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Abstract. Resource uptake by neighboring plants can be an important driver of natural selection in a

changing environment. As climate and resource conditions are altered, genotypes that dominate within

mixed populations today may differ markedly from those in future landscapes. We tested whether and

how the dominance of different genotypes of the allergenic plant, common ragweed, may change in

response to projected atmospheric CO2 conditions. We grew twelve maternal lines in experimental stands

at either ambient or twice-ambient levels of CO2. We then constructed a model that combines classical

quantitative genetics theory with a set of a priori predictions about the relative performance of genotypes

in the two treatments. Our findings show a complete reversal in the genotypic size hierarchy of ragweed

plants in response to projected atmospheric CO2 conditions. Genotypes that are competitively suppressed

in size at ambient levels become dominant under experimental doubling of CO2. Subordinated plants, in

turn, boost their reproductive allocation to that of dominants, shrinking the fitness gap among all

genotypes in high CO2. Extending our model to a contextual analysis framework, we further show that

natural selection on size is reduced at elevated CO2, because an individual’s position within the size

hierarchy becomes less important for reproduction than it is in ambient conditions. Our work points to

potential future ecological and evolutionary changes in this widespread allergenic plant.
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INTRODUCTION

Competition among neighboring plants deter-
mines resource allocation to growth and repro-
duction (Grime 1977, Tilman 1982), and is
therefore likely to be an important driver of
natural selection and determinant of genetic
structure in populations (Bennington and Strat-
ton 1998, Donohue et al. 2000). Several reviews of
the literature show that elevated CO2 alters
competitive interactions in plant populations by

favoring some species or individuals over others
(Poorter and Navas 2003, Urban 2003). Genetic
identity can also determine the outcome of inter-
and intraspecific competition (Thomas and Baz-
zaz 1993, Weiner et al. 1997, Fridley et al. 2007).
A handful of studies have detected significant G
3 CO2 interactions in plant growth and repro-
ductive traits, but the large majority suggest
there is no genotypic contribution to CO2

response (Lau et al. 2007). However, only a few
studies have investigated whether and how an
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individual genotype’s competitive position is
likely to change in future environmental condi-
tions (e.g., Thomas and Bazzaz 1993, Andalo et
al. 2001, Fridley et al. 2007).

In stands of interacting plants, competitive size
hierarchies become established as dominant
individuals pre-empt the resource uptake of
smaller, subordinate individuals, and can be
determined by both genetic and environmental
factors (Weiner 1990, Thomas and Bazzaz 1993).
Plants will typically allocate growth to those
structures that maximize efficient uptake use of
the most limiting resource, increasing root:shoot
ratios when nutrients are scarce and shifting
allocation to light capture in shaded conditions
(e.g., Tilman 1982). In light limiting conditions,
CO2-enrichment generally stimulates plant
growth by enriching cellular levels of carbon
dioxide for C-3 photosynthesis (Urban 2003).
When dominant individuals receive the greatest
physiological boost from supplemental CO2, then
competition increases and size differences among
individuals become exacerbated (Thomas and
Bazzaz 1993, Poorter and Navas 2003), i.e., ‘‘the
rich get richer’’. In contrast, when subordinates
experience a disproportionate growth boost from
high CO2, size and reproductive variation are
reduced and smaller individuals ‘‘catch-up’’ to
dominants (Wayne and Bazzaz 1997, Stinson and
Bazzaz 2006).

