Fast and Flexible Instruction Selection with
Constraints

Patrick Thier
Compilers and Languages
Technische Universitit Wien
Wien, Austria
€1028297@student.tuwien.ac.at

Abstract

Tree-parsing instruction selection as used in, e.g., lcc, uses
dynamic costs to gain flexibility and handle situations (such
as read-modify-write instructions) that do not fit into the
basic tree-parsing model. The disadvantage of dynamic costs
is that we can no longer turn the tree grammar into a tree au-
tomaton (as is done by burg) for fast instruction selection for
JIT compilers. In this paper we introduce constraints that say
whether a tree-grammar rule is applicable or not. While theo-
retically less powerful than dynamic costs, constraints cover
the practical uses of dynamic costs; more importantly, they
allow turning the tree grammar with constraints into a tree
automaton (with instruction-selection-time checks), result-
ing in faster instruction selection than with pure instruction-
selection-time dynamic programming. We integrate con-
straints in an instruction selector that matches DAGs with
tree rules. We evaluate this concept in lcc and the CACAO
JavaVM JIT compiler, and see instruction selector speedups
by a factor 1.33-1.89.

CCS Concepts -« Software and its engineering — Com-
pilers;

Keywords instruction selection, tree parsing

ACM Reference Format:

Patrick Thier, M. Anton Ertl, and Andreas Krall. 2018. Fast and Flex-
ible Instruction Selection with Constraints. In Proceedings of 27th In-
ternational Conference on Compiler Construction (CC’18). ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3178372.3179501

1 Introduction

Just-in-time (JIT) compilers need fast compilation techniques,
because their compilation time counts as run-time. However,
faster techniques usually produce slower code, so one has to
find a balance between these two conflicting goals.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.

CC’18, February 24-25, 2018, Vienna, Austria

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5644-2/18/02...$15.00
https://doi.org/10.1145/3178372.3179501

M. Anton Ertl
Compilers and Languages
Technische Universitit Wien
Wien, Austria
anton@mips.complang.tuwien.ac.at

93

Andreas Krall
Compilers and Languages
Technische Universitit Wien
Wien, Austria
andi@complang.tuwien.ac.at

As an example, the first stage of the CACAO JavaVM JIT
compiler spends about 2400 cycles per intermediate-repre-
sentation node in compilation [Krall 1998]. A third of that ef-
fort is spent in instruction selection. It uses macro expansion,
the fastest-compiling technique that generates the lowest
code quality: It simply generates a fixed piece of code for
each intermediate representation (IR) node, and is often com-
plemented by a simple peephole optimization that typically
works on the IR side of the instruction selector. Other JIT
compilers that employ macro expansion are PyPy [Bolz et al.
2009] and Graal [Duboscq et al. 2013].

For JIT compilers that compile only the hot parts of the
code, such as the Java HotSpot compiler, and the second
stage of CACAQO, the balance is not wholly on the side of
fast compilation, but compilation speed still counts. Bottom-
up tree-parsing automata as generated by burg [Proebsting
1995] offer a good compromise and are used in the Java
HotSpot compiler [Paleczny et al. 2001]. An advantage of this
technique is that it selects the least-cost set of instructions
that match the IR tree.

The use of automata for tree parsing limits us to use fixed
costs for the rules. Dynamic costs have been used in lcc/lburg
[Fraser and Hanson 1995] to generate faster (0%-7%) and
smaller (1%-14%) code (compared to disabling such rules).
However, dynamic costs cannot be used in tree-parsing au-
tomata, so up to now compiler writers had to choose between
compilation speed through tree parsing automata (used in
HotSpot) and code quality (used in lcc).

An example of using dynamic costs is to select read-modify-
write (RMW) instructions instead of a sequence of simpler
instructions: These instructions access the same address in
the read and write parts of the instruction, and that cannot
be expressed as a tree grammar rule (the instruction pattern
corresponds to a DAG). In lcc it is expressed using dynamic
costs: The rules for RMW instructions call C code for com-
puting the costs, and this C code produces the cost of the
RMW instruction if the addresses are the same, and produces
oo (so the rule does not match) if they are different.

In this paper, we present constraints, an alternative to dy-
namic costs that is compatible with an enhanced version of
fast tree-parsing automata (Section 3); it provides the same
code-quality advantages as dynamic costs in practice, but

https://doi.org/10.1145/3178372.3179501
https://doi.org/10.1145/3178372.3179501

CC’18, February 24-25, 2018, Vienna, Austria

Patrick Thier, M. Anton Ertl, and Andreas Krall

addr:reg =1 (0)

reg: Reg =2 (0)

reg: Load(addr) = 3 (1) //movq (addr), reg
reg: Plus(reg,reg) =4 (1) //addq reg, reg

stmt:Store(addr,reg)= 5 (1) //movq reg, (addr)
stmt:Store(addr,Plus(Load(addr),reg))
=6 (1) //addq reg, (addr)

Figure 1. A simple tree grammar

offers the compilation speed advantages of tree-parsing au-
tomata. This concept, its implementation and its evaluation
are our main contribution in this paper. We evaluate con-
straints empirically in lcc and in CACAO, a JIT compiler
(Section 4). Section 5 discusses related work. Section 2 pro-
vides background information on tree parsing and introduces
our running example.

