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Abstract
Recent years have witnessed an enormous growth of interest in dynamic systems that are
characterised by a mixture of both continuous and discrete dynamics, commonly referred to
as hybrid or switching systems. Nevertheless, there is a notable lack of suitable benchmark
problems on which to assess and compare competing analysis and design methods. The
present paper provides a collection of detailed benchmark design and analysis tasks which,
while somewhat simplified in nature, reflect the scale and complexity of the tasks
encountered in at least one important application domain, namely wind turbine regulation.
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1. INTRODUCTION
Recent years have witnessed an enormous growth of
interest in dynamic systems that are characterised by a
mixture of both continuous and discrete dynamics,
commonly referred to as hybrid or switching systems.
Switched systems arise in a great variety of control
applications. Their use to ensure the satisfaction of
input and/or output constraints is widespread.
Similarly, switched solutions are often used to satisfy
changing performance objectives, for example in
process. Although gain-scheduled controllers may
employ some form of interpolation of the control law
between design operating points, simple switching is
also used (e.g. Leith & Leithead 1996). Switched
linear controllers have been proposed as the basis for a
variety of adaptive control schemes (e.g. Narendra &
Balikrishnan 1994). The potential for improved
performance through controller switching is well
known. Complementing the design literature, much
recent work has focussed on the stability analysis task
(see, for example, the review of Liberzon & Morse
1999). Classically, the stability of switched systems is
guaranteed for arbitrary switching sequences provided
the component systems possess a common Lyapunov
function. This property underlies not only the Circle

criterion applied to state-space systems but also
quadratic stability results (e.g. Narendra &
Balikrishnan 1994, Shorten & Narendra 1999) and
piece-wise quadratic results (e.g. Johansson & Rantzer
1998). Stability may also be assured by imposing
suitable conditions on the allowable switching
sequences. For example, dwell-time ideas and
hysteresis switching.. Other types of constraint on the
allowable switching sequences are studied by, for
example, Branicky 1998. The stability of switched
linear systems may also be investigated by examining
the local or global topology of trajectories in state-
space.

Nevertheless, despite this substantial body of work,
there is a notable lack of suitable benchmark problems
on which to assess and compare competing analysis
and design methods. This situation is exacerbated by
the fact that existing analysis methods generally lead,
of course, only to sufficiency conditions for stability.
An issue of key importance therefore is to determine
the nature of the conservativeness incurred and thereby
the applications for which a particular method is best
suited. However, few results are available in this
regard. Related to this issue, many of the examples
used in the literature to illustrate analysis methods
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involve simplified, very low-order systems which do
not necessarily reflect the scale and complexity of
system which may be encountered in practice. A
similar situation exists in the design literature, where
the application of soundly-based methods is often
confined to very simplified examples and, while many
real applications of switched controllers do indeed
exist, these are often designed in an ad hoc manner.
While the present paper cannot hope to address these
issues in itself, the aim here is to provide a collection of
detailed benchmark design and analysis tasks which,
while still subject to considerable simplification, more
accurately reflect the scale and complexity of the tasks
encountered in at least one important application
domain, namely wind turbine regulation.

The paper is organised as follows. In section 2, a
model of the wind turbine dynamics at a level of detail
suitable for control analysis and design purposes is
described. The performance specification and
operating constraints are presented in section 3 and a
base-line control design not unlike the type employed
within the wind turbine industry is designed and
assessed in section 4. In addition to this design task, a
number of analysis challenges highlighted by the
benchmark example are described in section 5. These
challenges highlight a number of aspects, which are of
generic interest, of the conservativeness present in
standard stability analysis tools.

2. VARIABLE SPEED PITCH-REGULATED WIND
TURBINE DYNAMICS

A large-scale 1MW three-bladed grid-connected
variable-speed pitch-regulated wind turbine is
considered. A block diagram representation of this
system is depicted in Error! Reference source not
found. and the characteristics of the turbine component
sub-systems are detailed below (see Leithead & Connor
2000a for detailed, generic derivation and validation of
the dynamics).