Here, we tested whether subordinate geno-
types ‘‘catch up’’ to dominants under elevated
(720 vs 360 ppm) CO2, in the widespread
allergenic plant, common ragweed (Ambrosia
artemisiifolia L., Asteraceae). Common ragweed
is a weedy annual plant that forms dense,
monospecific stands in disturbed habitats, old-
fields, croplands, and roadsides of North Amer-
ica (Bassett and Crompton 1975). A major
agricultural pest, this species is also a leading
cause of fall hay fever allergies (Ziska et al. 2003,
Epstein and Rogers 2004), and is becoming
aggressively invasive across Europe (Dessaint et
al. 2005, Taramarcaz et al. 2005). Elevated CO2

enhances common ragweed’s growth, reproduc-
tion, and pollen output, raising concern about its
future status in the landscape and its long term
impacts on human health (Wayne et al. 2002,
Ziska et al. 2003, Epstein and Rogers 2004,
Taramarcaz et al. 2005, Stinson and Bazzaz
2006). Recent work suggests that high CO2 can

alter the structure and magnitude of competitive
size hierarchies in ragweed populations by
differentially stimulating the photosynthesis
and growth of small versus large individuals in
a stand (Stinson and Bazzaz 2006), but the
evolutionary implications of this phenomenon
were previously unknown for A. artemisiifolia or
any other species. To interpret the responses of
competitively grown genotypes to climate
change, we applied a mixed effects model to
experimental data on maternal lineages of
ragweed to estimate reaction norms, model
genetic size hierarchies, and quantify the strength
of selection on size in ambient and elevated CO2

environments.

METHODS

Experimental common ragweed stands
We grew experimental monoculture stands of

Ambrosia artemisiifolia in open top chambers at
Harvard University’s Concord Field Station,
about 25 km east of the Boston urban area in
Bedford (MA, USA). The chambers were con-
structed in a cleared field consisting of sandy
soils that were augmented with 15.0 cm dry,
commercially-produced loam and mechanically
homogenized just prior to the experiments. Three
chambers were maintained at ambient (360 lL
L�1) and three were maintained at elevated (720
lL L�1) CO2 via injection from an on-site liquid
supply tank. An infra-red gas analyzer (LI-800,
LiCor, Lincoln, NE) sampled air concentrations
within each chamber at a frequency of ,5
minutes in order to keep CO2 levels to within
650 lL L�1 of the set point. Air temperature was
maintained within 1.58C of ambient using electric
fans to regulate air flow.

Seeds from 12 known maternal lines (geno-
types) of second-generation seed stock of wild
parental lineages were tagged and planted into
two stands per chamber, in identical hexagonal
grids consisting of 36 evenly spaced plants. Three
replicates of each genotype were randomly
assigned to positions within the grid, at a typical
field density of 60 plants m�2. In this design, the
contribution of the maternal lineage to the trait
variance is interpreted as the main genetic
component in the analysis, assuming at least half
sibling relatedness among genotypes (Fisher
1918); the contribution of maternal environment
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to genotype performance during competition is
usually small (Weiner et al. 1997) but has been
experimentally removed here by the growth of
second-generation stock under common condi-
tions. We maintained all chambers at ambient
CO2 and misted germinants with water twice
daily for the first two weeks. Thereafter, the CO2

treatments were initiated and all chambers
received natural rainfall. We provided equal
amounts of supplemental water to all chambers
during dry periods using an automated mist
watering system suspended from the top of each
chamber. To minimize edge effects, plants on the
outermost edge of each stand were excluded
from observation and only the central 24 plants
were measured. To keep all chambers free of non-
experimental plants, weeds were removed im-
mediately after their germination (at least every
2–3 days).

Survival rates ranged from 99–100% per stand
and averaged 97% and 98% in the ambient and
elevated CO2 treatments respectively. Strong
photoperiodicity in this species led to a high
degree of synchrony in flowering, fruiting, and
senescence in all stands. Therefore, individuals
were harvested during a single week, when all
plants had demonstrated the onset of senescence
and most live flowering heads had reached seed-
set. Plants were dried to a constant mass and
weighed for measurements of: total aboveground
biomass (T), vegetative biomass (leaves and
branches) (V), belowground/root structures (B),
reproductive structures (R) and reproductive
allocation (RA ¼ reproductive biomass/above-
ground biomass shoots, roots and reproductive
parts). The sandy soils at our site, and our
extensive experience with this species, allowed
us to confidently separate root systems and
estimate root biomass in most cases. Although
a preliminary analysis indicated little variation in
root mass among genotypes and treatments, B
was omitted from further analysis due to
insufficient replication across genotypes.

