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Abstract

The field of algorithmic self-assembly is concerned with the computational and expressive
power of nanoscale self-assembling molecular systems. In the well-studied cooperative, or
temperature 2, abstract tile assembly model it is known that there is a tile set to simulate
any Turing machine and an intrinsically universal tile set that simulates the shapes and
dynamics of any instance of the model, up to spatial rescaling. It has been an open question
as to whether the seemingly simpler noncooperative, or temperature 1, model is capable of
such behaviour. Here we show that this is not the case, by showing that there is no tile set
in the noncooperative model that is intrinsically universal, nor one capable of time-bounded
Turing machine simulation within a bounded region of the plane.

Although the noncooperative model intuitively seems to lack the complexity and power
of the cooperative model it has been exceedingly hard to prove this. One reason is that there
have been few tools to analyse the structure of complicated paths in the plane. This paper
provides a number of such tools. A second reason is that almost every obvious and small
generalisation to the model (e.g. allowing error, 3D, non-square tiles, signals/wires on tiles,
tiles that repel each other, parallel synchronous growth) endows it with great computational,
and sometimes simulation, power. Our main results show that all of these generalisations
provably increase computational and/or simulation power. Our results hold for both deter-
ministic and nondeterministic noncooperative systems. Our first main result stands in stark
contrast with the fact that for both the cooperative tile assembly model, and for 3D nonco-
operative tile assembly, there are respective intrinsically universal tilesets. Our second main
result gives a new technique (reduction to simulation) for proving negative results about
computation in tile assembly.
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1 Introduction

The design and laboratory fabrication of nanoscale molecular systems that implement sophis-
ticated computation is a goal held by many. If we are to have such an engineering discipline
that exploits the idea that molecules can compute, then we need a firm foundation of the kind
of computational theory that is relevant to such systems. The field of algorithmic tile assem-
bly provides one such theoretical framework targetted specifically at molecular self-assembling
systems. One of most well-studied models of computation for molecular self-assembly systems
is the abstract tile assembly model, put forward by Winfree [26]. The model describes crystal-
like growth process where, starting from a small connected arrangement of square tiles, called
a seed assembly, a growth process takes place where other unit-size square tiles stick to the
ever-larger growing assembly. Local rules specify which tiles can stick at each location along the
boundary of the assembly. Growth happens asynchronously and in parallel; the model is a kind
of asynchronous nondeterministic cellular automaton. Winfree [26] showed that the model can
simulate Turing machines, Winfree and Rothemund showed that it can efficiently self-assemble
squares [23,24], and Winfree and Soloveichik [25] used bounded-space simulation of time-/space-
bounded Turing machines to exhibit for each finite connected shape a Kolmogorov-efficient tile
set that assembles a scaled version of that shape. Recently, it has been shown that there is even
a single intrinsically universal tile set set that faithfully simulates the geometry (shapes) and
dynamics of any instance of the model, up to rescaling [8].

These results were all shown for the so-called cooperative (or temperature 2) model, where
tiles bind to the growing assembly if they, or at least some of them, bind on two or more sides.
This provides a kind of “context sensitivity” in the growth process. What happens if we allow
noncooperative (or temperature 1) growth where tiles bind if they match on at least one side?
Growth like this looks like growing and branching tips in 2D. Tendrils snake out from the seed,
possibly crashing into each other, and more often than not they seem to merely form simple
structures (cycles and/or repeated path segments), and certainly not the kind of structures
needed for computation. Putting proofs behind this intuition has been a challenge and the
literature has seen a number of unproven conjectures about the limitations of temperature 1. In
this paper, we settle two such questions.

Our first main result is on the topic of simulation in tile assembly. As noted, it has been
shown that there is an intrinsically universal tile set for the cooperative model; that is, a tile
set is capable of simulating any instance of the cooperative model [8]. More precisely, there
is a tile set U that given as input (encoded as a seed assembly) any instance T of the tile
assembly model, tiles from U self-assembly to simulate the geometry (shapes) and dynamics
of T perfectly, modulo a spatial rescaling. By spatial rescaling we mean that each unit-sized
square tile in T is simulated by an m × m square block of tiles over U . The result is a kind
of completeness result for the abstract tile assembly model: the tile set U is “hard” for all tile
assembly systems in the sense it is able to capture all possible production and dynamics of all
systems, and of course every instantiation of U is itself also a valid tile assembly system. Since
then, it has been shown [20] that the noncooperative tile assembly model can not simulate the
cooperative model but it was left open (Conjecture 1.4 [20]) whether the noncooperative model
can simulate itself. So although the noncooperative model is weak, perhaps it is just strong
enough for self-simulation? In other words, is there a noncooperative tile set that is “hard” for
the noncooperative model? We answer this conjecture showing that there is no such intrinsically
universal tile set for the noncooperative model.
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Our second main result is on computation in the noncooperative model. We show, that it
is impossible to simulate a time-bounded Turing machine in a bounded rectangular region of
the plane in the noncooperative model (see Theorem 1.2 for the formal statement). Indeed,
this result implies that the noncooperative model can not simulate Turing machines using any
method with a geometry remotely similar to any of the known ways to simulate Turing machines
in any known tile assembly model [3, 5, 6, 11, 14, 15, 21–27].1 It is important to note that the
negative result about simulation in ref [20] does not say anything about computation in the
model; in fact that particular negative result also holds in the 3D noncooperative model, despite
the fact that model can simulate Turing machines. It is also important to point out that
many generalisations (enumerated below) of the classical 2D noncooperative model can indeed
carry out “bounded” simulation of Turing machines; thus our result formally separates these
generalised noncooperative models from the classical 2D model.

New tools and future work on noncooperative tile assembly. Besides showing limita-
tions on noncooperative growth in terms of simulation and computation power, we contend that
this paper brings some new techniques to the table. Generally in tile assembly systems, in order
to carry out nontrivial computation for finite or infinite shape-building one often has the goal
of building structures that (a) are large but (b) not too large (e.g. neither hardcoding a small
shape nor filling the entire plane could be reasonably regarded as interesting computation—the
interesting algorithmic stuff lies in-between). In this paper we provide two tools to analyse,
and prove negative results on, building such shapes in the noncooperative model. The first is
a method to show that any any path of tiles P that travels a long enough horizontal distance
while staying above some horizontal line can be either pumped forever or else blocked by growing
something else. Hence if P was supposed to form part of some interesting shape, then our first
tool (Lemma 5.10) makes it so that we can use P to make another path that either goes outside
the shape (P is pumpable), or else prevents P from growing to completion (P is blocked). This
contrasts with previous works, e.g. [10, 18], by using non-pumpable paths to prove that other
assemblies are also possible. In fact one of the main new ideas in our work is to prove strong
properties on non-pumpable paths.

Our second tool (Theorem 6.1) builds on this to simultaneously block multiple paths, despite
the fact they may interact with each other in very complicated ways. More precisely, given a set
of paths of tiles, we define a total ordering on those paths so that we can iteratively apply the first
tool to infinitely pump and/or block all of the paths. See Section 4 for a proof overview. Another
contribution of this work that might prove useful in the future is a set of definitions (Section 2.3)
and lemmas (Section 5.1) that capture a number of basic properties about producible paths at
temperature 1, which in turn allow us to frequently use reasoning that is at the abstraction
level of paths in the plane as opposed to the more low-level of individual tiles and glues. Our
conventions and tricks for reasoning about paths of tiles via embeddings in R2 could be applied
to a variety of models. Together this collection of tools allow us to disrupt any attempt to build
shapes of a certain kind, and they work whether or not nondeterminism is deployed as a tool
by the ill-fated programmer. We hope these ideas may find use independently of the two main
problems we solve here.

