A note on the ring axioms

It is well known that if $(R, +, \cdot)$ is a ring with unity 1, then the commutative law of addition x + y = y + x for all $x, y \in R$ is redundant; i.e. it can be deduced from the other ring axioms. In such a ring, every $x \in R$ can be written as a product $x = x \cdot 1$. In fact the stated result holds under this weaker condition.

THEOREM. Let $(R, +, \cdot)$ be a ring in which every element is a product; i.e. given $r \in R$, there exist elements $s, t \in R$ such that $r = s \cdot t$. Then the commutative law of addition, x + y = y + x for all $x, y \in R$, is redundant.

PROOF. Let x and y be arbitrary elements of R and let $x = a \cdot d$ and $y = b \cdot c$. Consider $(a+b) \cdot (c+d)$. Now, using the right distributive law followed by the left distributive law we have

$$(a+b)\cdot(c+d) = a\cdot(c+d) + b\cdot(c+d) = a\cdot c + a\cdot d + b\cdot c + b\cdot d.$$

On the other hand, using the left distributive law followed by the right distributive law, we have

$$(a+b)\cdot(c+d) = (a+b)\cdot c + (a+b)\cdot d = a\cdot c + b\cdot c + a\cdot d + b\cdot d.$$

Next, using the left and right cancellation laws in the group (R, +) we see that

$$a \cdot d + b \cdot c = b \cdot c + a \cdot d$$
 i.e. $x + y = y + x$.

The following example shows that if we drop the condition that every element of R is a product, then the theorem is no longer valid.

Example. Let (G, +) be a non-commutative group, written additively, with identity element 0. For all $a, b \in G$, define $a \cdot b = 0$, and thus there exists an element of G which is not a product. Also $(G, +, \cdot)$ has all the ring properties except commutativity of +.

The final example shows that the condition that every element is a product is weaker than the condition that the ring has a one-sided unity.

Example. Let $R = \{0, a, b, c\}$ and let $R_1 = (R, +, \cdot)$ and $R_2 = (R, +, *)$ be rings defined by

+	0	a	b	с	•	0	a	b	с	*	0	a	b	
0	0	a	b	c	0	0	0	0	0	0	0	0	0	
a	a	0	c	b	a	0	a	b	c	a	0	a	a	
b	b	c	0	a	b	0	a	b	c	b	0	b	b	
c	c	b	a	0	c	0	0	0	0	c	0	c	c	

Then it is clear that $(R_1, +, \cdot)$ has left unity but not right unity, whereas R_2 has right unity but no left unity. So their direct sum $R_1 \oplus R_2$ has no left unity or right unity. But $R_1 \oplus R_2$ does have the product property, for if $(x, y) \in R_1 \oplus R_2$ then (x, y) = (a, y)(x, a).

STEPHEN BUCKLEY (graduate student)

Department of Mathematics, University College, Cork