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 Grand Tour and Projection Pursuit

 Dianne COOK, Andreas BUJA, Javier CABRERA, and Catherine HURLEY

 The grand tour and projection pursuit are two methods for exploring multivariate
 data. We show how to combine them into a dynamic graphical tool for exploratory
 data analysis, called a projection pursuit guided tour. This tool assists in clustering
 data when clusters are oddly shaped and in finding general low-dimensional structure
 in high-dimensional, and in particular, sparse data. An example shows that the method,
 which is projection-based, can be quite powerful in situations that may cause grief for
 methods based on kernel smoothing. The projection pursuit guided tour is also useful
 for comparing and developing projection pursuit indexes and illustrating some types of
 asymptotic results.

 Key Words: Data visualization; Interactive dynamic graphics; Data projections; Ex-
 ploratory data analysis.

 1. INTRODUCTION

 In this article we show that two graphical methods for exploring high (say p) di-

 mensional data-the grand tour (Asimov 1985; Buja and Asimov 1986; Buja, Asimov,
 Hurley, and McDonald 1988), a dynamic tool, and projection pursuit (Kruskal 1969;
 Friedman and Tukey 1974; Huber 1985), a static tool-naturally complement each other
 and can be combined to enhance each's performance in detecting low-dimensional struc-

 ture. A grand tour attempts to provide the viewer with an overview of a multivariate

 point scatter by presenting a continuous (dynamic) sequence of low (d, usually = 1,2, 3)
 dimensional projections, which, within time constraints, are representative of all possible

 projections of the data. In contrast, projection pursuit seeks out only low-dimensional
 projections that expose interesting features of the high-dimensional point cloud. It does

 this by optimizing a criterion function, called the projection pursuit index, over all pos-

 sible d-dimensional (d-D) projections of p-dimensional (p-D) data. Projection pursuit
 results in a number of static plots of projections that are deemed interesting, in contrast

 to the dynamic movie of arbitrary projections that is provided by a grand tour. Unfortu-
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 Figure 1. Implementation of Projection Pursuit Guided Tour in XGobi.

 nately, static plots suffer from a lack of context because they have been removed from

 their neighborhood in the projection space, and although a grand tour provides the neigh-

 borhood context it has a tendency to spend too much time away from, or indeed never

 visit, the interesting projections. The two methods combined in an interactive, dynamic

 framework provide powerful tools for exploring high-dimensional data using projections.

 In particular, when the data is sparse in relation to its dimensionality, methods based on

 projections have advantages over those based on kernel smoothing. The work discussed
 in this article fills gaps in research on exploring high-dimensional data.

 In the last decade most projection pursuit indexes (for example, Jones and Sibson
 1987; Friedman 1987; Hall 1989; Morton 1989; Cook, Buja, and Cabrera 1993a; Posse
 1994) have been anchored on the premise that to find the structured projections one should

 search for the most nonnormal projections. Good arguments for this can be found in Huber

 (1985) and Diaconis and Freedman (1984). (We should point out that searching for the
 most nonnormal directions is also discussed by Andrews, Gnanadesikan, and Warner

 156
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 GRAND TOUR AND PROJECTION PURSUIT

 [1971] in the context of transformations to enhance normality of multivariate data.) This

 clarity of purpose makes it relatively simple to construct indexes that "measure" how
 distant a density estimate of the projected data is from a standard normal density. (Note

 that the data is usually sphered before beginning projection pursuit to remove mean and

 variance effects from the search, and in this sense the comparison with a standard normal

 density is justified.) The projection pursuit index, a function of all possible projections
 of the data, invariably has many "hills and valleys" and "knife-edge ridges" because of

 the varying shape of underlying density estimates from one projection to the next. To
 accommodate the optimization of such a function Friedman (1987) proposed a projection

 pursuit algorithm that entails an initial rough global search for relatively high values of

 the function from which to, secondly, start derivative-based searches to find the global
 maximum.