The main goal of this paper is to give a negative result on a model that has resisted multiple
attempts thus far. Nevertheless, we believe our work to open up new directions for research on
the noncooperative model. For example, there are a large number of papers on temperature 1

1I.e. by simulating a time t(n) and space s(n)-bounded Turing machine in a O(f(t(n))) × O(g(s(n))) region
for finite functions f and g.
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models that are generalizations of the classical temperature 1 model that we study (references
below). Since those models achieve Turing universality, näıve application of our techniques
to those models is provably impossible. But often we care more about shape-building than
computation and our techniques give a method to edit producible shapes, hence we ask: Can our
techniques be generalised to show limitations to the classes of shapes producible in those models?
Another question: Is there a non-trivial hierarchy of simulation power within the noncooperative
model? We leave this as an open research direction to further clarify and investigate the power of
noncooperative self-assembly,2 that would certainly require new techniques beyond what we’ve
seen to date and beyond what appears in this paper.

Intrinsic universality, and simulation between tile assembly systems, is giving rise to a kind
of complexity theory for comparing models of self-assembly [28]. It is interesting to note that in
this setting sometimes it is possible to prove negative results on the simulation power of models
that are already known to be Turing universal [7, 15, 20]. Here we show that one can obtain a
negative result on Turing machine-style computation itself, via a negative result on simulation
between tile assembly systems. Hence we show (for the first time) that simulation between tile
assembly systems is a new method to obtain negative results on Turing computation in tile
assembly.

Relationship to other work. A large number of papers have conjectured or discussed that in
one sense or another, sophisticated computation such as Turing machine simulation or building
shapes with few tile types is impossible in the noncooperative model [1, 4, 5, 10, 18, 22–24]. Our
Theorem 1.2 implies that any claimed simulator of Turing machines by noncooperative (tem-
perature 1) systems would have to look very different from the known methods for cooperative
abstract tile assembly model [24–26] and its generalizations such as the two-handed [3, 7] or
polygon [6,13] models, as well as all known generalizations of the noncooperative model (3D [5],
allowing error [5,23], negative glues [22], staged and stepwise assembly [1], active signals [16,21],
polyominoes [11,15] and polygons [14]).

Rothemund and Winfree [24] gave the first negative result on 2D temperature 1 systems:
building an N ×N square requires N2 tile types if we insist that the square is fully connected.
They conjecture this holds in the absence of that assumption. Maňuch, Stacho, and Stoll [18]
show that 2D temperature 1 systems without mismatches require at least 2N − 1 tile types to
uniquely self-assemble N ×N squares. Doty, Patitz and Summers [10] conjecture that every 2D
noncooperative system is pumpable meaning, roughly speaking, that every sufficiently long path
has a segment that can be producibly repeated infinitely often. Their paper shows that if this
conjecture holds then certain forms of computation (e.g. infinite computation) are impossible
at temperature 1 in 2D. We remark that proving that conjecture would not imply our main
results which are concerned with bounded (finite) computation, nor do our results imply that
temperature 1 systems are pumpable. Also here our negative results do not make any assump-
tions about pumpablity nor mismatches. As already noted, it has been shown [20] that the
noncooperative tile assembly model can not simulate the cooperative model, here we answer the
main open question from that paper (Conjecture 1.4 [20]).

Meunier [19] gives positive results for 2D noncooperative systems. First, by showing the
existence of relatively simple noncooperative tile assembly systems that always build finite as-
semblies that contain a path where at least one tile type is repeated. A second, more general,
construction gives for each n ∈ N a noncooperatice tile assembly system with n tile types that

2The question is not without merit, as recently it was shown that the two-handed, or hierarchical, model of
self-assembly has an infinite set of hierarchies with each level in the hierarchy more power than the one below [7].
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builds terminal assemblies of height 2n− o(n). So although general-purpose computation seems
impossible in any reasonable form at temperature 1, we know that one form of algorithmic
self-assembly is possible, namely building long paths by re-using tile types.

One of the main reasons one simulates Turing machines with tile assembly systems is to
build shapes. Theorem 1.2 shows that none of the standard ways to make shapes in models
that are generalisations of the noncooperative model can possibly work in the noncooperative
model itself. This gives one formal sense in which shape building via computation is impossible
at temperature 1.

Beyond self-assembly, the combinatorics of self-avoiding walks in the plane, first introduced
by Flory in 1953 [12] in the context of polymer chemistry, has provided long-standing open
problems attracting attention from mathematicians and computer scientists [2,17]. Our setting
and results can be interpreted as memory-bounded versions of this topic: indeed, noncooperative
self-assembly is exactly the process of building self-avoiding paths in Z2, but with a memory
encoded by tile types. Our techniques could be applied to that domain to shed an algorithmic
light on the problem of counting or sampling self-avoiding walks.

1.1 Results

We give an overview of our two main results, although a number of notions have yet to be formally
defined (see Section 2 for definitions). Our first main result shows that the noncooperative
abstract tile assembly model is not intrinsically universal:

Theorem 1.1. The noncooperative abstract tile assembly model is not intrinsically universal. In
other words, there is no tileset U that at temperature 1 simulates all noncooperative tile assembly
systems.

The intuition behind the proof is given in Section 4, and the proof is given in Sections 5 and 6.
Our second main result, that is almost immediate from our main theorem, shows that temper-

ature 1 systems are severely limited in their ability to simulate Turing machines. The standard
published methods to simulate Turing machines in 2D in the abstract tile assembly model and
its generalizations [3,5,6,11,14,15,21–27], are (or can be easily modified to be) such that simu-
lation of a s(n) space bounded, and t(n) time bounded Turing machine M can be achieved in a
O(s(n))×O(t(n)) rectangle with (a) a seed assembly (encoding M,x) contained in the leftmost
O(1) columns, (b) an output assembly (encoding the output of M on input x) that includes
a unique tile type appearing on the rightmost column, and (c) no tile ever goes outside this
rectangle. The following theorem states, in a formal way, that simulating Turing machines in a
bounded rectangular region without error is impossible for the 2D noncooperative abstract tile
assembly model, for deterministic or even nondeterministic tile assembly systems. In the theo-
rem statement it is important to note that the “bounding function” BM is arbitrary in the sense
that it allows a potential simulator tile assembly system to use much more space than the actual
running time or space usage of the Turing machine M ; this generality serves to strengthen the
theorem statement (e.g. bounded Turing machine simulation is impossible even if we allow the
tile assembly system to use, say, exponential, doubly exponential, or any finite spatial scaling).

Theorem 1.2. Let t : N→ N, s : N→ N and let BM : N→ N such that ∀n ∈ N, BM (n) ≥ s(n).
Let M be any Turing machine that halts on all inputs x ∈ {0, 1}∗ in time t(|x|) using space s(|x|).
There is no pair (V,BM ) where V is a tileset and BM is a function such that for all x ∈ {0, 1}∗,
|x| = n, there is a seed assembly σM,x and tile assembly system Vx = (V, σM,x, 1) such that:
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1. dom(σM,x) ⊆ {0, 1, . . . , BM (n)− 1} × {0, 1, . . . , BM (n)− 1}
2. for all α ∈ A�[V], dom(α) ⊆ {0, 1, . . . , t(n)BM (n) − 1} × {0, 1, . . . , BM (n) − 1}, dom(α) ∩

({b+ 1, b+ 2, . . . , b+BM (n)− 1} × {0, 1, . . . , BM (n)− 1}) 6= ∅ where b = BM (n)(t(n) − 1)
and α places at least one occurrence of a special tile type H ∈ V on the rightmost column,
and nowhere else, of dom(α) if and only if M accepts x.