2 Background
2.1 Instruction Selection by Tree Parsing

The machine description for tree-parsing instruction selec-
tion is a tree grammar. Figure 1 shows a simple tree grammar
in burg syntax [Fraser et al. 1992], a variant of our running ex-
ample. Following the conventions in the instruction selection
literature, we show nonterminals in lower case, operators
capitalized, and trees with the root at the top (i.e., if we view
intermediate representation trees as data flow graphs, the
data flows upwards).

Each rule consists of a production (e.g.: addr:reg), a rule
number (after the =), and a rule cost (in parentheses). In
comments you see possible generated AMD64 code in AT&T
syntax (destination operand rightmost); for rule 6 the rule can
match more cases than the instruction, and this difference is
the main topic of this paper, discussed in depth in Section 3.

The productions work similar to productions in string
grammars: A derivation step is made by replacing a non-
terminal occurring on the left-hand side of a rule with the
pattern on the right-hand side of the rule. For a complete
derivation, we begin with a start nonterminal, and perform
derivation steps until no nonterminal is left. Figure 2 shows
two ways to derive a tree from the start nonterminal stmt.
The cost of a derivation is the sum of the costs of the applied
rules.

For instruction selection the operators used in the tree
grammar are the operators of the intermediate representa-
tion, the rules are associated with code generation actions
(e.g., emitting the instructions shown in comments in Fig. 1),
and the cost of each rule reflects the cost of the code gener-
ated by the rule. The cost of a whole derivation represents
the cost of the code generated for the derived tree.

94

Figure 2. Two derivations of the same tree (the circles and
numbers indicate the rules used).

As the example shows, instruction selection grammars
are usually ambiguous. The problem in tree parsing for in-
struction selection is to find a minimum-cost derivation for
a given tree.

2.1.1 Normal-Form Tree Grammars

A tree grammar is in normal form, if it contains only rules
of the form n — n; (chain rules) or n — Op(ny, ..., n;) (base
rules), where the ns are nonterminals. A tree grammar can be
converted into normal form easily by introducing nontermi-
nals. Most rules in the example grammar (Fig. 1) are already
in normal form, except rule 6, which can be converted to
normal form by splitting it into three rules:

hlp1:Load(addr) =6a(0)
hlp2:Plus(hlpl,reg) =6b(0)
stmt:Store(addr,hlp2)=6c(1) //addq reg, (addr)

The advantage of normal form is that we don’t have to
think about rules that parse several nodes at once. Instead,
we know that any derivation of the node has to go through
a nonterminal at the node. In the rest of the paper, when
discussing tree parsing mechanics, we assume that tree gram-
mars have been converted to normal form.

2.2 Dynamic-Programming Tree Parsers

A relatively simple algorithm for optimal tree parsing is the
dynamic programming approach used by BEG [Emmelmann
et al. 1989], iburg [Fraser et al. 1993], and lburg [Fraser and
Hanson 1995]. It works in two passes:

Labeler: The first pass works bottom-up. For every node/
nonterminal combination, it determines the minimal
cost for deriving the subtree rooted at the node from
the nonterminal and it determines the rule used in the
first step of this derivation. Because the minimal cost
for all lower node/nonterminal combinations is already
known, this can be performed easily by checking all
rules applicable at the current node, and computing

Fast and Flexible Instruction Selection with Constraints

CC’18, February 24-25, 2018, Vienna, Austria

Store stmt:cost=1 rule=6

reg: cost=0 rule=2
addr:cost=0 rule=1

reg: cost=2 rule=4
Reg Plus addr:cost=2 rule=1

reg: cost=0 rule=2
addr:cost=0 rule=1

reg: cost=1 rule=3
addr:cost=1 rule=1 Load Reg
reg: cost=0 rule=2

Reg addr:cost=0 rule=1

Figure 3. The information computed by the labeler

which one is cheapest. Chain rules (nonterminal— non-
terminal) have to be checked repeatedly until there are
no changes. If there are several optimal rules, any of
them can be used. Figure 3 shows the information gen-
erated by this pass. At the end of this pass, we know
which rule is optimal for each node/nonterminal com-
bination, but we do not know yet which nonterminal
(and thus, which rule) to use for each node; that is the
job for the next pass.

Reducer: This pass performs a walk of the derivation
tree. It starts at the start nonterminal at the root node.
It looks up the rule recorded for this node/nonterminal
combination. The nonterminals in the pattern of this
rule determine the nodes and nonterminals where the
walk continues. For our example tree, the reducer pro-
duces the right derivation in Fig. 2, which is optimal.
At some time during the processing of a rule (typi-
cally after the subtrees have been processed), the code
generation action of the rule is executed.

The run-time of this algorithm grows with the number of
applicable rules per operator. This cost can become signifi-
cant in some applications, e.g., JIT compilers.

2.3 Tree-Parsing Automata

In labeling using a normal-form grammar, we look only at
the current node and the nonterminal costs of its immediate
children; in reducing, we look at the optimal rule of the cur-
rent node. So we can represent each node that has the same
operator, same relative nonterminal costs and same optimal
rules as a state. Then labeling becomes a simple table lookup
op X state* — state, where state* represents the immediate
children. This reduces the labeling cost significantly, espe-
cially for more complex tree grammars where one may have
to look at many rules at each node.