 In the last few years, with the assistance of powerful desktop computing hardware,

 research on the grand tour has concentrated on user interaction. The tools for user in-
 teraction, suggested to date, take the form of motion alteration and restriction, such as

 a facility to retrace the tour path and restriction of movement to subspaces, such as,
 principal component, canonical correlation, or discriminant coordinate space (Hurley and

 Buja 1990). We now add to this bag of tricks projection pursuit guidance. The grand tour

 is used to move the viewing plane arbitrarily through the projection space, which acts to

 provide random starting points for derivative-based optimization of the projection pursuit

 index. The actual time point at which the optimization is initiated may be determined by

 the viewer, or in an automated implementation by some predetermined initiation mech-

 anism. In our implementation we have concentrated on the former to provide a highly
 interactive user controlled interface.

 Figure 1 shows a window dump of the implementation of a projection pursuit guided

 tour in XGobi (Swayne, Cook, and Buja 1991), which is a software system that is
 publicly available from StatLib. [To get started using StatLib, send the one-line e-mail

 message send index to statlib@lib. stat. cmu. edu. A program will read your
 request and send further instructions. StatLib can also be accessed by FTP, Gopher, and
 WWW. The e-mail reply from StatLib will contain instructions for the other methods of

 access.] XGobi is designed for analysis of high-dimensional data through manipulation

 of scatterplots. It offers such plotting techniques as textured dotplots (Tukey and Tukey
 1990), pairwise plots, and 3-D rotation as well as the tour, and includes interactive
 operations on the data such as scaling, linked brushing, and identification of points. It
 is written in C and uses the X Window System (trademark of MIT). Although it is
 possible to construct a projection pursuit guided tour for any projection dimension, the

 implementation in XGobi only uses 2-D projections, which is natural for 2-D display
 devices.

 To give some familiarity with the graphical appearance of the XGobi guided tour see

 Figure 1. Two windows are shown. The main window displays a paused grand tour (in

 principal component space) surrounded by many controls and the bottom window displays

 the projection pursuit index that has been plotted over time as the tour progressed. At
 the top of the main window is a line of mode buttons where it can be seen that tour

 mode is highlighted. Associated with the tour mode is the panel of controls to the left
 of the plot window that includes tools for interacting with a grand tour and controls for

 157
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 the projection pursuit guidance. To the right of the plot window is a collection of circles

 and labels representing the variables of the data set.

 The next section discusses implementing a projection pursuit guided tour, using the

 example of XGobi, and the tools that we have found naturally assist user interaction.

 The third section gives examples of both exploring data and viewing functions with the

 projection pursuit guided tour.

 2. IMPLEMENTATION

 2.1 BASIC IDEAS: OPTIMIZATION ADAPTATION OF TOUR MOVEMENT

 The grand tour is defined as a continuous one-parameter (time, usually) family of d-

 D projection planes that is dense in the set of all d-D planes in p-space (d < p). The space
 of all unoriented d-D planes through the origin in Euclidean p-space is called a Grassman

 manifold, which we denote as Gd,p. In contemplating an implementation of a grand tour
 this definition lends itself to a variety of interpretations. One approach depends on the

 construction of a filling curve that systematically traverses Gd,p. (See Asimov [1985] for

 a discussion of some attempts at constructing good deterministic paths, which is, as yet,

 an unresolved problem.) Alternatively, a random sampling of Gd,p combined with the
 construction of a continuous path between pairs of sampled planes can be used.

 The second approach is the simplest and most easily adaptable grand tour con-
 struction. It is the method that we concentrate on and we call it an interpolation tour.

 The construction procedure is described in detail in Buja, Asimov, and Hurley (1989),

 but in simple terms there are two basic steps that are iterated. Initialization is from a

 predetermined starting plane, V(O):
 1. Sample, randomly, for a d-D plane in p-space, which we call the target plane,

 V(i). (To do this generate d vectors in IP by orthonormalizing d p-D standard
 normal vectors, for example. This results in a random orthonormal basis, denoted

 u(I), for a random plane.)
 2. Interpolate from the starting plane, V(o), to the target plane, V(i), set this to be

 the new starting plane, and return to Step 1. (The interpolation is implemented
 in discrete steps that appear continuous to the eye, and the size of the steps can

 be adjusted to simulate apparent speed changes. We call the starting planes and

 target planes basis planes. Knowing the basis plane sequence allows the tour path

 to be reconstructed. The orthonormal basis for V(o) is denoted as u(o).)
 As indicated earlier (p. 156), however, this type of grand tour may not provide the user

 with a view of any interesting projections-a problem that becomes worse as p increases.