Model for genotypic size hierarchies
To test for genetic variation in size hierarchies

between the two treatments, we fitted a nonlinear
mixed effects model to the following plant
biomass responses from our experiments: LT,
LV, LR, and LRA, where a prefix of L indicates
natural logarithm (log). In our model, li is the

mean response on the log scale for genotype i
under ambient CO2 and a þ bli is its mean
response under elevated CO2. The model on the
log scale is

Ambient: logðResponseAijklÞ
¼ li þ xAj þ gAkðjÞ þ eAijkl

Elevated: logðResponseEijklÞ
¼ aþ bli þ xEj þ gEkðjÞ þ eEijkl

Here, ResponseAijkl is for the lth individual (1
or 2) of the ith genotype (1 . . . 12) from the kth
stand (1 or 2) within the jth chamber (1 . . . 3)
under ambient CO2 conditions and ResponseEijkl
is similarly defined for elevated CO2. We
included multiple random components to allow
for potential correlation between plants within
stands nested within chambers (Verbeke and
Molenberghs 2000). The notation k( j ) indicates
the kth stand is nested within the jth chamber. x,
g, and e represent chamber-to-chamber, stand-to-
stand within chamber and within stand variabil-
ity respectively. Random terms xAj, xEj, gAk( j),

gEk( j), eAijkl and eEijkl are assumed normally
distributed with mean zero and variance r2

A3,
r2

E3, r2
A2, r2

E2, r2
A1 and r2

E1respectively. The
difference between ambient (A) and elevated
(E) at each level of variability is tested.

The reaction norms generated by the model
provide a visual and statistical assessment of
genotypic performance within the context of
competition within stands. The effect of CO2 is
determined by the coefficients a and b. The value
of b distinguishes between five outcomes with
respect to the G 3 CO2 interaction as detailed in
Fig. 1. The last three categories (Fig. 1C–E) are
various forms of a ‘‘catch-up’’ effect (i.e., each
implies that subordinates gain proportionately
more than dominants). Provided b is significantly
less than 1 catch-up has occurred, but, if b is
equal to or less than 0, then catch-up is even
stronger. This is a model of interaction and the
outcomes detailed above for the various values of
b speak to the relative rather than the absolute
performance of genotypes under ambient and
elevated CO2. The performance of a particular
trait of subordinates could improve relative to
dominants but all genotypes might decline with
respect to that trait.

Our model is an extension of the functional
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relationship models by Kendall and Stuart (1973),
in which b is the single interaction parameter
which specifies a linear association between the
mean genotype responses at ambient and elevat-
ed CO2. (The model is nonlinear in that it
involves the product of the coefficient b with li

terms and so is not amenable to the usual linear
mixed models framework). The novelty of this
approach is our interpretation of the interaction
parameter b to distinguish between a range of
possible hypotheses about the shape and varia-

tion in reaction norms, as shown in Fig. 1. Our
approach is more flexible than the standard
classical one (Fisher 1918) where the full G 3 E
interaction is fit (i.e., E[y]¼lþaiþbjþabij where
i¼ 1 . . . 12 for genotype, j¼ 1, 2 for CO2 and abij

are parameters of interaction) in a standard linear
mixed effects model. Instead, we partition the
classical full 11 df G 3 E interaction into 1 df
structure, identified by an a priori specification of
a single coefficient b, and a 10 df random
remainder. Partitioning the G 3 E interaction in

Fig. 1. Hypothetical examples using six genotypes to illustrate the meaning of b in the mixed effects model. (A) b

¼ 1, there is no interaction between CO2 and genotype (indicated by parallel lines) and hence no change in

genotypic dominance hierarchies. (B) b . 1, ‘rich-get-richer’, dominant genotypes at ambient CO2 benefit

proportionately more under elevated CO2. Genotypic dominance hierarchy becomes more pronounced under

elevated CO2. (C) 0 , b , 1, ‘simple catch-up’; subordinate genotypes under ambient CO2 benefit proportionately

more under elevated CO2. Genotypic dominance hierarchy remains the same but is less pronounced under

elevated CO2. (D) b ¼ 0, ‘complete catch-up’; all genotypes tend to the same value under elevated CO2.