The formalism simply states that there is no tile set V , such that when V is instantiated as
a noncooperative (temperature 1) tile assembly system Vx = (V, σM,x, 1), with an input seed
assembly σM,x (that somehow encodes a Turing machine M and its input x), then Vx simulates
M on x within a finite rectangular region, writing a yes/no answer anywhere on the rightmost
column of tiles. Since the “bounding function” BM in the theorem statement can be arbitrarily
large, the theorem holds even if we allow the noncooperative system to use an arbitrarily large,
but finite, rectangular bounding box for the simulation. Section 4 gives an intuitive overview of
the proof, and the actual proof is given in Section 7.

2 Definitions and preliminaries

Let Z be the integers, Z+ = {1, 2, 3, . . .} and N = {0, 1, 2, 3, . . .}.
When referring to the relative placements of positions in the grid graph of Z2, or in the

plane R2, we say that a position P = (xP , yP ) is to the right of (respectively, to the left of,
above, below) of another position Q = (xQ, yQ) if xP ≥ xQ (respectively xP ≤ xQ, yP ≥ yQ,
yP ≤ yQ). This definition should not be confused with the definitions of right and left turns,
nor with the definition of right-hand side and left-hand side, all of which are defined below.

Moreover, unless stated otherwise, vectors of Z2 and R2 are column vectors, i.e. −→u =

(
xu
yu

)
.

2.1 Abstract tile assembly model

The abstract tile assembly was introduced by Winfree [26]. In this paper we study a restriction
of the abstract tile assembly model called the temperature 1 abstract tile assembly model, or
noncooperative abstract tile assembly model. For definitions of the full model, as well as intuitive
explanations, see for example [23,24].

A tile type is a unit square with four sides, each consisting of a glue type and a nonnegative
integer strength. Let T be a a finite set of tile types. In all sets of tile types used in this paper,
we assume the existence of a well-defined total ordering that we call the canonical ordering.

The sides of a tile type are respectively called north, east, south, and west, as shown in the
following picture:

West East

South

North

An assembly is a partial function α : Z2 99K T where T is a set of tile types and the domain
of α (denoted dom(α)) is connected.3 A tile is a pair ((x, y), t) ∈ Z2×T where (x, y) is a position

3Intuitively, an assembly is a positioning of unit-sized tiles, each from some set of tile types T , so that their
centers are placed on (some of) the elements of the discrete plane Z2 and such that those elements of Z2 form a
connected set of points.
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and t is a tile type. Hence the elements of an assembly are tiles. We let AT denote the set of
all assemblies over the set of tile types T . In this paper, two tile types in an assembly are said
to bind (or interact, or are stably attached), if the glue types on their abutting sides are equal,
and have strength ≥ 1. An assembly α induces a weighted binding graph Gα = (V,E), where
V = dom(α), and there is an edge {a, b} ∈ E if and only if a and b interact, and this edge is
weighted by the glue strength of that interaction. The assembly is said to be τ -stable if every
cut of G has weight at least τ .

A tile assembly system is a triple T = (T, σ, τ), where T is a finite set of tile types, σ is a
τ -stable assembly called the seed, and τ ∈ N is the temperature. Throughout this paper, τ = 1.

Given two τ -stable assemblies α and β, we say that α is a subassembly of β, and write α v β,
if dom(α) ⊆ dom(β) and for all p ∈ dom(α), α(p) = β(p). We also write α →T1 β if we can
obtain β from α by the binding of a single tile type, that is: α v β, |dom(β) \ dom(α)| = 1 and
the tile type at the position dom(β) \ dom(α) stably binds to α at that position. We say that
γ is producible from α, and write α→T γ if there is a (possibly empty) sequence α1, α2, . . . , αn
where n ∈ N ∪ {∞}, α = α1 and αn = γ, such that α1 →T1 α2 →T1 . . . →T1 αn. A sequence
of n ∈ Z+ ∪ {∞} assemblies α0, α1, . . . over AT is a T -assembly sequence if, for all 1 ≤ i < n,
αi−1 →T1 αi.

The set of productions, or producible assemblies, of a tile assembly system T = (T, σ, τ) is
the set of all assemblies producible from the seed assembly σ and is written A[T ]. An assembly
α is called terminal if there is no β such that α →T1 β. The set of all terminal assemblies of T
is denoted A�[T ].

As mentioned, in this paper τ = 1. Also throughout this paper, we make the simplifying
assumption that all glue types have strength 0 or 1: it is not difficult to see that this assumption
does not change the behavior of the model (if a glue type g has strength sg ≥ 1, in the τ = 1 model
then a tile with glue type g binds to a matching glue type on an assembly border irrespective
of the exact value of sg).

2.2 Simulation between tile assembly systems and intrinsic universality

To state our main result, we must formally define what it means for one tile assembly system
to “simulate” another. A number of definitions of simulation have been put forward for various
self-assembly models [6–9,11,20], here and in Appendix A we use those from [20].

Let T be a tile set, and let m ∈ Z+. An m-block supertile over T is a partial function
α : Z2

m 99K T , where Zm = {0, 1, . . . ,m− 1}. Let BT
m be the set of all m-block supertiles over T .

The m-block with no domain is said to be empty. For a general assembly α : Z2 99K T and
(x, y) ∈ Z2, define αm(x,y) to be the m-block supertile defined by αm(x,y)(x

′, y′) = α(mx+x′,my+y′)

for all x′, y′ ∈ {0, 1, . . . ,m− 1}. For some tile set S, a partial function R : BS
m 99K T is said to

be a valid m-block supertile representation from S to T if for any α, β ∈ BS
m such that α v β

and α ∈ dom(R), then R(α) = R(β).
For a given valid m-block supertile representation function R from tile set S to tile set T ,

define the assembly representation function4 R∗ : AS → AT such that R∗(α′) = α if and only if
α(A) = R (α′mA ) for all A ∈ Z2. For an assembly α′ ∈ AS such that R∗(α′) = α, α′ is said to map
cleanly to α ∈ AT under R∗ if for all non empty blocks α′mA , A + ~u ∈ dom(α) for some ~u ∈ Z2

such that ‖~u‖2 ≤ 1. In other words, α′ may have tiles on supertile blocks representing empty

4Note that R∗ is a total function since every assembly of S represents some assembly of T ; the functions R
and α are partial to allow undefined points to represent empty space.
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space in α, but only if that position is adjacent to a tile in α. We call such growth “around the
edges” of α′ fuzz and thus restrict it to be adjacent to only valid supertiles, but not diagonally
adjacent (i.e. we do not permit diagonal fuzz ).

Below, let T = (T, σT , τT ) be a tile assembly system, let S = (S, σS , τS) be a tile assembly
system, and let R be an m-block representation function R : BS

m → T .

Definition 2.1. We say that S and T have equivalent terminal shapes (underR) if {dom(R∗(α)) |
α ∈ A�[S]} = {dom(β) | β ∈ A�[Tn]}.

Our main negative result on simulation (Theorem 1.1) shows that any claimed intrinsically
universal noncooperative tileset U does not satisfy Definition 2.1 when used to simulate certain
noncooperative tile assembly systems. Intrinsically universal tilessets must satisfy Definition 2.1
(see Observation A.2) and moreover must satisfy a significantly stronger set of definitions than
Definition 2.1; such stronger definitions are given in Appendix A.

2.3 Paths and non-cooperative self-assembly

This definition sections introduces quite a number of key definitions and concepts that will be
used extensively throughout the paper.