 The objective is to use the derivatives of the projection pursuit index to select the new

 target plane in a more judicious manner; this adaptation of Step 1 generates the projection

 pursuit guided tour which we now explain in more detail. Let z be a p-D random vector,
 with 0 mean, and identity covariance matrix, X= (xl,... ,d) =u'z, where u is an
 orthonormal basis for an arbitrary d-plane in p-space, and let I(x) be a d-dimensional

 projection pursuit index. (I is a function of the projected data matrix and the domain is
 all possible projections. For our purposes we have restricted ourselves to continuously
 differentiable functions, but it is possible to relax this condition if appropriate optimiza-
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 tion methods are used.) Using this notation, the target plane V(I), characterized by the

 orthonormal basis u(\), is chosen as the result of orthonormalization of

 d1(z) dx
 U(o) + k. ox

 where k is the step size parameter of the optimization. In terms of dynamic graphics, k

 is a path length parameter because it determines the distance to the next target plane. We

 consider the maximum of the index I to be reached when its value no longer increases by

 further movement in the derivative direction-that is, in practical terms, the difference

 between the index values of the previous interpolation step and the current is below a
 tolerance value.

 This is exactly steepest ascent optimization with respect to each component vector

 of u. (It is also possible to use conjugate gradient methods by a simple adaptation of the

 definition of the target plane, and, of course, other methods by more radical adaptations.)

 At some time point the local maximum will be reached, which means that the tour must

 stop because the target plane is nearly identical to the starting plane. To continue motion

 when this happens we propose to revert the target plane selection procedure back to

 random sampling for some period of time before engaging in optimization again. The
 effect is analogous to performing steepest ascent optimization from multiple random

 starting points. The difference, of course, is that here the entire optimization procedure

 is visualized, and the viewer may determine the starting points for the optimization by

 using visual cues. We call the real-time process of periodically switching the target plane

 selection between random sampling and derivative-based selection, a projection pursuit
 guided tour.

 Intrinsic to an interactive and dynamic implementation of a projection pursuit guided

 tour are a number of tools that are discussed in the next few sections. Recall that a global

 picture of the controls of the projection pursuit guided tour in XGobi is shown in Figure

 1 (p. 156).

 2.2 MONITORING WINDOW

 A vital accompaniment of the projection pursuit guided tour is a monitoring window

 (Fig. 2). This window keeps a running plot of the projection pursuit index values for

 the sequence of projections displayed in the main tour window of Figure 1 over time.
 This involves storing a vector of index values and, in our implementation, the vector

 has a fixed length that depends on the size of the monitoring window. During on-screen

 motion, as the vector becomes filled, old values are replaced by new ones, and thus a
 shifting window of the most recent index values is maintained. The plot also rescales itself

 vertically when a new index value is above or below previous maximum and minimum
 values because it is assumed that global extreme values are not known a priori.

 Along the horizontal axis (time) are a number of "landmarks," short vertical lines

 above the axis and triangles below the axis. The short vertical lines indicate when a
 new target plane is chosen. The triangles indicate the time point when optimization is
 either turned on or off. During optimization the index values increase with time. In the

 159
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 Projection Pursuit: Central Mass Index i J
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 Figure 2. Monitoring Window for Projection Pursuit Guided Tour in XGobi.

 figure optimization was turned on at the leftmost triangle, so the index value increases

 until the second triangle when optimization was turned off. It was turned on again at the

 third triangle and off at the fourth. (From the plot, it may appear that using a projection

 pursuit guided tour to search for interesting projections of high-dimensional data is a "heat

 up/cool down" process, such as simulated annealing, for finding maxima of an index.
 However, Figure 2 is a record of a real-time user-controlled procedure, and simulated

 annealing is an example of an automated procedure which is a possible alternative when

 real-time computations are not feasible.)

 Marking the time of the two local maximum index values are two bitmaps. These are

 copies of the projection displayed in the tour window at the time the local maximum index

 values were reached, as indicated by the stabilizing of the index value. Their presence
 assists in mental reconstruction of the tour path by recording important features. In XGobi

 a bitmap can be generated at any time during a projection pursuit guided tour by a simple
 button click, but we have found it to be most useful to record local maxima.