Subordinate genotypes under ambient CO2 completely ‘catch-up’ to dominants and there is no genotypic

dominance hierarchy under elevated CO2. (E) b , 0, ‘dominance reversal’; subordinate genotypes become

dominant under elevated CO2 causing a reversal in the genotypic dominance hierarchy under elevated CO2.
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this manner has been employed elsewhere,
motivated for example by variation in physiolo-
gy or statistical dimension reduction (van Eeu-
wijk et al. 2005). Our approach captures the G 3

CO2 interaction in a single degree of freedom
based on values of b, where b represents a specific
predicted competitive outcome.

We also tested for the classical full G 3 E
interaction and tested the remainder for any
further structure. Models were fitted using
maximum likelihood, implemented through the
NLMIXED procedure in the SAS/STAT software,
Version 9.1 of the SAS System for Windows.
Model comparisons were made using likelihood
ratio tests (Pawitan 2001).

Contextual analysis
To evaluate our results in an evolutionary

context, we extended the functional relationship
model for LRA to a contextual framework
(Heisler and Damuth 1987, Weinig et al. 2007)
by introducing two covariates measured at
harvest time, log average stand biomass (LAv_T)
and log relative size of an individual within the
stand size hierarchy (LRatio ¼ log(T/Av_T)).

The contextual equation 9 of Heisler and
Damuth (1987) is

Wij � �W :: ¼ bIðzij � �z::Þ þ bCð�zi: � �z::Þ þ eij

where Wij is a measure of individual fitness for
the jth individual in the ith group (in our case
RAij is the RA of the jth individual in the ith
stand), zij is an individual character and �zi: a
contextual character. �W :: and �z::are averages over
individuals and contexts. The regression model
for a contextual analysis involving these two
characters can be rearranged as

Wij ¼ W:: � ðbI þ bCÞz:: þ bIðzij � zi:Þ
þ ðbI þ bCÞzi: þ eij

or

Wij ¼ b0 þ bIðzij � zi:Þ þ ðbI þ bCÞzi: þ eij

In this form bI is a within group coefficient as it
measures the response to the difference between
the value of the individual character and its
group mean, whereas the response to variation at
the group level is bI þ bC. If there is no group
effect in addition to the within group response
then bC ¼ 0.

Using the notation of Heisler and Damuth’s

contextual analysis approach, our extended
functional relationship model is of the form

Ambient: logðRAAijklÞ ¼ li þ ðbIA þ bCAÞLAv TAjk

þ bIALRatioAijkl þ xAj

þ gAkðjÞ þ eAijkl

Elevated: logðRAEijklÞ ¼ aþ bli

þ ðbIE þ bCEÞLAv TEjk

þ bIELRatioEijkl þ xEj

þ gEkðjÞ þ eEijkl

We take LT to be zij in the notation of Heisler and
Damuth (1987) and our ratio variable on the log
scale is LRatio¼ LT� LAv_T which is equivalent
to their zij � zi.. The coefficient of LRatio in our
model is then bI in their terms and the coefficient
of LAv_T is bI þ bC. The interpretation of the
coefficient of LRatio is the same as their
interpretation of bI; it is a measure of response
to within group variation. Because of the log
scale this is equivalent to the effect of an
individual’s position on the within stand hierar-
chy relative to that of the mean of the stand. Since
our model accounts for allometric variation
among individuals (including that arising from
ontogenetic effects or nonreproductive individu-
als), RA is an appropriate measure of fitness as a
function of size for plants that are grown
competitively in monoculture (Brophy et al.
2007).

