A note on the ring axioms

It is well known that if $(R, +, \cdot)$ is a ring with unity 1, then the commutative law of addition $x + y = y + x$ for all $x, y \in R$ is redundant; i.e. it can be deduced from the other ring axioms. In such a ring, every $x \in R$ can be written as a product $x = x \cdot 1$. In fact the stated result holds under this weaker condition.

THEOREM. Let $(R, +, \cdot)$ be a ring in which every element is a product; i.e. given *r* $∈$ *R*, there exist elements *s*, *t* $∈$ *R* such that *r* = *s · t*. Then the commutative law of addition, $x + y = y + x$ for all $x, y \in R$, is redundant.

PROOF. Let *x* and *y* be arbitrary elements of *R* and let $x = a \cdot d$ and $y = b \cdot c$. Consider $(a + b) \cdot (c + d)$. Now, using the right distributive law followed by the left distributive law we have

$$
(a+b)\cdot(c+d) = a\cdot(c+d) + b\cdot(c+d) = a\cdot c + a\cdot d + b\cdot c + b\cdot d.
$$

On the other hand, using the left distributive law followed by the right distributive law, we have

$$
(a+b)\cdot(c+d) = (a+b)\cdot c + (a+b)\cdot d = a\cdot c + b\cdot c + a\cdot d + b\cdot d.
$$

Next, using the left and right cancellation laws in the group $(R, +)$ we see that

$$
a \cdot d + b \cdot c = b \cdot c + a \cdot d
$$
 i.e. $x + y = y + x$.

The following example shows that if we drop the condition that every element of R is a product, then the theorem is no longer valid.

Example. Let $(G, +)$ be a non-commutative group, written additively, with identity element 0. For all $a, b \in G$, define $a \cdot b = 0$, and thus there exists an element of *G* which is not a product. Also $(G, +, \cdot)$ has all the ring properties except commutativity of +.

The final example shows that the condition that every element is a product is weaker than the condition that the ring has a one-sided unity.

Example. Let $R = \{0, a, b, c\}$ and let $R_1 = (R, +, \cdot)$ and $R_2 = (R, +, \cdot)$ be rings defined by

	$+ 0 a b c$				\cdot 0 a b c					\ast 0 a b c	
	$0 \mid 0 \quad a \quad b \quad c$			0 ¹	$^{\prime}$ 0	$0\quad 0\quad 0$		$0-1$	$\begin{array}{ c c } \hline 0 \end{array}$	$0 \quad 0 \quad 0$	
	$a \mid a \mid 0 \mid c \mid b$				$a \mid 0 \quad a \quad b \quad c$					$a \mid 0 \quad a \quad a \quad 0$	
$b \mid b \mid c \mid 0 \mid a$					$b \mid 0$	$a \quad b \quad c$		\bm{b}	$\begin{array}{c} 0 \end{array}$	b b 0	
\mathcal{C}		$c \quad b \quad a \quad 0$		\mathcal{C}	$\overline{0}$	$0\quad 0\quad 0$		\mathcal{C}		$\begin{array}{cccc} 0 & c & c & 0 \end{array}$	

Then it is clear that $(R_1, +, \cdot)$ has left unity but not right unity, whereas R_2 has right unity but no left unity. So their direct sum $R_1 \oplus R_2$ has no left unity or right unity. But $R_1 \oplus R_2$ does have the product property, for if $(x, y) \in R_1 \oplus R_2$ then $(x, y) = (a, y)(x, a).$

STEPHEN BUCKLEY (graduate student)

Department of Mathematics, University College, Cork