 2.3 BITMAP INTERFACE

 There are two important additional uses of the bitmaps. The first is to direct the tour

 to return to the particular view provided by a bitmap accessed through a mouse click on

 the bitmap of interest. (In fact, this facility was incorporated after observing that people

 using the projection pursuit guided tour exhibited a natural tendency to want to return

 the tour to the previous bitmap views.) This behavior, though, depends on the bitmap
 remaining visible in the monitor window, which it will only do for the length of time
 represented by the width of the window. There is no scroll facility to retrieve invisible

 bitmaps. The second use is to "stack up" views that have been found in order to "replay"

 them later. This approach depends on the existence of a history mechanism in the tour.

 In XGobi this is provided by a backtrack feature in which a running linked-list of basis

 planes provides a mechanism for retracing the path of a tour. In addition, a prerecorded
 set of basis planes may be read in to describe a particular path to be traveled. This facility
 can be combined with a recorded list of basis planes that represent the bitmaps, or local

 maxima of the projection pursuit index.
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 2.4 NAVIGATIONAL TOOLS

 When a structured projection is found it is important to understand the relationship
 between the constituent variables. With 3-D data the contribution of variables to a pro-

 jection is often represented by a tripodal axis. This readily extends to higher dimensions

 in which a p-podal axis tree illustrates the linear combination of variables contributing to

 a projection. The disadvantage, however, is that it suffers from clutter as more variables

 are added. The solution provided by Buja et al. (1988) and Hurley and Buja (1990) is
 to take each axis stem out of the p-podal representation and embed it in its own icon,

 specifically a reference unit circle. We call these the variable circles and the radial bar
 represents the relative contribution of each variable to the displayed projection. These
 are the primary navigational tools. In Figure 1 (p. 156) they can be seen to the right of

 the main plot window. (They also serve a utility function in XGobi in that clicking on a
 variable circle adds or removes the variable from the tour.)

 2.5 INDEX CHOICES: MENU, PARAMETER ADJUSTMENT

 One of the most powerful features of dynamic graphics is the ability to quickly
 "twiddle" parameters and make option selections. The menu of indexes in XGobi includes

 the 2-D natural Hermite (Cook et al. 1993a), Hermite (Hall 1989), Legendre (Friedman

 1987), Friedman-Tukey style (Friedman and Tukey 1974), and entropy (Jones and Sibson

 1987) indexes, as well as three simple template-like indexes (Cook et al. 1993a) designed
 to detect projections with "holes" in the center (holes index) or concentration of mass in

 the center (central mass index), or skewness (skewness index). For complete information

 on the different indexes the reader is encouraged to consult the appropriate references.

 2.6 IMPACT OF SPHERING

 It is usual that the data is sphered before beginning projection pursuit to remove the

 influence of location and scale on the search for structured projections. This is especially

 necessary for indexes that "measure" the departure of the projected data density from a

 standard normal density because location and scale differences may dominate the other

 structural differences. However, sphering has an unfortunate side effect. It visibly changes

 the data. For example, consider points uniformly distributed on a cylinder that has a small

 length to radius ratio, as in points painted on a short piece of tube (Figure 3a). Sphering

 is analogous to increasing the length of the tube (Figure 3b), resulting in the hole being

 less visible. Hence, sphering is graphically distracting because it changes the shape of
 the data and may in some cases hide features that were previously visible.

 Nevertheless, sphering is essential to the effectiveness of the current selection of

 projection pursuit indexes in XGobi, so the data is sphered before beginning a projection
 pursuit guided tour. In displaying the procedure, however, one can choose to use the

 sphered or unsphered data space. Our preference is to show the projection pursuit guided

 tour on the sphered data, although in XGobi it is possible to also display the corresponding

 unsphered data projections using the linked tour facility (see Sec. 2.8). (The projection

 161
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 (a) (b)

 Figure 3. Visual Effect of Sphering Data. (a) before sphering the hole is easy to see; (b) after sphering the hole
 not as easy to see.

 coordinates, U, from the sphered space are "back-transformed" to the corresponding

 coordinates in the unsphered data space.)

 2.7 INCLUSION OF USER-DEFINED INDEX FUNCTIONS

 The implementation in XGobi is set up to make it feasible for users to include their

 own index functions with a minimal knowledge of C and X. Essentially two functions

 need to be provided-one for calculating the index value at a particular projection and
 another for calculating derivatives. The interested reader should read the distributional
 notes of XGobi for further information (see statlib note on p. 157).