We interpret bIA andbIE as the measures of
direct natural selection on a given individual’s
size relative to its neighbors (Lande and Arnold
1983), and bCA and bCE as the contextual selection
coefficients, at ambient (A) and elevated (E) CO2.
bC is the difference between the coefficients of
LAv_T and LRatio. The coefficients bIA andbIE

measure the effect of an individual’s size relative
to the mean size of neighbors on its reproductive
allocation (RA). The contextual selection coeffi-
cients measure any additional change in the
fitness of an individual of any genotype arising
from changes in the productivity of its stand.

RESULTS

CO2 effects on genetic dominance hierarchies
Subordinate genotypes gained proportionately

more total aboveground biomass than their
dominant counterparts in elevated vs. ambient
CO2 conditions, as indicated by b , 1 for LT
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(Table 1). Surprisingly, a result of b , 0 in LV
further indicated complete dominance reversal in
plant size: subordinate genotypes in ambient
CO2 became dominant in elevated CO2, and the
dominant genotypes became subordinate (Table
1; Fig. 2A). For LRA, the model suggested b ¼ 0
(‘‘complete catch-up’’), i.e., all genotypes had a
common ratio of reproductive to total above-
ground biomass under elevated CO2 (Table 1,
Fig. 2B). There was also some evidence for b , 1
for LR, as subordinate genotypes achieved
greater reproductive gains relative to dominants
in elevated CO2 (Table 1).

There was generally no evidence to suggest
that chambers or repeated stands within cham-
bers introduced correlations between responses
(Table 2). No G3CO2 effects were detected with
standard ANOVA, nor were remainder G 3 CO2

effects with the functional relationship model
(Table 3).

Contextual effects of CO2 and dominance
hierarchies on natural selection

The position of a plant in the size hierarchy
within a stand greatly affected its RA (bIA and bIE

. 0, Table 4). For a plant of a given size, RA was
greater the larger the plant was relative to its
neighbors; but this effect was approximately
three times greater at ambient than at elevated
CO2 (bIA . bIE, Table 4, Fig. 3). The contextual

effects (bC) were positive at both ambient (P ¼
0.034) and elevated (NS) CO2 and bC was greater

(P ¼ 0.054) at ambient CO2. Thus, there was

positive but unequal direct and contextual

selection on size at both ambient and elevated

CO2 (Table 4). Direct and contextual selection on

size were both stronger at ambient than at

elevated CO2. In addition, there was strong

evidence that subordinate genotypes catch-up

to dominants in RA, with b , 1 (P , 0.001) and

no evidence of b 6¼ 0 in the model (Table 4).

The hierarchical experimental design in our

study (within stand, stand-to-stand and cham-

ber-to-chamber) allowed us to further test for a

difference in variability between ambient and

elevated CO2. The contextual analysis model

fitted to the response variable LRA (log repro-

ductive allocation) demonstrated the following

results: Estimated within stand variability dif-

fered (P , 0.001) between ambient (r̂2
A1 ¼ 0.241)

and elevated (r̂2
E1 ¼ 0.017) CO2, where^signifies

an estimate. Estimated stand-to-stand variability

also differed (P , 0.001) between ambient (r̂2
A2 ¼

0.089) and elevated (r̂2
E2 ’ 0) CO2. Chamber-to-

chamber variability did not differ between

ambient and elevated CO2 and was estimated

at 0.002, indicating little difference in this

component within or among our experimental

treatments.

Table 1. a) Estimates 6 standard errors of a, b and l1 to l12 and b) P-values for likelihood ratio tests on b for each

response.