Let n ∈ N and let T be a set of tile types. As already defined in Section 2.1, a tile is a pair
((x, y), t) where (x, y) ∈ Z2 is a position and t ∈ T is a tile type.

Intuitively, a path is a finite or one-way-infinite simple (non-self-intersecting) sequence of
tiles placed on points of Z2 so that each tile in the sequence interacts with the previous one, or
more precisely:

Definition 2.2 (Path). A path is a (finite or infinite) sequence P = P0P1P2 . . . of tiles Pi =
((xi, yi), ti) ∈ Z2 × T , such that:

• for all Pj and Pj+1 defined on P it is the case that tj and tj+1 interact, and
• for all Pj , Pk such that j 6= k it is the case that (xj , yj) 6= (xk, yk).

Whenever P is finite, i.e. P = P0P1P2 . . . Pn−1 for some n, n is termed the length of P . By
definition, paths are simple (or self-avoiding), and this fact will be repeatedly used through the
paper. A position of P is an element of Z2 that appears in P (and therefore appears exactly once),
and an index i of P is simply an integer in {0, 1, . . . , n−1}. For a path P = P0 . . . PiPi+1 . . . Pj . . .,
we define the notation Pi,i+1,...,j = PiPi+1 . . . Pj , i.e. “the subpath of P between indices i and j,
inclusive”.

Although a path is not an assembly, we know that each adjacent pair of tiles in the path
sequence interact implying that the set of path positions forms a connected set in Z2 and
hence every path uniquely represents an assembly containing exactly the tiles of the path, more
formally: For a path P = P0P1P2 . . . we define the set of tiles asm(P ) = {P0, P1, P2, . . .} which
we observe is an assembly5 and we call asm(P ) a path assembly. A path P is said to be producible
by some tile assembly system T = (T, σ, 1) if the assembly (asm(P ) ∪ σ) ∈ A[T ] is producible,
and we call such a P a producible path. We define

P[T ] = {P | P is a path and (asm(P ) ∪ σ) ∈ A[T ]}
5I.e. asm(P ) is a partial function from Z2 to tile types that is defined on a connected set.
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to be the set of producible paths of T .6

For any path P = P0P1P2, . . . and integer i ≥ 0, we write pos(Pi) ∈ Z2, or (xPi , yPi) ∈ Z2,
for the position of Pi and type(Pi) for the tile type of Pi. Hence if Pi = ((xi, yi), ti) then
pos(Pi) = (xPi , yPi) = (xi, yi) and type(Pi) = ti.

If two paths, or two assemblies, or a path and an assembly, share a common position we say
they intersect at that position. Furthermore, we say that two paths, or two assemblies, or a
path and an assembly, agree on a position if they both place the same tile type at that position
and conflict if they place a different tile type at that position.

Note that, since the domain of a producible assembly is a connected set in Z2, and since
in an assembly sequence of some TAS T = (T, σ, 1) each tile binding event βi →T1 βi+1 adds a
single node v to the binding graph Gβi of βi to give a new binding graph Gβi+1

, and adds at
least one weight-1 edge joining v to the subgraph Gβi ∈ Gβi+1

, then for any tile ((x, y), t) ∈ α in
a producible assembly α ∈ A[T ], there is a edge-path (sequence of edges) in the binding graph
of α from σ to ((x, y), t). From there, the following important fact about temperature 1 tile
assembly is straightforward to see.

Observation 2.3. Let T = (T, σ, 1) be a tile assembly system and let α ∈ A[T ]. For any tile
((x, y), t) ∈ α there is a producible path P ∈ P[T ] that for some i ∈ N contains Pi = ((x, y), t).

For A,B ∈ Z2, we define
−−→
AB = B − A to be the vector from A to B, and for two tiles

Pi = ((xi, yi), ti) and Pj = ((xj , yj), tj) we define
−−→
PiPj = pos(Pj) − pos(Pi) to mean the vector

from pos(Pi) = (xi, yi) to pos(Pj) = (xj , yj). The translation of a path P by a vector −→v ∈ Z2,
written P + −→v , is the path Q where and for all indices i of P , pos(Qi) = pos(Pi) + −→v and
type(Qi) = type(Pi). As a convenient notation, for a path PQ composed of subpaths P and Q,
when we write PQ + −→v we mean (PQ) + −→v (i.e. the translation of all of PQ by +−→v ). The
translation of a path P by a vector −→v ∈ Z2, written P + −→v , is the path Q where and for all
indices i of P ,

The translation of an assembly α by a vector −→v , written α + −→v , is the assembly β defined
on the set dom(α) + −→v as β(x, y) = α((x, y) − −→v ) where (x, y) ∈ Z2. A column x ∈ Z is the
set of all points of Z2 with x-coordinate x, and a row y ∈ Z is the set of all points of Z2 with
y-coordinate y.

Next, for a path P and two indices i, j on P , we will define a (not necessarily producible)
sequence called the pumping of P between i and j.

Definition 2.4 (pumping of P between i and j). Let T = (T, σ, 1) be a tile assembly system
and P ∈ P[T ]. We say that the “pumping of P between i and j” is the sequence q of elements
from Z2 × T defined by:

qk =

{
Pk for 0 ≤ k ≤ i
Pi+1+((k−i−1) mod (j−i)) + b(k − i− 1)/(j − i)c−−→PiPj for i < k,

Hence, intuitively, q has two parts. It begins with a finite sequence P0,1,...,i. Then appended
to that, there is an infinite sequence where the tile types appear with positions at regular intervals
in the plane. We formalize the latter intuition in the following Lemma:

6Intuitively, although producible paths are not assemblies, any producible path P has the nice property that
it encodes an unambiguous description of how to grow asm(P ) from the seed σ, in (P ) path order, to produce
the assembly σ ∪ asm(P ).
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Lemma 2.5. Let P be a path with tiles from some tileset T , i < j be two integers, and q be the

pumping of P between i and j. Then for all integer k ≥ i, qk+(j−i) = qk +
−−→
PiPj.

Proof. By the definition of q:

qk+(j−i) = Pi+1+((k+(j−i)−i−1) mod (j−i)) +

⌊
k + (j − i)− i− 1

j − i

⌋−−→
PiPj

= Pi+1+((k−i−1) mod (j−i)) +

⌊
k − i− 1

j − i + 1

⌋−−→
PiPj

= Pi+1+((k−i−1) mod (j−i)) +

(⌊
k − i− 1

j − i

⌋
+ 1

)−−→
PiPj

= qk +
−−→
PiPj

The following definition gives the notions of pumpable and finitely pumpable that are used
in our proofs. It is followed by a less formal but more intuitive description.

Definition 2.6 (Pumpable). Let T = (T, σ, 1) be a tile assembly system. We say that a
producible path P ∈ P[T ], is infinitely pumpable, or simply pumpable, if there are two integers
i < j such that the pumping of P between i and j is a producible (infinite) path, i.e. q ∈ P[T ].