 2.8 LINKED TOURS

 One solution to the problem of sphering is to show both projections-the projection

 of the sphered data and the equivalent projection in unsphered data space. This is facili-

 tated by linking two XGobis. The XGobi running a projection pursuit guided tour sends
 its projection to one showing the data in unsphered data space. (The linking function
 inverts the projection coordinates appropriately.)

 The linked tour facility can be used to compare different projection pursuit indexes

 and for cross-validation of data, for example, checking if one interesting projection proves

 interesting for both halves of a data set.

 3. EXAMPLES

 3.1 FINDING LOW-DIMENSIONAL STRUCTURE IN DATA

 The particle physics data set that we use to illustrate the projection pursuit guided tour

 was initially used to introduce projection pursuit by Friedman and Tukey (1974). The data

 ..":.-.:~~.:. .. .. ..... :-~~~ ,:-.~~~ '..-!~~.:',-~.:*:~

 ~~~~~~~~~~~~~ ...~ ....... ..

 ~~~~~~~~~~~~ -~ ' -''---'~~ ~- ~ ,,~~

 I I:::::~,~~~~:~~~:::
 (O]~~~~~~ f ...'....

 Figur~~~~~~~~~~~~~~~ ~ :~''" '"' ""~~"~' ~ ?fec ?fpern -'~~~.-.:bfr peig h oei ayt se b fe peii~ th
 not~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... ,-.....~-...~...:~~ .-.~.. ~.r... -e. - - . . . . . ~::::.- *"::.'.__,?._.::

 coordinates~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.. ,. ::+::,-~:~:::~ ? ~ .............................. ~.-....~,~ ~~,~.~~~..,.~

 coordinates~~~~~~~~~- rn -h --~- .---'~ '.~ - -'~c.)~~i

 2,7 INCLUSION of USERIDEFINED INDEX FUNCTIONS~.............. ~.............

 was initially used to introduce projection pursuit by Friedman and Tukey (1974). The data
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 Figure 4. Pairwise Plots of 7-D Particle Physics Data.

 is old, and the reaction recorded by the data is not interesting to contemporary physicists,

 but it is important to statisticians for the reason that the inherent structure has never

 been completely described. The combination of the grand tour and projection pursuit

 contributes significantly to revealing the nature of the variable relationships in seven

 dimensions. Recently, Koschat and Swayne (1992, in press) have used the projection
 pursuit guided tour in XGobi to explore telecommunications data, and indeed found
 previously undetected structure.

 3.1.1 7-D Particle Physics Data

 The 7-D particle physics data (often called "prim7 data") contains 500 observations

 taken from a high-energy particle physics scattering experiment that yields four par-
 ticles. The reaction can be described completely by seven independent measurements.
 For this reaction, 7r+pt - p7+7+7r -, the following measurables (squared invariant
 mass) were used: XI = r2(tr-,i r,2+),X2 = /)2(7r-, 1r),X3 = ,u2(p, 1-),X4
 t2(T-' 7r+), X5 /12(p, r+), X6 = /2 (p, .r+,-pt), X7 = 2(p, , ,-pt). Here, ,u2(A,
 B, ?C) = (EA + EB Ec)2 - (PA +PB ? Pc)2, and 12(A, ?B) = (EA ? EB)2-
 (PA PB )2, where E and P represent the particle's energy and momentum, respectively,
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 as measured in billions of electron volts. The notation (p)2 represents the inner product.. as clusters or umpiness along low-dimensional linear subspaces ("arms"). .

 t ~' ~~Y' " *?* ""A'"'

 Figure 4 shows the pairwise plots of the seven measurements. It is clear there are

 some linear relationships between the variables because of the lumpiness along the

 X1 versus X6, X1 versus X7, and X3 versus X6.

 (a) (b) (C)

 Figure 5. 7-D Particle Physics Data. (a) First two principal components; (b) projection similar to thatfound
 by Friedman and Tukey (1974); and (c) projection found by Jee (1985).

 as measured in billions of electron volts. The notation (p)2 represents the inner product
 P/P. The ordinal assignment of th e two r+'s wsas done randomly. The dat a is originally

 from Ballam et al. (1971), which contains a more complete description of the reaction.

 Important features of the data are short-lived, intermediate reaction stages which appear

 as clusters or clumpiness along low-dimensional linear subspaces ("arms").