Coefficient or test

Response

log aboveground
biomass (LT) log vegetative biomass (LV)

log reproductive
biomass (LR)

log reproductive
allocation (LRA)

a) Coefficient
a 1.56 6 0.483 0.39 6 0.248 0.46 6 0.306 �0.57 6 0.117
b �0.87 6 0.774 �1.06 6 0.666 �0.05 6 0.307 0.06 6 0.086
l1 0.29 6 0.368 �0.17 6 0.275 �1.04 6 0.824 �1.14 6 0.353
l2 0.80 6 0.365 0.24 6 0.258 �0.20 6 0.748 �1.23 6 0.305
l3 0.39 6 0.351 0.04 6 0.235 �1.80 6 0.803 �1.78 6 0.346
l4 0.54 6 0.311 0.04 6 0.231 �0.82 6 0.791 �1.32 6 0.328
l5 0.12 6 0.347 �0.29 6 0.258 �1.34 6 0.759 �1.33 6 0.305
l6 0.77 6 0.295 0.31 6 0.229 �0.57 6 0.798 �1.67 6 0.301
l7 0.14 6 0.347 �0.22 6 0.245 �1.40 6 0.759 �1.37 6 0.308
l8 0.35 6 0.325 �0.11 6 0.247 �0.90 6 0.777 �1.29 6 0.317
l9 0.78 6 0.302 0.27 6 0.230 �0.61 6 0.787 �1.32 6 0.310
l10 0.47 6 0.326 �0.03 6 0.228 �0.25 6 0.791 �0.94 6 0.309
l11 0.33 6 0.302 �0.13 6 0.222 �0.58 6 0.789 �1.03 6 0.306
l12 0.46 6 0.330 �0.07 6 0.247 �0.75 6 0.778 �1.29 6 0.318

b) Likelihood ratio tests
Catch-up (b , 1) 0.014 0.001 0.069 0.010
Dominance reversal (b , 0) 0.129 0.021 .0.999 0.439

v www.esajournals.org 6 April 2011 v Volume 2(4) v Article 46

STINSON ET AL.



DISCUSSION

This work has implications for ecological
research, and for the future status of Ambrosia

artemisiifolia as a noxious, allergenic plant. First

and most importantly, we show that future

climate scenarios can favor genotypes that would

otherwise be suppressed by their neighbors.

Fig. 2. Predicted (A) log vegetative biomass (LV) and (B) log reproductive allocation (LRA) versus level of CO2

for each genotype (l1 to l12). Model estimates used to calculate these predictions are in Tables 1 and 4.

Table 2. P-values for likelihood ratio tests of the effect of CO2 on variance components for each response.

Hypothesis
log aboveground
biomass (LT)

log vegetative
biomass (LV)

log reproductive
biomass (LR)

log reproductive
allocation (LRA)

r2
A3 ¼ r2

E3 0.294 0.752 0.028 0.074

r2
A3 ¼ 0 . . . . . . 0.001 . . .

r2
E3 ¼ 0 . . . . . . .0.999 .0.999

r2
3 ¼ 0 0.065 0.138 . . . . . .

r2
A2 ¼ r2

E2 0.752 0.655 0.655 ,0.001

r2
A2 ¼ 0 . . . . . . . . . ,0.001

r2
E2 ¼ 0 . . . . . . . . . 0.237

r2
2 ¼ 0 0.221 0.294 . . . . . .

r2
A1 ¼ r2

E1 0.317 0.752 0.021 ,0.001

Notes: The variance components are fitted initially allowing a separate variance component for ambient (A) and elevated (E)
at each level of variability, giving the six components r2

A3 and r2
E3 (chamber-to-chamber), r2

A2 and r2
E2 (stand-to-stand) and r2

A1

and r2
E1 (within stand). If there was no evidence for a need to split the variance at a given level (hypotheses r2

A3 ¼ r2
E3, r2

A1 ¼
r2

E1), the model was re-fitted constraining the two components at that level to be equal (i.e., r2
A3 ¼r2

E3 ¼r2
3, r

2
A2 ¼r2

E2 ¼r2
2 and

r2
A1 ¼ r2

E1 ¼ r2
1).
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Specifically, the disproportionate CO2-induced
growth gains to subordinate genotypes allow
them to ‘‘catch-up’’ to dominants under elevated
CO2. The reaction norms in Fig. 2A show further
that this can result in an extreme disruption of
size hierarchies: genotypes that achieve size
dominance in ambient conditions become sup-
pressed at elevated CO2, while the most subor-
dinate genotypes become dominant. Thus, high
atmospheric CO2 promotes the growth of subor-
dinate genotypes, reducing the competitive ad-
vantages to dominant genotypes and in some
cases completely reversing the competitive hier-
archy.