In other, more intuitive, words, a producible path P ∈ P[T ] is infinitely pumpable, or simply
pumpable, if there is a producible infinite assembly α ∈ A[T ] and two indices i < j on P ,
such that α contains exactly σ, then asm(P0,1,...,j), and then infinitely many occurrences of the
“pumpable segment” asm(Pi,i+1,...,j−1) each translated by successive positive integer multiples

{1, 2, 3, . . .} of
−−→
PiPj , where these occurrences do not intersect σ, asm(P0,1,...,j−1) or themselves,

each tile along this path assembly is bound to the previous, and α contains no other tiles.7

For all i such that both Pi and Pi+1 are defined (i.e. for all i ∈ N if P is infinite, and for all
i < |P | − 1 otherwise), we define the “output side of Pi” to be the side of type(Pi) adjacent to
type(Pi+1), and for all i > 0, we define the “input side of Pi” to be the side of type(Pi) adjacent
to type(Pi−1). The sides of type(Pi) that are neither output sides nor input sides of Pi are said
to be free, as are the glues of those sides.8

Let P = P0P1 . . .. For i > 0, we say that a right turn (respectively left turn) from P at index i
is a path with prefix P0P1 . . . Pix for some x ∈ Z2 × T adjacent to Pi such that orientated in

the direction
−−−−→
Pi−1Pi, pos(x) is clockwise (respectively anti-clockwise) from Pi+1. More formally,

let ~u =
−−−−→
PiPi−1 (the unit column vector from pos(Pi) to pos(Pi−1)), let ρ =

(
0 1
−1 0

)
, and let

τ = (ρ · ~u, ρ · ρ · ~u, ρ · ρ · ρ · ~u), then we say that P0P1 . . . Pix is a right turn from P0P1 . . . PiPi+1

if
−→
Pix appears after

−−−−→
PiPi+1 in τ .

7We remark that this definition of “infinitely pumpable” intentionally excludes pumping that intersects with
and agrees with the seed, P0,1,...j or some translated (pumped) segment.

8By this definition of input and output sides the first tile of a path does not have an input side, and the last
one does not have an output side. We also remark that this definition of input/output sides is defined relative
to a specific path, and is not a property of the tiles themselves; moreover, the tiles, including the first and last
tiles, may have other glue types, i.e. free glue types, not used by the path. Despite the fact free sides may have
strength 1 glue types we typically ignore this in our analysis of paths—this is because our proofs typically analyse
paths one at a time and thus require us to consider only the non-free tiles sides that actually bind the tiles along
the path assembly and thus don’t require us to make statements about free sides.
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We define glue(PiPi+1) = (g, i) [i.e. (g, i) is a pair of the form (glue type, path index)] where
g is the shared glue type between consecutive tiles Pi and Pi+1 on the path P . When we say
“glue” in the context of a path, we mean a pair of the form (glue type, path index). We define
type(glue(PiPi+1)) = g to denote the glue type of glue(PiPi+1), we write pos(glue(PiPi+1)) =
(pos(Pi),pos(Pi+1)) (the “position of glue glue(PiPi+1)”) to denote the edge (of the grid graph
of Z2) of glue(PiPi+1), oriented from pos(Pi) to pos(Pi+1). Moreover, for A,B ∈ R2 we define

mid(A,B) = A+ 1
2

−−→
AB ∈ R2 to be the midpoint of the line segment [A,B] ( R2, and for a pair of

tiles Pi, Pj we define mid(Pi, Pj) to be the midpoint of the line segment [pos(Pi),pos(Pj)] ( R2.

Definition 2.7 (The right priority path of a set of paths). Let P and Q, where P 6= Q, be two
paths with pos(P0) = pos(Q0) and pos(P1) = pos(Q1). Let i be the smallest index such that
i ≥ 0 and Pi 6= Qi. We say that P is the right priority path of P and Q if either (a) P0,1,...,i is a
right turn from Q or (b) pos(Pi) = pos(Qi) and the type of Pi is smaller than the type of Qi in
the canonical ordering of tile types.

For sets of paths, we extend this definition as follows: let p0 ∈ Z2, p1 ∈ Z2 be two adjacent
positions. If S is a set of paths such that for all P ∈ S, P0 = p0 and P1 = p1, we call the
right-priority path of S the path that is right-priority path of all other paths in S.

The left priority path of a set of paths is defined symmetrically: swap left for right in Defi-
nition 2.7.

2.3.1 Curves: embedding paths in R2

A curve, or a curve in R2, is defined to be a continuous function f : [0, 1]→ R2. We say that f is
continuous at some x0 ∈ dom(f) if ∀ε,∃η,∀x, |x− x0| ≤ η ⇒ ‖f(x)− f(x0)‖2 ≤ ε, where for all
a, b ∈ [0, 1], ‖(a, b)‖2 =

√
a2 + b2, and we say that f is continuous if and only if f is continuous

at all x0 ∈ [0, 1].
Intuitively, we will define the concatenation of a finite sequence of curves f0, f1, . . . , fk−1 to be

a function F : [0, 1]→ R2 that for each i ∈ {0, 1, . . . , k−1} represents fi by rescaling the domain
of fi to be in the interval [ ik ,

i+1
k ]. Thus F is defined on [0, 1] and has range

⋃k−1
i=0 (range(fi)).

This is defined as follows:

Definition 2.8 (Concatenation of curves in R2). Given a finite sequence of k ∈ N curves
f0, f1, . . . , fk−1 in R2 their concatenation is the function F : [0, 1] → R2 defined for all i such
that 0 ≤ i < k and all x ∈

[
i
k ,

i+1
k

]
as F (x) = fi(xk − i).

For example, Figure 2.1(c) shows the concatenation of two curves: the curve in Figure 2.1(b)
and a unit-length vertical line segment.

The following observation states that the concatenation F of k continuous functions f0, f1, . . . , fk−1,
that have the property fi(1) = fi+1(0) for 0 ≤ i < k − 1, is itself a continuous function and
although the proof is straightforward, it is worth explicitly stating since it is used extensively in
this paper:

Observation 2.9. Let f0, f1, . . . , fk−1 be a finite sequence of curves in R2 that have the property
that for all i ∈ {0, 1, . . . , k−2}, fi(1) = fi+1(0) and let F be the concatenation of f0, f1, . . . , fk−1.
Then F is a curve in R2.

Proof. First note that for each i ∈ {0, 1, . . . , k−1}, fi is a continuous function and that rescaling
(shrinking) the domain of fi from [0, 1] to [ ik ,

i+1
k ] preserves continuity. Secondly, since for each

i ∈ {0, 1, . . . , k − 2}, fi(1) = fi+1(0) and F contains i+1
k → fi(1), the function F is continuous
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on the (“double-length”) interval [ ik ,
i+2
k ]. Since this holds for all such i, F is continuous on its

entire domain [0, 1], and thus is a curve in R2.

Observation 2.10. Let f0, f1, . . . , fk−1 be a finite sequence of finite-length simple curves in R2

such that for all i ∈ {0, 1, . . . , k−2}, fi(1) = fi+1(0), also fk−1(1) = f0(0), and those k nonempty
intersections between f0, f1, . . . , fk−1 are the only nonempty intersections between them. Let F
be the concatenation of f0, f1, . . . , fk−1. Then F is a finite-length closed simple curve in R2.

Proof. The hypotheses of Observation 2.9 are satisfied hence F is a curve. F is composed of a
finite set of k finite length component curves so F is of finite length. F is closed because for
i ∈ {0, 1, . . . , k− 2}, fi(1) = fi+1(0), and fk−1(1) = f0(0), and F is simple because those are the
only nonempty intersections between f0, f1, . . . , fk−1.

Also, we will sometimes need other curves that are not defined by paths:

Definition 2.11 (Line segment). Let A,B ∈ R2. The line segment from A to B, which we

write [A,B], is the curve defined for all x ∈ [0, 1] by f(x) = A+ x
−−→
AB.

Definition 2.12. For any path P we define EP to be the canonical embedding of P where
EP : [0, 1]→ R2, such that for all s such that 0 ≤ s < 1

EP (s) = pos(Pbs·(|P |−1)c) + (s · (|P | − 1)− bs · (|P | − 1)c)−−−−−−−−−−−−−−−−−→Pbs·(|P |−1)cPbs·(|P |−1)c+1

and
EP (1) = pos(P|P |−1) .