E.g., Fig. 5 shows the states for our running example (ig-
nore the thick arrow for now); e.g., state 13 represents the tree
pattern Plus(Load(addr)), and state 12 represents other
trees rooted in the Plus operators. We also see edges be-
tween the states that indicate the state transitions, with left
and right operands of binary operators (Plus, Store) having
their own set of edges. We show the edges pointing from

95

Store 15
10 Reg Plus 13
11 Load Reg 10

Reg 10

Figure 4. Information computed by the labeler when using
a tree automaton

the child nodes to the parents, because labeling processes
the tree in this direction, in analogy with the direction of
pointers for automata for string parsing.

As an example of labeling, if we see a Plus operator with
the left child node in state 11, and the right node in state 10,
the resulting state for the Plus node is 13: The left operand
of state 13 has an edge from state 11, the right one from
state 10.

Relative costs are shown as n + 8, where § is the state-
specific normalization offset. Relative costs are only useful
for comparing the costs of different nonterminals of the same
state. In particular, the costs for the nonterminal stmt are
not comparable between state 15 and 14. Rule 5 was already
determined to be suboptimal for state 15 before the costs
were normalized.

Tree parsing with automata uses the same pass structure
as dynamic programming, but the labeler works a little dif-
ferently:

Labeler: Again, it works bottom-up, but instead of com-
puting minimal costs and optimal rules for the nodes,
this pass just looks up the state for each node based
on the operator and the earlier determined states of
the child nodes. The resulting states after labeling our
example tree are shown in Fig. 4.

The reducer works as before, but now finds the rule for
the node/nonterminal combination indirectly through the
state instead of directly in the node.

This algorithm hinges on the lookup tables, and generating
them efficiently is quite complicated [Proebsting 1995], in
particular when combined with table-compression methods
[Fraser and Henry 1991]. Burg [Fraser et al. 1992] is such
an automaton-based tree-parser generator. There are also
formal treatments [Ferdinand et al. 1994; Pelegri-Llopart and
Graham 1988] of tree-parsing automata.

Tree-parsing automata are fast, even if there are many ap-
plicable rules: the labeler only performs a simple table lookup
per node, instead of having to work through all applicable
rules (repeatedly for the chain rules).

CC’18, February 24-25, 2018, Vienna, Austria

2.4 DAGs

Tree parsing can be extended to processing DAGs while still
using tree grammars [Ertl 1999]. In this extension, the same
node can be derived several times (effectively duplicating
the operation represented by the node), from different non-
terminals; once derivations through different ancestors meet
at the same node/nonterminal combination, this node du-
plication ends. In order for this to work, the intermediate
representation has to be designed such that this duplication
does not destroy correctness.

In the implementation, the labeler just has to process the
nodes in a topologically-sorted way (a generalization of the
bottom-up tree walk); the reducer marks each node/nonter-
minal combination it visits, and does not revisit subtrees that
it has visited already.

3 Constraints
3.1 Concept

A disadvantage of conventional tree-parsing automata is
that they are incompatible with dynamic costs (costs that
are computed at tree-parser run-time), a feature that is quite
popular in dynamic-programming systems such as BEG and
lIburg.

The typical use of dynamic costs is to determine whether
a rule is applicable, by giving that rule a fixed, small cost
if it is applicable, and an infinite' cost if it is not. E.g., 45
of 305 rules in 1cc-4.2/src/x861inux.md have dynamic
costs, and all of them are just applicability tests.

The situation is similar for the other tree grammars in
lcc-4.2: Alpha, like x86linux, contains only applicability tests.
The other grammars contain mostly applicability tests, but
the MIPS grammar contains two rules with dynamic costs
that are not applicability tests, and the SPARC grammar
contains one. These non-applicability dynamic costs decide
between two fixed costs; such a rule can be converted into
two rules with applicability tests (see below).

Constraints are the formalization of these applicability
tests: In a tree grammar with constraints, you can write
a fixed cost and a condition (the constraint) that can be
evaluated at instruction selection time.

The advantage of constraints is that they can be used in a
tree automaton, resulting in faster instruction selection than
dynamic programming with dynamic costs.

Coming back to our running example, the read-modify-
write (RMW) instruction we want to generate for rule 6
actually requires us to read from and write to the same ad-
dress. This requirement is not reflected in the grammar, and
it is actually incompatible with the basic tree-parsing model,
because the right-hand-side of a rule reflecting this require-
ment would be a DAG. This requirement can be reflected in

In practice: a cost that is so large that the rule will never be selected,
because there are cheaper alternatives.

96

Patrick Thier, M. Anton Ertl, and Andreas Krall

dynamic costs or in constraints. Adding these to rule 6 looks
like this:
/* dynamic cost (lburg syntax): x/
stmt:Store(addr,Plus(Load(addr),reg)) memop(a)
/* memop is a C function,

a is the root node of the rule */

/* Constraints: =*/
@Constraint { @saddr
stmt: Store(@saddr addr,
Plus(Load(@laddr addr),reg))
=6 (1) /* addq reg, (addr) =/

The constraint contains C code that references parts of
the constrained rule; this C code is evaluated at instruction
selection time to determine whether the rule is applicable. If
the constraint is not satisfied, the instruction selector covers
the same tree with rules 5, 4 and 3 instead of using rule 6.