2.1 Power Train
The combined dynamics of the drive-train and
generator are essentially linear and, together, are
modelled by
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where TLS is the torque on the low speed shaft, ΩLS is
the speed of the low-speed shaft, ΩHS is the speed of
the high-speed shaft, ΩLD is the generator speed, Trtr is
the torque generated by the rotor, TLD is the generator
reaction torque (set via power electronics). The
parameter values are N=58; I1=1.0295×106; I2=42.82;
K1=1.0106×108; K2=4.85×106; γ1=1.5176×104;

γ2=4.5112; γ′= 2.6538×105, $ /K K
K
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should be noted that the value of γ1 embodies the linear
component of the damping introduced by aerodynamic
effects). The generator speed transfer function
associated with the linear dynamics (1) is
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2.2 Pitch Actuator
The pitch actuator position is physically constrained to
be greater than or equal to zero degrees. By suitably
augmenting the plant (see Appendix), the actuator
dynamics may be neglected for analysis purposes. For
completeness, however, it is noted that these are
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2.3 Aerodynamics
By suitably augmenting the plant, the aerodynamic
torque, Trtr, generated by the rotor may be
approximately modelled as

Trtr= KVV2 - Kp ∆(p, ΩLS) p (6)
where is the effective blade pitch angle, ΩLS the rotor
speed, V the effective wind speed, ∆(p, ΩLS) is an
unknown gain (embodying uncertainty as to the
aerodynamic characteristics) with nominal value of
unity, Kp=29500.0 and KV=3200.0.

2.4 Wind Disturbance
The effective wind speed over the rotor disk is
modelled, for mean wind speeds Vmean by the linear
stochastic equations
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where η is Gaussian white noise with zero mean and
unity variance, values for aw and bw (capturing the
increase in wind turbulence experienced with
increasing mean wind speed) are given in Table 1,

τ β τ τ τ β1 2 1 32= = =/ , , /a a and

β = =338 055. / , .V amean with Vmean a constant denoting
the mean effective wind speed (m/s).

Vmean (m/s) aw bw

8
10
16
22

0.060
0.062
0.092
0.125

0.74
0.77
1.37
1.63

Table 1 Filter parameters for wind disturbance model.

3. A BENCHMARK DESIGN TASK: CONTROL
REQUIREMENTS

The overall objective of the controller is to maximise
energy production while working within actuator
operational limits and minimising the peak loads, and
associated fatigue damage, on the turbine structure and
drive train. This is a disturbance rejection task.

3.1 Measured Variables
Measurements are available of (i) the instantaneous
power P (i.e. the product TLDΩLD) and (ii) the generator



speed ΩLD. The sensor dynamics can be assumed
negligible, as is measurement noise. Note that the
effective wind speed, V, cannot be measured.

3.2 Manipulated Variables
The controller is able to adjust (i) the blade pitch angle
and (ii) the generator reaction torque, TLD.

3.3 Physical Constraints
Controller activity is constrained by two main
operational factors. Firstly, the controller is required to
operate within the constraints of the available actuator.
In addition to the constraints that the blade angle is
non-negative, the machine considered here employs a
hydraulic pitch actuator for which the relevant measure
of actuator activity is the velocity of the blade pitch
angle. The standard deviation of the pitch angle
velocity (filtered by the actuator dynamics (4)) reflects
the actuator activity over the medium and long term
and is required to remain below the curve 0.4V-1.8
deg/s over the operating range of mean wind speeds up
to 24 m/s. Secondly, in order to avoid exciting
structural resonances and to remain within design
loadings, the turbine is not to be continuously operated
(i.e. in steady state) at rotor speeds above 2.72 rads/sec.
In addition to this continuous operating limit, the rotor
speed transients induced by wind turbulence must
remain strictly less than 3.4 rads/sec under the normal
range of operating conditions. The former limit is
denoted Ω LS

contmax and the latter Ω LS
max . The generator

reaction torque, TLD, must be positive (to avoid
"motoring") and the generator is not to be operated
continuously (i.e. in steady state) above a level, Prated,
of 1MW.

3.4 Robustness
The uncertainty in the plant dynamics is primarily
associated with the rotor aerodynamics. In addition to
the use of a relatively crude aerodynamic model for
control design purposes, the rotor aerodynamics
typically exhibit considerable variation during normal
operation (associated with, in particular, the
accumulation of environmental deposits on the blade
surfaces). The closed-loop system is therefore required
to remain stable for arbitrary time variations in the
uncertain gain ∆ in the interval [0.5,2].

3.5 Operational Requirement
The overall objective of the controller is to

maximise energy production while working within the
operational limits of the turbine and minimising the
peak loadings experienced. While the wind is highly
stochastic, initial insight into this requirement can be
gained by considering the situation when the wind is
steady and the turbine is in equilibrium. Three
operating modes can be identified.

