘t|(Y’w) - (X,V)lp = 'f(Y,W) _f(X1v)|p < |(Y,W) - (va)lpv

where A = (a'V,a@ .. a" 1) is gs above.

Proof. It is easy to verify that fis continuously differentiable at any point in

B(A4;6) x Z;"". It is also readily verified that J(f)(A4,w) is of maximal rank
m? — 1 forany w € Z;"‘l with |£;,(4,w)|, < 1. In fact

snam =g §):

where [/ is the identity matrix and E represents a matrix depending on w so that

|det J(f)(a)|, = |det A|, = p~".
Hence from Lemma 6 there exists §' > 0 such that

p X, Y) = (Y W), < LF(Y,w) = f(X.v)], < |(X,v) = (Y,w)],
forany (X,v), (Y,w) € B(4;8’) x Z;"". O

Thus from Lemmas 2 and 3, we get that
dim W (m,m;7) > dim V(m,m;7) = dim(W (m,m — 1;7) x Z;'~ 1)
=dimWmm—-1;7)+m—1=(m— 1)m+?
from (1) with n = m — 1. This, together with T.emma 1, proves the theorem for
m=n.

There now remains the case m < n. This is done exactly as above but using
the function

h: B(A4;6) x Zlg’"‘”(”—””rl) — B(A:6) x Z[:n(n—m+l)
defined by

h(X’w(l)’.__,w(n—nH—l)) — (X,X(w“))T,...,X(w("_'"“))r)_
Plainly
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h((W(m,m — 1;7) x B(4:6)) x Z}"~Dr=mhy
= V(m,n;7) N (B(A4;6) x Z;"(”_"’H’).

It is readily verified that the Jacobian J(f)(4, W', ... w® ="+ 1} is of maximal
rank for any (wl'), ... w"~m+*1) ipn Z},’"’”("””*”. By Lemma 6 this implies
that there exists ' > 0 such that 4 is bi-Lipschitz on B(A4, W;§'). Hence from
Lemmas 2 and 3 we obtain that

dim W(m,m;7) > dim ¥ (m.n:7) = dim (W(m,m — 1:7) x /"~ =)

=dimWmm—-L7r)+n—m+1)(m— l)z(m—l)n+g

again from (1). If 7 < m/n then it is shown in [1] that W (m,n; 7) has full Haar
measure which implies that its Hausdorff dimension is mn and completes the
proof of Theorem 1. [
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