 Figure 4 shows the pairwise plots of the seven measurements. It is clear there are

 some linear relationships between the variables because of the clumpiness along the
 coordinate axes and diagonals. There are also three aberrant points visible in the plot of
 X1 versus X6, X1 versus X7, and X3 versus X6.

 Figure 5a shows a plot of the first two principal components. This view indicates
 the presence of structure, perhaps three clusters, but it is not lucid enough to distinguish

 between them. In their original projection pursuit-based analysis, Friedman and Tukey

 (1974) found a projection in which the points lie on a "Z" shape (similar to the projection

 in Fig. 5b). With a projection pursuit index based on Fisher information, Jee (1985) found

 a projection in which the points lie on a triangle, with heavier concentrations at the
 vertices (Fig. 5c). Although they are interesting, these three views do little to divulge the

 basic shape of the point cloud. Using the projection pursuit guided tour the data points

 appear to form a very simple pattern: a basic triangle with two linear, or wedge-shape,
 structures extending from each vertex. We relate the interactive procedure that led to
 this description in the next few paragraphs. Although the session is summarized by the

 plots in Figure 6a-d, we must emphasize that these plots only represent instantaneous
 snap-shots of projections obtained during the projection pursuit guided tour. In reality,

 of course, the user experiences a movie-like representation of the evolving projections
 along the tour path. (Video footage of the projection pursuit guided tour on the particle

 physics data is available in Cook et al. 1993b.)
 Figure 6a is the projection corresponding to a local maximum of the holes index,

 showing the triangle with two wrapped arms. We painted the two arms as crosses and
 rectangles, and identify them as arms CS and OR, respectively. (Note that color may also
 be used to further enhance the identification of the arms.) The job of classifying points

 in the intersection is made easier by the on-screen motion, the sense of which cannot be

 adequately portrayed by these flat sheets of paper, as indicated in the previous paragraph.

 164
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 In the on-screen environment, a 3-D sense accompanies the movement of these arms: the

 tips of the arms rock against each other as the maximum is approached. This view, as
 mentioned previously, is a local maximum and, interestingly, the projection given by the

 global maximum is not very informative! This is not altogether unexpected. Although
 the holes index is successful in detecting the arms it is theoretically maximized by points

 distributed on a unit circle. In the process of projection pursuit the optimal index value

 corresponds to the projection that best approximates this extremal distribution. The view

 given in Figure 6a does not approximate the extremal distribution very well so it is not

 surprising that there is another projection of this data that has a higher index value. The
 holes index is sensitive to a very specific type of structure, whereas the more omnibus-

 X6 X6 X7 X6
 X3 X  X7. , X7 X4 X X3

 c s *TN :*.:.; *xs cs x3
 ,??. xe

 '''.. ,. ^ .^. .' * ~;Aberrant points
 n0EI

 OR

 (a) (b)

 X7 X6 X7
 X1 X4 CC + P X6

 + X+ ?0 . 5

 p ++ Oc 0

 X3" X X f CS

 x i Xx K

 CS OR a

 (c) (d)

 Figure 6. Analysis of 7-D Particle Physics Data. (a) local maximum of holes index; (b) global maximum of
 central mass index; (c) magnified view of (b); (d) local maximum of central mass index.
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 type indexes, such as those based on nonnormality measures, are sensitive to a much
 broader range of structure, and when using these indexes this situation will be more
 common.

 Figure 6b is the projection given by the global maximum of the central mass index,
 and one can now see several new structures in the data-two more arms and three aberrant

 points. Figure 6c is the same projection magnified to focus more on the previously unseen

 arms, painted as circles (arm CC) and plusses (arm P). Figure 6d shows a projection
 corresponding to a local maximum of the central mass index. One more arm (small solid

 rectangles, arm SR) is visible, although difficult to see clearly in the view because the

 points also lie along arm OR. (In XGobi it is very easy to mask out the arm OR to brush

 points on underlying arm.) With further exploration, another arm (call it U for unbrushed

 at this point!) can be seen.
 At this stage we can say there are six arms extending from the triangular region and

 arms CS and OR arise from separate vertices of the triangle. The relative location of

 .1.

 at 0  0

 x

 0?

 x

 0

 R : I.....
 :I.

 t1
 2

 iei

 0

 x

 0 .