An example involving a non-applicability rule is the fol-
lowing rule from lcc’s SPARC grammar:

spill: ADDRLP4 "%a" !imm(a)

Here the dynamic cost !imm(a) is either 0 or 1. This rule
can be converted using constraints as follows:

spill = ADDRLP4 = 8 (1) { %a }

@laddr }

@Constraint { imm(@a) }
spill = @ ADDRLP4 = 9 (0) { %a }

We don’t need to put a constraint on the rule with cost
1, because, being more expensive, it is only selected if the
constraint for the 0-cost rule fails.

It is hard to convert dynamic costs to constraints auto-
matically, because dynamic costs are implemented using
arbitrary C code.

Our current generator also has preliminary syntax for
expressing relations between constraints, e.g., that two con-
straints cannot hold for the same node (e.g., const==2 and
const==4). This reduces the number of generated states and
the generated code. To avoid overloading the paper, we do
not give a detailed description of this feature.

3.2 Implementation: Instruction Selection Time

Adding constraints affects only the labeler. Without con-
straints, in a tree automaton, the labeler looks up the state
of a node based on the operator of the node and the states of
the children; for a node with two children (a binary node):

node->state = burm_state(node->op,
node->left->state, node->right->state);

Each state represents, for each nonterminal, an optimal
rule for deriving the tree rooted at the node from the non-
terminal. With constraints, if some of these rules are con-
strained, the constraint code has to be evaluated; if one of
them fails, the state has to change to one where the con-
strained rule is not used: For every constrained rule, we

Fast and Flexible Instruction Selection with Constraints

CC’18, February 24-25, 2018, Vienna, Austria

l(node->left == node->right->left->left)

—

15:Store stmt: cost=0+3 rule=6¢

reg: cost=2+0 rule=4
13:Plus addricost=2+5 rule=1
S

hlp2:cost=0+6 rule=6b

reg: cost=1+9 rule=3

1 1 :Load addr:cost=1+06 rule=1

hlp1: cost=0+8 rule=6a

10:Reg

—a

14:Store stmt: cost=0+3 rule=5

reg: cost=0+3 rule=4
addr:cost=0+9 rule=1

reg: cost=0 rule=2
addr:cost=0 rule=1

Figure 5. Automaton for our running example

consider the grammar with this rule, and without this rule;
moreover, we don’t do this globally, but individually for ev-
ery tree automaton node we look at. With the rule, we get
one state (state 15 in Fig. 5), without we usually get a differ-
ent state (state 14 in Fig. 5). This has to be repeated for all
constraints guarding any of the rules in the state.

E.g., for our read-modify-write example, the generated
code looks like this:

state = burm_state(node->op,
node->left->state, node->right->state);
switch (state) {
case 15: /x state containing rule 6(c) */
if (!(node->left node->right->left->left))
state = 14; /* fallback state x/
break;

3

node->state =

state;

You can see the constraint code in the if condition, with
@saddr and @laddr replaced by actual references to the ref-
erenced nodes.

97

If there was another constraint applicable to state 15, we
would need to have another if checking that constraint
before the break. If there was a constraint applicable to state
14, we would have to insert a case 14: with a constraint
check, and there would need to be a jump to that case right
after the state = 14;.

3.3 Implementation: Instruction Selector
Generation

Generating an automaton for a grammar with constraints
is very similar to generating an automaton for a traditional
(unconstrained) grammar. If the resulting optimal rule for
each nonterminal in a state S contains a constrained rule,
the generator also has to compute the state S; without using
this constrained rule for the class of trees represented by S.
The constraint is added to S and associated with a link to S;.
The generated code checks if the state is S, and if so, runs
the constraint code, and if that fails, changes the state to S;
(see Section 3.2).

CC’18, February 24-25, 2018, Vienna, Austria

The same properties that cause termination for the con-
straint-less case also cause termination for the case with
constraints: Thanks to chain rules (rules with nonterminals
as right-hand-side) the maximum cost difference between
nonterminals, and therefore the maximum relative costs are
limited, limiting the number of possible states.’

Applying this to our running example, we first convert
the grammar into normal form. This is similar for our con-
strained rule 6 as for the unconstrained rule in Section 2.1.1,
but we have to decide what to do with the constraint when
splitting the rule. We put the constraint on rule 6c, because
the information needed by the constraint is available there.
It is sufficient to just put the constraint on rule 6c, because
suppressing any one of 6a, 6b, and 6¢ will also suppress the
use of the others:

hlp1:Load(addr) = 6a (0)
hlp2:Plus(hlpl,reg)= 6b (@)
@Constraint {@saddr @right->left->left}
stmt:Store(@saddr addr, @right hlp2)

= 6¢c (1) //addq reg, (addr)

Figure 5 shows the resulting automaton. In this case it is
almost the same automaton as for the same grammar with-
out constraint, except that we now have a constraint shown
as thick arrow that connects state 15 and 14. If the constraint
check fails at instruction selection time, the instruction se-
lector will use state 14 instead of 15.

At automaton construction time, we see that state 15 uses
the constrained rule 6¢. So we reconstruct the state, this time
without using rule 6c. The resulting fallback state happens
to be the previously existing state 14 (used for other patterns
involving store), but in general, can also be a new state. The
gray edge for the right operand of state 14 indicates that this
edge is used while constructing the fallback state, but it has
no other effect: at instruction selection time, a Store node
with state 13 as right child will get state 15 at first, and may
fall back to state 14 without looking at the children again.
Note that the fallback state is not necessarily one that exists
anyway.