1. Energy capture limited by available wind energy
2.Energy capture limited by rotor speed constraints
3.Energy capture limited by generator rating

Performance Assessment
Performance is measured as follows (the approach
adopted is semi-empirical in view of the complex,
stochastic nature of the wind disturbance; see Leithead
& Connor 2000b). Time histories of the controlled

system are collected for turbulent wind conditions with
mean wind speeds Vmean∈ {6,8,10,12,14,16,18,22,24}
m/s. The time histories are each of 600 seconds
duration (after discarding the initial 20 seconds to allow
the system to settle down) and are partitioned into 10
second intervals. The mean wind speed, mean power,
mean generator torque, peak power, maximum rotor
speed, minimum generator torque and standard
deviation of pitch actuator velocity are determined for
each interval. This interval data is sorted into 1 m/s
wide bins according to mean wind speed. Let Vi

denote the centre wind speed of the ith bin. The average
of the mean power data in the ith bin is a measure of
energy capture at wind speed Vi . Let σi denote the
standard deviation of the peak power data in the ith bin
and µi denote the average of the peak power data in the
ith bin. Then µi+3σi is a measure of the peak load
experienced by the wind turbine at wind speed Vi.
Energy capture is to be maximised and peak loads
minimised, subject to operating constraints. With
regard to the latter, similar calculations for the
maximum rotor speed data, minimum generator torque
data and pitch actuator velocity data provides an upper
bound on ΩLS (required to be less than Ω LS

max ), a lower
bound on TLD (required to be positive) and an upper
bound on pitch actuator velocity. A further,
deterministic, extreme gust is employed to confirm the
ability of the controller to maintain operation within the
allowed rotor speed limits. This gust is a pulse with an
initial wind speed of 22 m/s, falling to 12 m/s for 10
seconds and then returning to 22 m/s.

4.BASELINE DESIGN: CLASSICAL CONTROLLER
While the turbine dynamics themselves are essentially
linear, owing to the various operating constraints it is
evident that the performance requirement cannot be
met by a single linear controller. Reflecting the natural
decomposition of the turbine operation into different
regimes, a divide and conquer design approach similar
to that presently employed in a commercial context is
to design an individual controller for each mode of
operation and then integrate these to obtain a full
envelope controller.

4.1 Operating Mode 1
Under nominal steady state conditions, the maximum
power is generated when T K V NLD V= 2 2/ .

Unfortunately, as the effective wind speed V is
unmeasurable, direct regulation of TLD to meet this
equality is impossible. Instead, an indirect approach
must be used. In steady conditions generating
maximum power, the generator speed
is Ω LD VNK V N= +2

1
2
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provides additional roll-off to compensate for the
resonance in the turbine drive-train.

4.2 Operating Mode 2



The controller is configured to regulate rotor speed at a
constant value by adjusting the generator reaction
torque while maintaining the blade pitch angle at zero.
Using classical loop-shaping techniques, the controller
transfer function is designed to incorporate integral
action to ensure rejection of changes in mean wind
speed. The controller designed is

T C N C
N

N
LD LS

cont
LD LD LD= − +

+
1

1
2

2
2

Ω Ω Ωmax ( )
d i

γ γ
(10)

where C1 and CLD denote linear dynamics with transfer
functions
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Observe that, with the aim of simplifying the overall
design, the mode 2 controller (10) is obtained by
suitably augmenting the existing mode 1 controller, (8).
The gain margin is 9.67 dB, the phase margin is 56.51°
and the cross-over frequency is 1.30 rad/s.

4.3 Operating Mode 3
Neglecting, for the moment, the high frequency drive-
train resonance, the plant dynamics (1) may be
simplified to
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Evidently, the aerodynamic torque and generator torque
are matched in the sense that they enter the equation in
the same manner, albeit with a gain difference of N.
Hence, despite the physical structure of the system
being quite different in modes 2 and 3 (in mode 2
control action applied via the generator torque alone,
while in mode 3 the system is configured as MIMO
with control action applied via both the pitch angle and
generator torque), in terms of the plant dynamic
characteristics these modes are closely related.

In mode 3 the generator torque is held constant and
the blade pitch angle adjusted to regulate the rotor
speed at the continuous operating value Ω LS

contmax .

Using classical loop-shaping techniques, the controller
is designed as
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where C2 denotes linear dynamics with transfer
function
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Observe that, at least at low frequencies, the controller
transfer function is closely related to that employed in
mode 2, reflecting the similarity in plant dynamics in
modes 2 and 3 noted previously. The gain margin is
9.84 dB, the phase margin is 59.63° and the cross-over
frequency is 1.33 rad/s.