 X

 Figure 7. Textured Dotplot of Variables With Points in the Base Triangle Region Highlighted. The plots suggest
 that the triangular relationship is formed from variables 3 and 5
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This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:31:33 UTC
All use subject to https://about.jstor.org/terms



 GRAND TOUR AND PROJECTION PURSUIT

 the others can be found by switching off projection pursuit guidance and watching the

 data touring, with the features identified, over an extended period of time. The motion

 provides a "Gestalt" sense of the proximity of points (and hence features). It is easy to

 see that arms CC and P extend together from the remaining vertex, and the short arm
 SR extends from the same vertex as the arm OR, and that U and CS extend from the
 third vertex.

 Return to examining the plots in Figure 6. These indicate that each arm is approx-
 imately 1-D. Before making conclusions solely on these plots, remember that these are
 each 2-D projections of 7-D data, meaning there are 5 hidden "back" dimensions. Con-

 sider some facts about 2-D projections of solid 7-D geometric shapes: (1) a point (0-D
 object in R7) always projects to a point; (2) a line (1-D) projects as line or a point (0-D);

 (3) a plane (2-D) projects as a plane, line, or a point; and (4) a 3-D subspace projects as
 a plane, a line, or a point. These are solid shapes but serve the purpose of showing that

 the arms, as finite samples (including error) from the geometric shapes, may be higher

 than 1-D. (For more discussion of projections of geometric shapes see Furas and Buja

 [1994].) Conclusions may be drawn if all possible projections are seen. Watching the
 data in a grand tour for an extended period of time is an approximation to all possible
 projections, and provides empirical information about each arm in the data. Each of the

 arms appears close to 0- or 1-D in most views shown by the grand tour suggesting to
 us that the relationship between the points in each arm is 1-D. The points in the triangle

 on the other hand always appear as approximately a triangle, a line, or a point. There
 are never more than three obvious vertices visible, which excludes higher dimensional
 shapes from consideration. So we conclude that these points do indeed lie close to a 2-D
 triangle in 1R7.

 From a physicist's perspective, the next step is to relate the structure back to the

 original variables. As an example of the interpretation we concentrate just on the points

 in the base triangle, but note that points in the other regions can be examined in a similar

 manner. The points in the triangle are highlighted and examined in comparison to all the

 points in the univariate projections along the coordinate axes (Fig. 7). The triangle only

 has breadth in variables X3 and X5-that is, the squared invariant mass for a proton
 and a negative 7r-meson (2 (p, 7r-)), and the proton and a positive r-meson (/2(p, 7T+)),
 respectively. The interpretation is that these observations represent interactions between
 the particles p, 7r-, 7r+

 3.2 VIEWING FUNCTIONS

 In this section we convey our experience using the projection pursuit guided tour for

 gaining intuition about functions defined on projections of p-space. An immediate use is

 in the comparison of different projection pursuit indexes. The second example that we
 show is an illustration of asymptotic results for 2-D projections, given in Diaconis and
 Freedman (1984).
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 Figure 8. Illustration of Diaconis and Freedman's (1984) Result.
 vertex of a 3-D (a), 5-D (b), and 9-D (c) cube.

 Data generated by placing a point on each

 3.2.1 Comparing Projection Pursuit Indexes

 With the first implementation of projection pursuit into the dynamic framework of

 the grand tour we included simply the Legendre (Friedman 1987) and Hermite (Hall
 1989) indexes. Hall's original motivation for proposing the Hermite index was based on

 an asymptotic argument that the Legendre index was shown to be overly susceptible to
 outliers. We did not observe this in practice, but rather we noticed that the Hermite index

 has a tendency to uncover projections of the data that have a "hole" in the center, which

 is quite a useful feature. The Legendre index also does this but to a lesser extent and
 seems more attracted to skewness. Differences such as these can be detected quickly by

 eye and used to direct further analytical work (Cook et al. 1993a).
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 Figure 9. Projection Pursuit Guided Tour With Natural Hermite Index, Order 0, on a Sample From the Multi-
 variate Cauchy Distribution. 8 points from 3-D (a), 32 points from 5-D (b), and 512 points from 9-D (c).