In addition to operator, relative costs, and optimal rules,
we now have to take the constraints and the fallback states
into account when determining whether a newly generated
tree is in an existing class (i.e., state): If any of the fallback
states for the new tree does not match the corresponding
fallback state in the class, the constrained state also does not
match, even if the other criteria match; this gives us a direct
mapping from constrained states to fallback states.

E.g., if we add an unconstrained rule

%It is possible to write a tree grammar without sufficient chain rules where
tree automaton generation fails to terminate, but that does not happen in
realistic tree grammars [Proebsting 1995, Section 4]. In any case, constraints
do not make this situation worse, unless you put constraints on chain rules
that were unconstrained before, and we cannot think of a reason why one
would want to do that.

98

Patrick Thier, M. Anton Ertl, and Andreas Krall

stmt:Store(addr,plus(reg,plus(reg,reg)))=7(1)

this would introduce another state: 16. For some trees match-
ing rule 6, state 14 would be the fallback state, while for
others, state 16 would be the fallback state. This means that
we would need two states that use rule 6. One (say, state 15)
falls back to state 14, the other (say, state 17) to state 16.

4 Results

To evaluate our ideas, we implemented constraints in the
automaton-based tree-parser generator cdburg that can cover
DAGs using a tree grammar. We used it in two testbeds:

e We modified lcc to use cdburg and constraints instead
of Iburg and dynamic costs, and used it to compile
SPEC CPU2000° for x86, Alpha, MIPS, and SPARC
(focusing mostly on x86).

e We used cdburg for the second stage of CACAO JavaVM
JIT compiler that is under development. The immature
state of this project limited us to compiling only small
programs.

The evaluation was done on a laptop computer with an
Intel Core2 Duo P7550@2.26GHz CPU with 2GB of 1067 MHz
DDR3 memory. The operating system for the lcc evaluation is
Ubuntu 14.0.4 Kernel 4.4.0-31-generic 32 bit. For CACAO it is
Ubuntu 16.04.3 Kernel 4.10.0-33-generic 64 bit. Performance
counters of the CPU where used to get measurements of
instruction and cycle counts.

4.1 Grammars and Automata

Lcc uses lburg as instruction selector generator. Lburg sup-
ports dynamic costs and uses dynamic programming at in-
struction selection time. lcc contains instruction selection
grammars for x86, Alpha, MIPS and SPARC. All of these
grammars use dynamic costs, in nearly all cases used as
applicability tests.

While instruction selectors written with cdburg can deal
with DAGs, we did not use this feature for our lcc-based tests,
because lcc is not designed for it, and instead splits the IR
into trees before letting the tree parser at it*. We translated
the grammar for lburg semi-automatically into a grammar
for cdburg. We transformed the dynamic costs into equiva-
lent constraints. To test the equivalence of our translated and
transformed cdburg grammar with the original lburg gram-
mar, we used both for compiling our inputs and compared
the outputs: Both code generators produce identical code.
This also makes the numbers in the following performance
results directly comparable.

Table 1 shows statistics for our cdburg grammars. Cd-
burg currently does not employ all the state-reduction and

3While CPU2000 has been retired by SPEC, we chose it, because most of
its programs can still be compiled with lcc, and because the reasons for
retiring this suite are not relevant for the present work.

4The memop () check then performs closer inspection of the leaf nodes to
determine if they referred to the same node before splitting.

Fast and Flexible Instruction Selection with Constraints

CC’18, February 24-25, 2018, Vienna, Austria

Table 1. Grammar statistics for different architectures. Automaton size is the object size of the generated automaton on x86.

Grammar with constraints without constrained rules
normalized states with automaton normalized

grammar rules rules constraints states constraints bytes | rules rules states
lcc alpha 250 259 23 247 23 118962 227 236 223
lcc mips 183 191 24 179 24 73188 159 169 157
lcc sparc 221 230 31 216 32 85332 190 199 158
Icc x86linux 305 348 45 320 45 156 108 260 282 216
CACAO AMDeé64 54 61 12 119 12 63999 42 43 68

Table 2. Number of executed instructions and time [Megacycles] for labeling for SPEC CPU2000

instructions Mcycles
benchmark lIburg cdburg Cl(;;f . lburg cdburg Cgtfrg .
164.gzip 6869345 2370968 290 | 10.78 6.07 1.78
175.vpr 18870529 6412886 294 | 28.06 15.40 1.82
176.gcc 245928597 85641450 2.87 | 366.77 202.89 1.81
181.mcf 2028139 660 853 3.07 2.93 1.63 1.80
186.crafty 25836229 8693794 297 | 3848 20.90 1.84
197.parser 15018994 5165040 291 | 2341 13.06 1.79
253.perlbmk | 94988181 32840048 2.89 | 143.09 80.22 1.78
254.gap 109007 946 37 206 798 293 | 1546 85.49 1.81
255.vortex 72325219 25583903 2.83 | 118.31 66.50 1.78
256.bzip2 4525406 1526959 2.96 6.72 3.64 1.85
300.twolf 38579474 12806943 3.01 55.25 29.44 1.88
177.mesa 90924437 29643054 3.07 | 125.32 66.38 1.89
179.art 1744 257 581731 3.00 2.57 1.42 1.81
183.equake 2604930 882788 2.95 3.50 1.91 1.83
188.ammp 20903380 7128510 293 | 29.08 16.06 1.81

table-compression techniques that went into burg, but the
number of states and the table sizes are still small by today’s
standards.