4.4 Full Envelope Controller
It remains to integrate the separate mode 1, 2 and 3
controllers to produce a full-envelope controller
implementation. Firstly, it is noted that the mode 2 and
3 controllers are designed to directly augment the mode
1 controller, thereby simplifying implementation.
Secondly, the mode 2 and 3 controllers possess similar
low frequency dynamics. The latter can be made
explicit by partitioning the mode 2 and 3 controller
transfer functions as

C1=CLDClow, C2=Clow (15)
where
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During mode 1 operation, the integrator in Clow can
"wind up" resulting in excessive transients following a
transition from mode 1 to mode 2 operation. Transients
may also be associated with the other low frequency
dynamics elements of Clow. Following Leith &
Leithead (1997), and similarly to a number of popular
anti-wind up approaches, this issue is addressed here by
partitioning Clow as Clow=CoCi where
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and enclosing the dynamics Ci within a minor feedback
loop during mode 1 operation. The partitioning into Co

and Ci is selected such that the bandwidth of the minor
loop is similar to that of the closed-loop system during
mode 2/3 operation. Switching from mode 2 to mode
3 operation is based on the generator reaction torque.
The resulting full envelope controller implementation is
shown in Figure 2. Observe that the switches within
the controller are formulated as continuous (but non-
differentiable) nonlinear functions of the switch input.
Hence, the admissible switching sequences are
immediately evident from the block diagram. The
constant Tref introduced in the block diagram is defined
by

Tref = Prated/N Ω LS
contmax (18)

That is, Tref is the generator torque at which rated
power is developed when operating at rated speed.
This is used within the controller in a straightforward
manner as a threshold on internal signals to determine
the required mode of operation.

Remark The following state-space realisations are
employed.
CLD: &x A x B , C xLD LD LD LD LD LD LDT= + =1 T (19)
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4.5 Performance
Performance plots for the baseline controller are
omitted owing to space considerations but are available
at www.hamilton.may.ie, together with a Simulink
model of the plant and controller Needless to say, the
controller fully meets the performance specification.

5. ANALYSIS CHALLENGES
The baseline controller design immediately creates a
number of analysis tasks. While analysis of the robust
stability and performance of the full-envelope closed-
loop system is required, the local pair-wise analysis of
the operating modes nominal stability presents a task of
sufficient difficulty for present purposes.

5.1 Stability of Mode 1/2 Operation
During operation encompassing modes 1 and 2, the
closed-loop dynamics (neglecting the additive wind



disturbance and the constant reference inputs to the
controller) are
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where Bp1 denotes the first column of Bp, Cp=[1 0 0] .

One standard approach to stability analysis of a
switched system of the form (21) is to search for a
common quadratic Lyapunov function (CQLF), xTPx.
That is, for a matrix P such that

P A P PA A P PA> + < + <0 0 01 1 2 2, ,T T (23)

The existence of such a matrix guarantees the
exponential stability of (21) for all switching sequences
(e.g. see Liberzon & Morse 1999, Shorten & Narendra
1998 and references therein). However, a direct search
for a matrix P satisfying the inequalities (23) performed
using the LMI toolbox in MATLAB fails to establish
the existence of a CQLF for the system (21). Indeed, it
can be confirmed without resort to LMI methods that
no CQLF exists for this system (details omitted here
due to space considerations). It is easy to confirm that
the Circle criterion also fails to establish the stability of
(21). It is noted that this is unsurprising since the
Circle criterion is closely related to CQLF methods but
is nevertheless included here for completeness.

While the forgoing analysis considers quadratic
Lyapunov functions, LMI based analysis may be
extended to encompass searching for the existence of a
class of piecewise-quadratic Lyapunov functions
(Johansson & Rantzer 1998). The state-space is
divided into two regions or cells, with mode 1 effective
in cell 1 (x6<0) and mode 2 effective in cell 2 (x6≥0).
To establish stability via piecewise methods, a
Lyapunov function of the form
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1)x(V
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(12)

is sought, where the matrices Pi are parameterised so as
to ensure that the function is continuous across the
boundaries between the cells. Namely, following
Johansson & Rantzer (1998) the matrices Pi are
parameterised as Pi=Fi

TTFi, i=1,2 where the matrix T is
to be determined and F1x=F2x on the shared cell
boundary. Note that these matrices are not uniquely
determined by the partition. This formulation relaxes
the requirement of a common quadratic Lyapunov
function in two ways. Firstly, we do not require a single
positive definite matrix P to simultaneously satisfy

0PAPA i

T

i <+ for each i. Secondly, when
implementing the search for such a function as a

system of LMIs, xAPPAx iii

T

i
T )( + is not required to

be negative for all non-zero x but only for those x in
the cell i where the dynamics are given by the system
matrix Ai. The problem of finding a PQLF for the
system can be formulated as a feasibility problem for a
system of LMIs (Johansson & Rantzer 1998). The
PWLTOOL package (Hedlund & Johansson, 1999) for
analysis of piecewise linear systems was used to test
for the existence of a PQLF. Unfortunately, PWLF

analysis also fails to establish the stability of the
system.