 3.2.2 Illustrative Intuition of Fundamental Concepts

 In analyzing multivariate data fundamental to the use of projections are theories as to

 the nature of projections from high dimensions down to low dimensions. For projection

 pursuit one fundamental underpinning is that for many high-dimensional data sets most

 low-dimensional projections look approximately Gaussian (*). So to find the revealing,
 unusual projections one should search for the least Gaussian-looking projections. This
 is the premise on which many projection pursuit indexes have been based (see Sec. 1).
 We argue that this should not be the only premise on which indexes should be based
 and follow with an example (Fig. 9) to illustrate this. Nevertheless the premise is a good
 starting point and worth illustrating graphically as well as numerically.

 Diaconis and Freedman (1984) formalized the basis on which the premise (*) is
 reasonable. We show an example that illustrates (*) on a sequence of data that conforms

 W
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 to Diaconis and Freedman's constraints. A multivariate data set is constructed by placing

 a point on each vertex of a cube. Three such data sets are created: one 3-D, one 5-D, and

 one 9-D (n grows at the rate 2P). Each data set is viewed in a tour: a segment displaying
 the sequence of index values is shown in Figure 8 (3-D cube (a); 5-D cube (b); 9-D cube

 (c)). The plotted index is the natural Hermite (0) index which is theoretically minimized

 by a Gaussian density. When the dimension is 3 almost every projection (a sample of
 these is shown in the bitmaps below the index plot) is revealing, but when the dimension

 is 9 almost every projection is not revealing in the sense of being close to Gaussian;
 the index plot is much flatter and close to the minimum value that would be obtained

 for a similar sample from a Gaussian distribution. As an aside it is interesting to note
 that visually the data set is clearly not Gaussian because it is far too regular, the points

 always lie in gridded, angular patterns. Nevertheless the most revealing projections are

 the ones that expose the method of construction which, in this case, are the projections

 along the marginal axes showing points on the vertices of a square (= 2-D cube). And

 projection pursuit using an index minimized by a Gaussian density serves the purpose
 of finding these revealing projections, among an increasing proportion of near-Gaussian
 views as p increases.

 An example where one of Diaconis and Freedman's (1984) restrictions (the vectors'

 length being proportional to p) is violated can be found by taking samples from a mul-

 tivariate Cauchy distribution. Figure 9 shows segments of a tour displaying the natural

 Hermite (0) index on a sample of size 8 from a 3-D Cauchy, 32 from a 5-D Cauchy,
 and 512 from a 9-D Cauchy. In this case there is no flattening out of the index function

 as p increases. Projection pursuit with an index sensitive to nonnormality does not assist

 in determining the nature of this multivariate data set.

 4. DISCUSSION

 In this article we have introduced exploring high-dimensional data using the pro-
 jection pursuit guided tour. The work is motivated by the desire to understand high-
 dimensional relationships in data and builds on graphical methods that have been devel-
 oped in recent years. We have used XGobi as a development platform for the new tools.

 Although developing code in C is more cumbersome than using S (Becker, Chambers,

 and Wilks 1988) or LispStat (Tierney 1991), for example, the computational efficiency

 allows more flexibility for implementing computationally intensive methods such as those

 that we have examined. In Section 3, we have liberally used many of the other tools
 available in XGobi, thus illustrating the symbiotic nature of these tools for exploring
 data.

 The implementation in XGobi uses exclusively 2-D projection pursuit indexes. These
 are desirable for finding fully 2-D relationships, for example a 2-D spiral amid noise di-

 rections. Extensions to 1-D and 3-D indexes and grand tours would prove useful for
 finding structures of these dimensions. We have restricted ourselves to smooth, differ-

 entiable projection pursuit indexes, but many others exist that are not smooth although
 they seem useful. For example, the fractal index (Cabrera and Cook 1992) shows partic-
 ular promise in detecting structure lying on low-dimensional, nonlinear manifolds. The
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 simple-minded use of derivative-based optimization precludes the inclusion of such an in-
 teresting index, because derivatives of the fractal index are not available. Some excellent

 work to improve this situation has been done by Posse (1993) who proposed an efficient
 optimization algorithm for 2-D projection pursuit indexes, based on the algorithm for
 1-D indexes given by Huber (1990), which does not require derivatives. In his article is
 also a very promising index based on the chi-squared distance of the observed bivariate

 data density and the expected bivariate normal density. This index requires derivative-

 free optimization also. Each of these considerations would greatly enhance the current
 implementation.
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