The right three columns are statistics for the same gram-
mars, but with all constrained rules removed. This shows
that the number of states does not explode when using
constraints; the largest growth is a factor 1.75 for CACAO
AMD64.

4.2 Lcc Results

Table 2 lists the number of executed instructions and cycles
needed for labeling in the instruction selectors generated by
lIburg and cdburg for the lcc x86linux grammar. The number
of instructions is 2.87-3.07 times lower and the number of
executed cycles is 1.78-1.89 times lower for cdburg than for
Iburg.

The performance (cycle) advantage for cdburg is not as big
as one might expect when looking at executed instructions.
Both variants have a relatively low number of instructions
per cycle (IPC). To explain this, we looked at the usual sus-
pects, i.e., cache misses and branch mispredictions, but they

99

do not appear to be the main cause of the low IPC. A closer
look at the executed code did not reveal the cause, either.

A common metric for the speed of instruction selectors
in JITs is the number of instructions needed to generate one
machine instruction. Figure 6 and Fig. 7 show the number
of instructions and the number of cycles needed during la-
beling for generating one machine instruction. With cdburg
we need only 98 to 155 instructions; unfortunately, these
instructions take 235-369 cycles,’ but at least that’s 193-319
cycles less than with lburg.

4.3 CACAO Results

The main application of cdburg are JIT compilers due to
their requirements on instruction selector speed as well as
code quality. We evaluated cdburg with the second stage

>You may wonder that these numbers are lower than the 800 cycles per
generated instruction in the macro-expanding instruction selector of the
first stage of CACAO. The difference comes from only measuring labeling
here, while the 800 cycles include everything, including final assembly of
the instruction. Due to differences between lcc, first-stage CACAO, and
second-stage CACAO, presenting numbers on the total time would show the
differences between these later stages and obscure the difference between
the techniques compared here.

CC’18, February 24-25, 2018, Vienna, Austria

Patrick Thier, M. Anton Ertl, and Andreas Krall

500
450 |- 0o Iburg .] — - B
400 |-] cdburg - |
=
S 350 B I)
£ - _
£ 300) - - |
w
g 250 =
o
§ 200 - .
g 150
-§ 100 | l |
Q
(]
< 0 || || || || || || || || || || || || || ||
5]
a - % o & F QN > X 2
5 Fe¥ o & FHEFE TSI FS
g= SR A Q> &g D ¥ & TS N NS
S A I AR R S P N &Y &
= N N q(),?)' Vv S
w
=

Figure 6. Comparison of instructions executed per emitted target instruction during labeling for SPEC CPU2000

700

650 |-
600
550
500
450
400
350
300
250
200
150
100
50
0

00 Iburg
i cdburg

cycles / emitted instruction

Figure 7. Comparison of labeling time [cycles] per emitted target instruction for SPEC CPU2000

of the CACAO JIT compiler [Steiner et al. 2007]. This JIT
compiler targets AMD64 and its normal instruction selector
uses dynamic programming at instruction selection time
(dp); we compare that with our new cdburg-based instruction

selector (automaton). Both work on inputs that can be DAGs.

Unfortunately, other parts of the second stage are not
stable enough to run sizable benchmark suites like SpecJVM
or DaCapo, so the evaluation was done with a set of small
benchmarks (Table 3). These benchmarks have 7-138 lines
of code, 14-466 IR nodes.

100

Table 4 lists the number of executed instructions and con-
sumed cycles for labeling in either dynamic programming
(dp) or an automaton when compiling the CACAO bench-
marks. The number of instructions is about 2.2 times and
the number of cycles is about 1.5 times higher for dp than
for the automaton. This is less than the factor of three of lcc,
because the grammar is not as complex as the one used in
lcc, resulting in a lower cost of using dynamic programming,
while the speed of an automaton is mostly unaffected by the
number of grammar rules.

Fast and Flexible Instruction Selection with Constraints

CC’18, February 24-25, 2018, Vienna, Austria

Table 3. Explanation of the CACAO benchmarks

benchmark loc #of IRnodes algorithm / purpose

Fact 7 14 calculate factorial

Permut 21 63 calculate all permutations of array

Sqrt 13 26 calculate square root approximation

PiSpigot 17 53 calculate & using spigot algorithm

BoyerMoore 39 110 string searching using boyer moore algorithm

MatAdd 18 77 matrix addition

MatMult 23 85 matrix multiplication

MatcherArch 138 466 suite targeted at architecture specific tests like addressing modes