Less conservative results can be obtained using
harmonic balance techniques at the price of reduced
rigour. The describing function of a real, memoryless
switch is a real gain in the interval [0,1]. Harmonic
balance analysis indicates stability of the switched
system. This result is supported by extensive nonlinear
simulations.

In view of the foregoing results, the challenge is
evidently to derive stability analysis methods capable
of providing tight, yet soundly-based, results for the
type of system considered here. The lack of non-
conservative stability analysis methods is surely one of
the major outstanding issues in the control field today.
Of particular interest in the present example is the close
link between switching system methods and anti-
windup techniques which it exemplifies. The existence
of a relationship between anti-windup and bumpless
transfer methods is often noted at an intuitive level but
it is less often discussed in the context of the rigorous
stability analysis of switched systems. The key role of
the conditioning loop within the controller here in
avoiding prolonged transient excursions following
switching is readily verified by simulation testing (see
also the examples studied in Leith & Leithead (1997) in
the context of constant-speed wind turbines) yet despite
much work in the switched system and anti-windup
fields current techniques for the design of such loops
remain largely ad hoc in nature.

5.2 Stability of Mode 2/3 Operation
Assume, for the moment, that the filter CLD has
sufficiently fast dynamics that the switch within the
controller can be moved to the input of CLD. Under
these conditions, the switches in the pitch angle and
generator torque channels of the controller operate
synchronously. It follows that the closed-loop
dynamics (neglecting the additive wind disturbance and
the constant reference inputs to the controller) are then
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where Bp2 denotes the second column of Bp. As in
section 5.1, the stability of this system may be analysed
using CQLF techniques. A direct search performed
using the LMI toolbox in MATLAB, successfully
establishes the existence of a CQLF and thereby the
exponential stability of the system.

The validity of the foregoing synchronicity
assumption is, however, very debatable. Consider
therefore relaxing this assumption that the torque
switch may be moved to the input of the CLD dynamics.
The input to the torque channel switch is simply the
input to the pitch switch filtered by CLD. The CLD

dynamics are fast compared to the bandwidth of the
closed-loop system and thus, while the switches in the
pitch and torque channels are asynchronous, the
asynchronicity can only exist transiently. Nevertheless,
this change has a profound impact on the stability
analysis. For CQLF-type stability analysis, the closed-
loop system is now conventionally modelled as



switching between four possible system matrices rather
than two. The extra two matrices correspond to
transient situations whereby the pitch and torque
switches are either simultaneously active or
simultaneously inactive. Equivalently, the closed-loop
can be modelled as

& ( ) ,x Ax BK y y y Cx Dr= + = + (26)
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The stability of (26) can be assessed using direct CQLF
search techniques and also via related small gain
techniques such as the Circle criterion (e.g. see Khalil
1992). However, owing to the integral action within
the controller, the closed-loop system is not
exponentially stable for the case where both switches
are simultaneously inactive and the system is
effectively operating open-loop. While this situation
exists only as a transient condition in the actual system,
this information is not embodied in the representation
(26) used for stability analysis purposes. The lack of
information in (26) regarding this aspect of the
switching behaviour means that there exist switching
sequences in (26), which are not feasible in the actual
system. In particular, there exist switching sequences
for which (26) is not exponentially stable. Hence, no
method based on this representation can establish the
stability of the actual system. The challenge,
therefore, is to develop analysis techniques which, by
taking greater account of the admissible switching
sequences, are capable of establishing the stability of
the mode 2/3 regime of operation without the need for
unrealistic assumptions such as that of synchronicity
used above. It is noted that the manner in which the
system in Figure 2 is formulated, whereby the switches
are each SISO nonlinear functions of their input, is
strongly structured yet rather general, thus providing an
interesting class of systems for which the potential
exists for developing analysis methods which are of
wide application yet not unduly conservative.
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Figure 1 Block diagram representation of wind turbine
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denotes an element which only passes negative signals.