Note that by Definition 2.12, the canonical embedding of a path is a curve, i.e. the canonical
embedding is a continuous function from [0, 1] to R2. Figure 2.1(a) shows an example path P
and Figure 2.1(b) shows its canonical embedding EP .

This paper frequently uses the Jordan curve theorem, which is a statement about curves
in R2: any simple closed (and hence finite) curve in R2 partitions R2 into exactly two connected
components, a bounced one and an unbounded one.

In our proofs, we will often reason about right turns and left turns from a curve, and also
about on which side of a closed simple curve is the bounded connected component. Since all
of the closed simple curves we will define will be simple finite polygons, their left-hand side
and right-hand side can be defined by taking any point A on a segment of the polygonal curve
c, not at a corner, and reasoning as follows. Since c is locally a straight line around A, c is
differentiable at A. Also c has a direction (from domain element 0 to domain element 1). The
left-hand side of c is therefore the connected component to the left of A when orientated in the
direction from 0 to 1 along c, and the right-hand side of c is the connected component to the
right of A. By defining curves within a very small distance of c, we can show that the left-hand
side of c is connected, and the right-hand side of c is also connected. For example, Figure 2.1(c)
shows such a polygonal closed simple curve c, with its left-hand side highlighted in grey.

3 A family of tile assembly systems TN
Definition 3.1 defines a (very simple) infinite family of noncooperative tile assembly systems
{TN | N ∈ Z+}. The proof of our main theorem shows that there is no tile set U that for all N
simulates TN .
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EP (1)
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LHS
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c c(0)=c(1)

(c)

Figure 2.1: Crosses denote points in Z2. (a) A path P = P0, P1, . . . , P15. (b) The curve EP , the canonical
embedding of P in R2. (c) The curve c defined as the concatenation of EP and the unit-length line
segment [pos(P15),pos(P0)] = [EP (1),EP (0)]. Two endpoints of c are identical, c(0) = c(1), moreover c
is a closed simple curve in R2. A single thick arrowhead on c indicates the direction of c and the position
of c’s identical endpoints. ‘By the Jordan curve theorem, such a closed simple curve in R2 partitions the
plane into two connected components exactly one of which is ‘bounded’ (has finite area). The ‘right-hand
side’ (RHS) and ‘left-hand side’ (LHS) of c are indicated by small thin arrows with the LHS being the
bounded component highlighted in grey.

Definition 3.1. For each N ∈ Z+, let TN = (TN , σN , 1) be the tile assembly system that
assembles the infinite assembly shown in Figure 3.1.

0

u
u

u
N0 1 1 2

N − 1
N

u
u

u
u

. . .

...

(a) (b) (c)

Figure 3.1: (a) The “flipped-L” TAS TN = (TN , σN , 1), that deterministically assembles a single, infinite
assembly. T contains N + 3 tile types as shown, and the grey tile is the seed σN which is placed at the
origin (0, 0). TN grows from the seed, distance N + 1 to the east, and then grows infinitely to the north.
Hence TN builds an infinite path assembly. Productions of an example such tile assembly system for
N = 12 are shown: (b) T12 after 7 tile additions, and (c) T12 after 18 tile additions.

4 Intuition behind the proofs of Theorems 1.1 and 1.2

We begin with a description of the high-level intuition behind the proof of our main result,
Theorem 1.1. One of the main difficulties of this result is that for any finite number of non-
cooperative tile assembly systems, there is in fact a single non-cooperative simulator for all of
them: simply let the tiles of the simulator be the disjoint union of all tilesets of the simulated
systems. Moreover, it is known [20] that in 3D, there is a tileset, operating at temperature 1
(i.e. noncooperative), that simulates all non-cooperative tile assembly systems. Hence our proof
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is going to crucially make use of the fact that any claimed simulator tileset is of finite size, and
must work in the plane.

First, we assume, for the sake of contradiction, that there is a single tileset U , that simulates
all noncooperative (or temperature 1) tile assembly systems. Hence, in particular, the tileset U
simulates the class of systems {TN | N ∈ Z+} described in Section 3 and shown in Figure 3.1.
Hence, for all TN , there is a tile assembly system UTN = (U, σTN , 1) and scale factor m ∈ Z+

such that UTN simulates TN .9 In particular, by the definition of simulation (Section 2.2), and in
particular by Definition 2.1, this implies that for each terminal producible assembly α of TN there
is a producible assembly α′ ∈ UTN that represents the shape of α, and vice-versa. Figure 4.1
shows what such a simulation should look like.

3m

...

h

`

y

x Horizontal part

Vertical part

Figure 4.1: An example (claimed) simulation of some TN , N ∈ Z+, by UTN = (U, σTN , 1). The seed
assembly of UTN is shown in black on the left. The simulator UTN is free to place tiles anywhere in the
simulation zone, defined to be the union of the dark gray (tile-representing supertiles) and light gray
(fuzz) regions, and an example valid path of tiles (that has a h-successful prefix) is shown in those regions
as a thin black curve. The scale factor is m and UTN places N + 2 horizontal tiles, hence the width of
the dark gray region is m(N + 2). Our main result is proven by showing that any simulator that claims
to produce a valid terminal assembly must also produce one with an incorrect shape—one that either
(a) places tiles outside of the simulation zone (e.g. because some path is infinitely pumpable to the right
or can be modified to grow upwards at an incorrect location that is outside of the vertical part), or (b)
is finite (e.g. does not grow infinitely upwards). The seed supertile contains the seed (in black) and the
origin (0, 0). The lines ` (at x-coordinate |U |(3m+ 1) +m+ 1) and h (at y-coordinate 10m) are used in
many of the proofs.

The proof is then broken into two stages. First, in Section 5, we consider any path that
can grow in the claimed simulator long enough so it places at least one tile on a horizontal line
at some height h. An example such path is shown in Figure 4.1. For any such path, we let P
denote its shortest prefix that contains exactly one tile at height h = 10m and where that tile
is P ’s last tile. Any assemblable path of this form is called “h-successful” (see Definition 5.7).
We show that any h-successful path P can be modified in two different ways: (1) P is modified
so that it grows at an invalid position, either by (1.1) infinite pumping, by which we mean P
can be modified to give another path P ′ which grows to form an assembly that is infinitely
long horizontally to the right, and hence is not a simulation of the “flipped-L” shaped TN , or
modifying it so that (1.2) the vertical arm grows displaced to the left or to the right (and hence is

9Later in the paper we drop the TN subscripts from UTN , σTN and simply say that U = (U, σ, 1) simulates TN .
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grown in the wrong position) or (1.3) grows something in the wrong position by finite pumping
(repeating a path segment that gets blocked). (2) P is blocked, by which we mean another
assembly (a path R) can be grown that blocks P (forcing P to be of finite length) and thus
the simulator can not rely on the growth of path P to obtain a valid simulation. (1) and (2)
together show that no single path can carry out a valid simulation, which is stated formally in
Theorem 5.11. This can be regarded as our first technical tool for handling long paths.

However this leaves open the possibility that many paths could simultaneously and nonde-
terministically grow and interact in a way that carries out a valid simulation. In particular,
in (2) above, if we first block a path P 1 using another path R1, and then attempt to block
another path P 2 using a path R2, then R2 may itself get blocked by R1, hence P 2 could possibly
“escape” to become h-successful and carry out the simulation. In the second part of the proof,
in Section 6, we consider the ways that h-successful paths P , and the paths R we use to block
them, can interact. Based on this, we provide an explicit growth order for paths, such that if
we apply (2) to each such path in turn, we guarantee that the claimed simulator fails. This can
be regarded as our second technical tool: a method to control the interactions of multiple long
paths.