Second, we show that elevated CO2 dramati-
cally enhances reproduction by subordinate
plants in this species. Subordinates preferentially
allocate more of their CO2-induced biomass gains
to reproduction than dominant genotypes, and
therefore catch up completely to dominants in
terms of reproductive allocation. Such changes in
reproductive allocation are sometimes ascribed
to ontogenetic differences in enriched-CO2 envi-

ronments (Thomas et al. 1999), but we have
shown in prior studies that strong photo-period-
icity for reproduction and minimal CO2-induced
effects in early growth stages make this unlikely
in A. artemisiifolia (Stinson and Bazzaz 2006). In
addition, the present model accounts for possible
variation in the allometric responses of individ-
uals within a stand (Brophy et al. 2007). Thus, we
conclude that elevated CO2 disrupts the genetic
dominance hierarchy by minimizing both size-
and reproductive differences among genotypes
within a stand. This work advances earlier
findings (Wayne and Bazzaz 1997, Stinson and
Bazzaz 2006) by showing that there is genetic
variation in the degree to which CO2 alters size,
reproduction, and competitiveness in common
ragweed.

A third contribution from this paper is
evidence that two distinct processes—natural
selection and competition—become simulta-
neously de-intensified by elevated CO2 as a
result of reduced variation in genotypic perfor-
mance. This is best illustrated in Fig. 3, as a

Table 3. P-values for tests of the contribution of the functional relationship to the G 3 CO2 interaction by (1) the

full G 3 CO2 interaction using classical ANOVA methods and (2) functional relationship model, for each

response.

Test df
log aboveground
biomass (LT)

log vegetative
biomass (LV)

log reproductive
biomass (LR)

log reproductive
allocation (LRA)

(1) Classical test for G 3 CO2 interaction 11 0.105 0.075 0.102 0.228
(2) Remainder of G 3 CO2 interaction having

fitted the functional relationship model
10 0.358 0.629 0.178 0.687

Table 4. a) Estimates and tests for the model for log reproductive allocation (LRA) extended with the contextual

analysis covariates: log average stand biomass (LAv_T) and log relative position within stand size hierarchy

(LRatio¼ log(aboveground biomass/AV_T)) and b) tests of hypotheses among contextual analysis coefficients.

Coefficient or test Estimate
P-value from

likelihood ratio test

a) Coefficients
a �0.95 . . .
b �0.05 ,0.001�
(bIA þ bCA) (coefficient of LAv_T at ambient) 0.88 ,0.001
bIA (coefficient of LRatio at ambient) 0.35 ,0.001
bCA (estimate ¼ 0.88–0.35) 0.53 0.034
(bIE þ bCE) (coefficient of LAv_T at elevated) 0.17 0.009
bIE (coefficient of LRatio at elevated) 0.12 ,0.001
bCE (estimate ¼ 0.17–0.12) 0.05 0.439

b) Hypothesis tests
(bIA þ bCA) ¼ (bIE þ bCE) . . . 0.011
bIA ¼ bIE . . . ,0.001
bCA ¼ bCE . . . 0.054

�P-value is for the test b , 1, i.e., subordinates ‘catch-up’ to dominants.
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dampening effect of CO2 on the reproductive
advantages to larger plants within a stand. Here,
the result of b ’ 0 in the contextual analysis can
be interpreted as reduced variation among
subordinate and dominant genotypes in their
size-dependent reproductive success. In other
words, natural selection on size is stronger, and
size is more positively correlated with reproduc-
tion at ambient than at elevated CO2. Thus, we
demonstrate here a possible mechanism by
which ragweed productivity and pollen produc-
tion are predicted to increase at elevated CO2

(Wayne et al. 2002, Ziska et al. 2003, Taramarcaz
et al. 2005, Stinson and Bazzaz 2006).