Table 4. Number of executed instructions and time (cycles) for labeling in the CACAO benchmarks

instructions cycles

benchmark dp automaton am(‘dﬁ dp automaton mlmdﬁ

Fact 6839 3533 1.93 12507 8729 1.43

Permut 24897 10363 240 | 47494 30162 1.57

Sqrt 9472 4769 1.99 | 17234 11623 1.48

PiSpigot 22625 13670 1.66 | 33236 25051 1.33

BoyerMoore 42124 19308 218 | 79771 53250 1.50

MatAdd 24478 10 848 2.26 | 45120 30451 1.48

MatMult 28065 12470 2.25 | 51531 33950 1.52

MatcherArch | 185623 82201 2.26 | 345332 224878 1.54
s:: |
S 500 ‘]
Es] - i (o dp
2 0 dp g 800 - Idautomaton | |
2 400 | Ivautomaton | 5 —
ge] £ 600 .
8 k7]
£ 300 s g
5 T 400
5 200| i £
= ()
5 S 200 .
L 100 , i‘w)
() [$)
g > oML
S 0= S E— X N X RN S
k3t & S & .S RS D &
2 & S & S S & TE&T TS S
= < & S S S\ 3> S 3 SR > ©
g QY K D K & A & » &
= QN QJ'Q @ @ aQ %0 QD

< & ¥

Figure 8. Comparison of instructions executed per emitted
target instruction during labeling in CACAO

Figure & show the number of instructions and Fig. 9 shows
the number of cycles needed for the labeler when selecting
one machine instruction. 102-278 instructions and 278-623
cycles are needed, 142-270 cycles less than with dp. The vari-
ation is higher than for lcc because the benchmark programs
are much smaller.

101

Figure 9. Comparison of labeling time [cycles] per emitted
target instruction of CACAO

4.4 Code Quality

To get an idea of the code quality advantage that constraints
(or dynamic costs) provide, we also prepared a version of
lcc x86linux where all constrained rules are disabled and
compared the code generated for some® SPEC CINT2000

®The code that lcc generates for 186.crafty and 253.perlbmk does not work
(not even with the original lcc).

CC’18, February 24-25, 2018, Vienna, Austria

Table 5. Execution time ratio and code size improvement
factor from using constraints over using fixed costs

benchmark | run time code size
164.gzip 1.06 1.01
175.vpr 1.02 1.11
176.gcc 1.07 1.14
181.mcf 1.00 1.04
197.parser 1.02 1.02
254.gap 1.05 1.06
255.vortex 1.01 1.02
256.bzip2 1.02 1.05
300.twolf 1.00 1.11
average 1.03 1.07

benchmarks with that generated by the version with con-
straints. In this experiment, having the constrained rules
results in a 0%-7% speedup and in a 1%-14% code size reduc-
tion (see Table 5).

Of course, a compiler writer who designs for using fixed
costs will mitigate this disadvantage by trying to get some of
the benefit that we get with constraints in some other way;,
but that has its own cost in compile time and in development
effort.

5 Related Work

Conditions have been used in the code generator BEG [Em-
melmann et al. 1989]. These conditions are similar to our
constraints. But in BEG the tree parser is based on dynamic
programming instead of an automaton, and the conditions
are evaluated similarly to the dynamic costs in Iburg.

Ertl et al. [2006] outline an approach to deal with dynamic
costs in their on-demand automata, but did not evaluate that
part of their ideas. The fast path of their labeler requires
computing all the dynamic costs and a hash table lookup per
node, and has to cater for the case that the state is not yet in
their automaton. Overall, their approach is probably slower
than our automata with constraints, where we can use direct
lookups and a complete automaton. Moreover, they cannot
always use the fast path, because the on-demand automaton
is built at run-time.

Blindell [2016] gives a grand overview of instruction se-
lection literature, from historic roots to the state of the art,
including the large body of literature on macro-expansion
based instruction selection, on tree-parsing instruction se-
lection and its extensions to DAGs and graphs, and also
instruction patterns beyond trees.

Because simple macro-expansion based instruction se-
lection is very fast, it is often used in modern just-in-time
compilers like PyPy [Bolz et al. 2009] and Graal [Duboscq
et al. 2013]. Macro expansion can be combined with peep-
hole optimization. A very elaborate (and slow) variant of
this technique [Davidson and Fraser 1984] is used in GCC.

102

Patrick Thier, M. Anton Ertl, and Andreas Krall

LLVM [Lattner and Adve 2004] uses a greedy DAG parsing
instruction selector with a lot of hand-written optimizations.
The GCC and LLVM back ends are both too slow for serious
just-in-time compilation. It has even been suggested to use
a parallel task farm to execute compilation tasks for a single
threaded application program [Bohm et al. 2011].

In this paper we focus on automaton-based tree parsing
[Proebsting 1995], because it offers a good (for JIT compilers)
compromise between code quality and instruction selection
speed. We lift one of the limitations of this method with
the introduction of constraints, resulting (in practice) in
improved code quality without incurring the cost of dynamic
programming at instruction selection time as used in lburg
[Fraser and Hanson 1995].

The other end of the spectrum is expensive near-optimal
algorithms for covering the graph of a whole function with
graphs representing multi output instructions [Ebner et al.
2008]. These approaches solve the RMW instruction prob-
lem directly, and therefore don’t need dynamic costs or con-
straints for this purpose, but are too slow for JIT compilers.

Our tool cdburg not only deals with constraints, but also
can be used to perform instruction selection on DAGs [Ertl
1999], which is NP-complete in general [Koes and Goldstein
2008]. However, in this paper we focus on the innovative
part of our tool: constraints.