The proof of our second main result Theorem 1.2 is very short. We note that, for the sake of
contradiction, if for each time-bounded Turing machine M there is a noncooperative tile set V
that simulates M using arbitrarily large 2D space, bounded by a rectangle, then V could be
easily modified to build a family of assemblies that are of the same (scaled) shape as systems TN ,
thus contradicting our result that there is no such tile set. Hence we give a reduction from a
Turing machine prediction problem to the problem of simulating the class of all TN systems, a
new technique for proving negative results about computation in tile assembly.

5 Pumping or blocking any sufficiently wide and tall path

Suppose, for the sake of contradiction, that there is a tile set U , such that for N = 10|U |, there
is a scale factor m ∈ Z+ and a seed σ for which U = (U, σ, 1) simulates TN at scale factor m.
Then it must be the case that there is a path P such that the simulator produces the assembly
asm(P ) and asm(P ) grows up to meet a line at height h = 10m above the horizontal arm of
the assembly (See Figure 4.1). In this section, we prove that we can use the existence of such a
“h-successful” path P to force the simulator to produce another assembly α ∈ A[U ] that either
(I) illegally places tiles outside of the simulation zone or else (II) is finite and blocks P from
growing (i.e. α ∪ asm(P ) is not producible from the assembly α ∈ A[U ]). Case (I) contradicts
that U simulates T and we are done with the proof in that case. Case (II) gives a way to block
the arbitrary single path P , but may not prevent other paths from growing and this is handled
later in Section 6.

Since showing impossibility of simulating a single tile assembly system TN is sufficient to
prove our result, we will set N = 10|U | in the rest of the paper, and call σ the seed and m the
scale factor at which our claimed simulator U = (U, σ, 1) simulates TN = T10|U |.

5.1 Glue visibility: definitions and basic results about V +
P and V −P

We begin this section with a definition that will be used in every proof in the rest of the paper,
and is illustrated in Figure 5.1. This notion of visibility is from the south.

Definition 5.1 (Visible glue (from the south)). Let P be a path and let i, j ∈ {0, 1, . . . , |P |−2}.
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Figure 5.1: A short path with six glues that are visible (from the south). Growth of this path begins
from the seed which is shown in grey. Glues here are coloured not by their type, but by their visibility
(and direction). Five red-black glues are in V +

P and one black-red glue (to the right) is in V −P giving a
total of six glues in VP . None of the other glues (black-black, or black-) are visible. Three red rays to
the south testify to the visibility of three of the glues, and are called the “visibility rays” of these glues.

Let glue(PiPi+1) = (g, (x, y), d) where g is the interacting glue type between Pi and Pi+1,

(x, y) = mid(Pi, Pi+1) and d =
−−−−→
PiPi+1

10. We say that glue(PiPi+1) is visible relative to P if
(a) there is a vertical ray r in R2 that starts from mid(Pi, Pi+1) ∈ R2 and goes infinitely to the
south and (b) for all j 6= i, r does not contain mid(Pj , Pj+1) ∈ R2.

We write VP for the set of (glue type, path index) pairs of P that are visible relative to some
path P . We define V +

P (respectively, V −P ) to be the set of those (glue type, path index) pairs of
V that are on east (respectively, west) of output sides of tiles of P . Since, on a path P , each
tile has exactly one output side, it follows that (V +

P , V
−
P ) is a partition of VP .

For a path P and a vertical line l = {(x, y) | y ∈ R} at some position x ∈ {x′2 | x′ ∈ Z} such
that l∩EP 6= ∅, we write “P ’s visible glue on l” to mean the unique glue glue(PiPi+1) such that
mid(Pi, Pi+1) ∈ R2 is on l and for all j, such that 0 ≤ j ≤ |P | − 2, j 6= i it is not the case that
mid(Pj , Pj+1) has a smaller y-coordinate on l than mid(Pi, Pi+1). Moreover “the position of the
visible glue of P on l” is the point mid(Pi, Pi+1). For a glue glue(PiPi+1) that is visible relative
to P we write “the position of glue(PiPi+1)” to mean the point mid(Pi, Pi+1) ∈ R2. For a glue
glue(PiPi+1) that is visible relative to P we write “the visibility ray of glue(PiPi+1)” to mean
the infinite ray starting at the point mid(Pi, Pi+1) ∈ R2 and going vertically to the south.

It is important to note that “visible glue” is defined relative to a particular path. Hence, we
often say that a glue of P is “visible relative to P”, although when P is clear from the context,
we may simply say that a glue is “visible”. Figure 5.1 gives examples of glues on a path that
are and are not visible. Intuitively, note that although a visibility ray starts at the “position”
of a visible glue on the path P , the ray is permitted to “touch” other free glues (Section 2.3)
on tiles of P (recall free glues are by definition not on the path since they are not input/output
glues along the path, hence they are not visible nor can they prevent some other glue from being
visible). See Figure 5.1 for examples.

In the following lemma we show that for a path P that has both V +
P glues and V −P glues,

the V +
P glues are positioned to the right of its V −P glues. The intuition behind the proof is as

follows: suppose otherwise, then draw a finite length curve c in R2 that runs from a V +
P glue

along the positions of P to a V −P glue, then includes segments of the visibility rays (to the south)
of these two glues and finally includes a horizontal line that lies far below P and runs between
those two visibility rays. It turns out that c is simple and closed and thus cuts the plane into an

10Note that since paths are defined to be simple, for any (x, y) ∈ Z2, there is at most one index i on P such
that (x, y) is the position of glue(PiPi+1).
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unbounded component and a bounded component C. It turns out that P must both go inside C
for a time and then leave C, but since c was defined using curves that P never crosses we get a
contradiction. This rough intuition is more rigorously formalised in the proof.

Lemma 5.2 (V +
P glues are to the right of V −P glues). Let P ∈ P[U ] be an assemblable path of any

tile assembly system U = (U, σ, 1), and let i and j be two indices such that glue(PiPi+1) ∈ V +
P ,

glue(PjPj+1) ∈ V −P . If P has at least one tile Pk where k > max(i, j) and pos(Pk) is strictly to
the right of, or strictly above, all tiles of Pmin(i,j),min(i,j)+1,...,max(i,j), then xPi > xPj . In other

words, the glues of V +
P are all to the right of the glues of V −P .

Proof. We have argued above that (V +
P , V

−
P ) is a partition of VP . Hence since glue(PiPi+1) ∈ V +

P ,
glue(PjPj+1) ∈ V −P it is the case that i 6= j which in turns implies xPi 6= xPj . Assume, for the
sake of contradiction, that there are two integers i and j that satisfy the lemma hypotheses (in
particular that glue(PiPi+1) ∈ V +

P , glue(PjPj+1) ∈ V −P ) but where xPi < xPj .
Since glue(PiPi+1) ∈ V +

P , there is a vertical ray li that starts from the point mid(Pi, Pi+1) ∈
R2, goes infinitely to the south, and does not contain any point of the canonical embedding EP
of P in R2 besides mid(Pi, Pi+1). Likewise, let lj be the vertical ray to the south starting from
the point mid(Pj , Pj+1), and observe that since glue(PjPj+1) ∈ V −P , then lj does not contain
any point of EP besides mid(Pj , Pj+1). We will use li and lj to define the three line segments
s←i , sj and si,j . First let y0 be a y-coordinate below all of Pi,i+1,...,j , for instance

y0 = min{yPi , yPi+1 , . . . , yPj} − 10

We then define:
si = [mid(Pi, Pi+1), (X(mid(Pi, Pi+1)), y0)] ( li (1)

where X(x, y) = x and we note that si ( li since X(mid(Pi, Pi+1)), y0) is directly to the south
of mid(Pi, Pi+1). Let s←i be the “reverse direction” of the line segment si, more precisely:

s←i = [(X(mid(Pi, Pi+1)), y0),mid(Pi, Pi+1)] (2)

Also, define the line segment

sj = [mid(Pj , Pj+1), (X(mid(Pj , Pj+1)), y0)] ( lj (3)

And the line segment

sj,i = [(X(mid(Pj , Pj+1)), y0), (X(mid(Pi, Pi+1)), y0)] (4)

There are two (almost identical) cases, (a) and (b).