The ecological and evolutionary implications
of our results are complex. Changes in both
direct and contextual selection, such as we show
here for ragweed, suggest that high CO2 could
alter evolutionary trajectories and impact demo-
graphic properties of plant populations (Weinig
et al. 2007). This finding is particularly concern-
ing for plants that are considered noxious. For
instance, elevated CO2 has been shown to
increase the biomass and toxicity of poison ivy
(Mohan et al. 2006), while a number of global
change factors are predicted to exacerbate forest
pest and pathogen invasions (Dukes et al. 2009).

In the case of ragweed, relaxation of natural
selection on size could create an opportunity for
group selection, and may simultaneously retain
genetic diversity in future populations by buff-
ering selection against subordinates (Weinig et al.
2007). Relaxed size-related competition could
also contribute to enhanced overall productivity
and reproductive diversity within a stand,
assuming that other resources are not limiting
(Stinson and Bazzaz 2006). Moreover, changes in
the genetic structure of ragweed populations
could directly influence the performance of
interspecific neighbors (Fridley et al. 2007),
potentially altering community-level competitive
interactions and other ecological processes (Frid-
ley et al. 2007, Hughes et al. 2008). The health and
resource management problems associated with
increased growth and reproduction of this plant
could therefore be larger than expected (Wayne
et al. 2002, Ziska et al. 2003, Epstein and Rogers
2004, Taramarcaz et al. 2005).

Interpretation of our results requires the caveat
that, as in many climate change experiments, the
number of treatments is limited. While our
experimental treatments represent only pre-ele-
vated conditions and the predicted doubling of
CO2, climate change is likely to proceed in a

Fig. 3. The effect on RA of plant size relative to stand mean size (ratio). The effect of ratio at ambient CO2 is

three times the size of the effect at elevated, indicated by the steeper line for ambient. The lines can be interpreted

as the effect on direct natural selection of a given individual’s size relative to its neighbors at ambient (solid line)

and elevated (dashed) CO2, having allowed for genotypic effects.
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gradual pattern and will certainly occur in
tandem with changes in temperature, precipita-
tion and many other factors. Common ragweed
naturally occurs in dense monoculture stands as
simulated in this study, however, interspecific
competitors, herbivores, and changes in resource
use efficiency as determined by moisture, nutri-
ent, and other abiotic conditions could also alter
the responses we report here. Studies incorpo-
rating more complex environmental gradients
and those that consider a multispecies commu-
nity context are difficult to achieve due to the
sample sizes needed, but are nevertheless impor-
tant next steps.

Finally, it is worth mentioning that we found
the previously-existing but not-widely-known
modelling frameworks of the functional relation-
ship model (Kendall and Stuart 1973) and
contextual analysis (Heisler and Damuth 1987)
to be useful in the interpretation of genotype by
environment interactions and selection differen-
tials in the context of competition. Using the
interaction parameter b to distinguish among
specific predicted competitive outcomes, our
approach elucidates changes in the genetic
hierarchy that were obscured by the error term
in the classical ANOVA. We suggest that these
methods may present new analytical opportuni-
ties where a priori predictions for genotypic
performance and natural selection in a compet-
itive context are considered.

In summary, this paper demonstrates that
elevated CO2 disrupts the genotypic size hierar-
chy and eliminates reproductive advantages to
dominant genotypes, thereby altering genotypic
dominance within populations of an allergenic,
noxious weed. This work provides data on the
potential broader importance of genotype-specif-
ic responses to global change for the structure
and ecosystem function of natural populations
(Bradley and Pregitzer 2007). Subsequent dis-
ruptions to ragweed’s competitive and microevo-
lutionary dynamics may have major long term
and unpredictable effects on ecological, econom-
ic, and human health issues as atmospheric levels
of CO2 continue to rise.
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