6 Conclusion

Constraints are a replacement for dynamic costs in tree-
parsing instruction selectors. Constraints provide the same
code quality advantages as dynamic costs (0%—-7% in exe-
cution speed and 1%-14% in code size), but can be used in
combination with automata-based tree parsers for lower
compile times: In our experiments the automaton labeler
is faster then the dynamic programming labeler by a fac-
tor 1.33-1.89, saving 142-319 cycles per emitted instruction.
This makes this kind of instruction selector a good choice
for JIT compilers.

Acknowledgments

Sebastian Buchwald and the anonymous reviewers provided
valuable feedback that helped improve this paper.

References

G.H. Blindell. 2016. Instruction Selection: Principles, Methods, and Applications.
Springer International Publishing.

Igor Bohm, Tobias J.K. Edler von Koch, Stephen C. Kyle, Bjorn Franke, and
Nigel Topham. 2011. Generalized Just-in-time Trace Compilation Using
a Parallel Task Farm in a Dynamic Binary Translator. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’11). ACM, 74-85.

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijatkowski, and Armin Rigo.
2009. Tracing the meta-level: PyPy’s tracing JIT compiler. In Proceedings
of the 4th workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems. ACM, 18-25.

Fast and Flexible Instruction Selection with Constraints

Jack W. Davidson and Christopher W. Fraser. 1984. Code Selection Through
Object Code Optimization. ACM Trans. Program. Lang. Syst. 6, 4 (Oct.
1984), 505-526.

Gilles Duboscq, Thomas Wiirthinger, Lukas Stadler, Christian Wimmer,
Doug Simon, and Hanspeter Méssenbock. 2013. An Intermediate Rep-
resentation for Speculative Optimizations in a Dynamic Compiler. In
Proceedings of the 7th ACM Workshop on Virtual Machines and Intermedi-
ate Languages (VMIL ’13). ACM, 1-10.

Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall, Peter
Wiedermann, and Albrecht Kadlec. 2008. Generalized Instruction Selec-
tion Using SSA-graphs. In Proceedings of the 2008 ACM SIGPLAN-SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES 08). ACM, 31-40.

H. Emmelmann, F.-W. Schréer, and Rudolf Landwehr. 1989. BEG: A Gener-
ator for Efficient Back Ends. In Proceedings of the ACM SIGPLAN 1989
Conference on Programming Language Design and Implementation (PLDI
’89). ACM, 227-237.

M. Anton Ertl. 1999. Optimal Code Selection in DAGs. In Proceedings of the
26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL °99). ACM, 242-249.

M. Anton Ertl, Kevin Casey, and David Gregg. 2006. Fast and Flexible
Instruction Selection with On-Demand Tree-Parsing Automata. In SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI *06). 52—60.

Christian Ferdinand, Helmut Seidl, and Reinhard Wilhelm. 1994. Tree
automata for code selection. Acta Informatica 31, 8 (01 Aug 1994), 741-
760.

Christopher W. Fraser and David R. Hanson. 1995. A Retargetable C Compiler:
Design and Implementation. Addison-Wesley Longman Publishing Co.,
Inc.

Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. 1993.
Engineering a simple, efficient code generator generator. ACM Letters
on Programming Languages and Systems (1993).

103

CC’18, February 24-25, 2018, Vienna, Austria

Christopher W. Fraser and Robert R. Henry. 1991. Hard-Coding Bottom-Up
Code Generation Tables to Save Time and Space. 21, 1 (Jan. 1991), 1-12.

Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. 1992.
BURG: Fast Optimal Instruction Selection and Tree Parsing. SIGPLAN
Not. 27, 4 (April 1992), 68-76.

David Ryan Koes and Seth Copen Goldstein. 2008. Near-optimal Instruction
Selection on DAGs. In Proceedings of the 6th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO "08). ACM,
45-54.

Andreas Krall. 1998. Efficient JavaVM just-in-time compilation. In Proceed-
ings of the 1998 International Conference on Parallel Architectures and
Compilation Techniques. 205-212.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of the
International Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization (CGO °04). IEEE Computer Society,
75-.

Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java
Hotspot(tm) Server Compiler. In Proceedings of the 2001 Symposium on
Java(tm) Virtual Machine Research and Technology Symposium - Volume
1 (JVM’01). USENIX Association, 1-12.

E. Pelegri-Llopart and S. L. Graham. 1988. Optimal Code Generation for
Expression Trees: An Application BURS Theory. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL °88). ACM, 294-308.

Todd A. Proebsting. 1995. BURS Automata Generation. ACM Transactions
on Programming Languages and Systems (TOPLAS) 17, 3 (May 1995),
461-486.

Edwin Steiner, Andreas Krall, and Christian Thalinger. 2007. Adaptive
Inlining and On-stack Replacement in the CACAO Virtual Machine. In

Proceedings of the 5th International Symposium on Principles and Practice
of Programming in Java (PPPJ 07). ACM, 221-226.

	Abstract
	1 Introduction
	2 Background
	2.1 Instruction Selection by Tree Parsing
	2.2 Dynamic-Programming Tree Parsers
	2.3 Tree-Parsing Automata
	2.4 DAGs

	3 Constraints
	3.1 Concept
	3.2 Implementation: Instruction Selection Time
	3.3 Implementation: Instruction Selector Generation

	4 Results
	4.1 Grammars and Automata
	4.2 Lcc Results
	4.3 CACAO Results
	4.4 Code Quality

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