Claim (a): i < j. We let c be the concatenation (see Definition 2.8) of the following six curves:

s←i

[mid(Pi, Pi+1),pos(Pi+1)]

EPi+1,i+2,...,j

[pos(Pj),mid(Pj , Pj+1)]

sj

sj,i
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Pi,i+1,...,j+1

Pi

s←i sj

r

sj,i

C

Figure 5.2: An example illustrating the proof of Lemma 5.2, Case (a): i < j. In this figure, glue(PiPi+1) ∈
V +
P , glue(PjPj+1) ∈ V −P , and pos(Pi) is to the left of pos(Pj). The canonical embedding of the path
Pi+1,i+2,...,j in R2 and five line segments are used to define a closed simple curve c (light blue) and thus
a bounded connected component C of R2 (two of the line segments are unlabelled in this figure). Then,
the ray r is used to verify that pos(Pj+1) is inside C. Thus Pj+1,j+2,... “grows inside” C, but must leave
C at some point leading to a contradiction as P can not cross any of the components that define c.

By Observation 2.10, c is a finite closed simple curve11 and thus defines a bounded connected
component C. (See Figure 5.2 for an example.)

We claim that pos(Pj+1) is inside C. First, note that pos(Pj+1) is to the left of pos(Pj)
(because glue(PjPj+1) ∈ V −P ), and therefore, pos(Pj+1) is to the left of lj . But since xPi <
xPj by assumption, X(mid(Pi, Pi+1, )) 6= X(mid(Pj , Pj+1,) by visibility, and Pj+1 is unit dis-
tance to the left of Pj , then pos(Pj+1) is in fact between li and lj (i.e. to the right of li
and to the left of lj). Secondly, pos(Pj+1) is above the horizontal line sj,i. Consider the
ray r at x-coordinate X(pos(Pj+1)) + 0.25 that comes from the south and stops at position
p = (X(pos(Pj+1)) + 0.25, Y (pos(Pj+1))). Observe that r crosses c at the segment sj,i exactly
once, and crosses c nowhere else, and that due to the visibility of glue(PjPj+1) we get that r
does not intersect EPi+1,i+2,...,j , and that by its definition r is positioned away from the other
four components of c. Furthermore, since c does not cross the short line segment [pos(Pj+1), p]
then starting at the point p, one can walk (westwards) along the segment [pos(Pj+1), p] to the
point pos(Pj+1), without crossing c. Hence pos(Pj+1) is inside C as claimed.

Since, from the lemma statement, P has at least one tile Pk after Pj (i.e. k > j) positioned
to the right of, or above, all tiles of Pi,i+1,...,j , then P has tiles positioned outside of C after Pj .
But since P is a path, it does not cross itself. Therefore, EPj+1,j+2,...,|P |−1

must cross at least one
of li or lj contradicting that both glue(PiPi+1) and glue(PjPj+1) are visible. Thus xPi > xPj .

11To see this one needs to check that the components of c satisfy the hypotheses of Observation 2.10. Less
formally but more intuitively, it can be seen that c is of finite length because its components are, also c is closed as
each of the components are closed curves and their endpoints are pairwise equal in such a way to satisfy closure,
and finally c is simple since the components are simple and their only intersection is at their endpoints in the
order they are given.
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Pj,j+1,...,i+1

Pj

si s←j

r
s←j,i

C

Figure 5.3: An example illustrating the proof of Lemma 5.2, Case (b): j < i. In this figure, glue(PiPi+1) ∈
V +
P , glue(PjPj+1) ∈ V −P , and pos(Pi) is to the left of pos(Pj) (i.e. Pj,j+1,... begins at the rightmost orange

tile). The canonical embedding of the path Pj+1,j+2,...,i in R2 and five line segments are used to define
a closed simple curve c (light blue) and thus a bounded connected component C of R2 (two of the line
segments are unlabelled in this figure). Then, the ray r is used to verify that pos(Pi+1) is inside C. Thus
Pi+1,i+2,... “grows inside” C, but must leave C at some point leading to a contradiction as P can not cross
any of the components that define c.

Case (b): j < i. We define the curve c as the concatenation (see Definition 2.8) of the
following six curves:

s←j

[mid(Pj , Pj+1), pos(Pj+1)]

EPj+1,j+2,...,i

[pos(Pi),mid(Pi, Pi+1)]

si

s←j,i

By Observation 2.10, c is a finite closed simple curve11, and thus defines a bounded connected
component C. (See an example in Figure 5.3.)

By a similar12 argument as Case (a) (where i < j), pos(Pi+1) is inside C. Since P has at least
one tile Pk after Pi (i.e. k > i) to the right of or above Pj,j+1,...,i, then Pi+1,i+2,...,|P |−1 has tiles
positioned outside C. But since P is a path, it does not cross itself. Therefore, EPi+1,i+2,...,|P |−1

must cross at least one of li or lj contradicting that both glue(PiPi+1) and glue(PjPj+1) are
visible. Thus xPi > xPj .

Lemma 5.2 was our first statement proven using visibility, and the following lemma (5.3)

12Specifically, consider the ray r with x-coordinate X(pos(Pi+1−0.25)) that comes from the south and stops at
position p = (X(pos(Pi+1))− 0.25, Y (pos(Pi+1))). Observe that r crosses c exactly once at the segment s←j,i, that
due to the visibility of glue(PiPi+1) we get that r does not intersect EPj+1,j+2,...,i , and that by its definition r is
positioned away from the other four components of c. Furthermore, since c does not cross the short line segment
[p, pos(Pi+1)] then starting at the point p one can walk (eastwards) along the segment [p, pos(Pi+1)] to the point
pos(Pi+1), without crossing c. Thus pos(Pi+1) is inside C.
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similarly exploits the technique of using rays given by visibility, an embedded path, and other
line segments to enclose a connected component of the plane, enabling us to reason about how
visible glues are organised along a path. Together Lemmas 5.2 and 5.3 and Corollary 5.4 give
properties of how tiles of V +

P and V −P are arranged in the plane. This is formalized in greater
detail in Lemma 5.8.

Lemma 5.3 (V +
P glue order preserves path order). Let P ∈ P[U ] be a path producible by any tile

assembly system U = (U, σ, 1), and let i, j be such that glue(PiPi+1) ∈ V +
P , glue(PjPj+1) ∈ V +

P

and xPi < xPj . If P has at least one tile Pk after Pi and Pj (i.e. i < k, j < k), where pos(Pk)
is to the right of, or above, all tiles of Pmin(i,j),min(i,j)+1,...,max(i,j), then i < j.

Proof. Define si as in Equation (1), s←i as in Equation (2), sj as in Equation (3) and sj,i as in
Equation (4).

First assume, for the sake of contradiction, that j < i. We let c be the concatenation (see
Definition 2.8) of the following six curves:

s←i

[mid(Pi, Pi+1), pos(Pi)]

E←Pj+1,j+2,...,i

[pos(Pj+1),mid(Pj , Pj+1)]

sj

sj,i

By Observation 2.10, c is a simple closed curve, hence partitions R2 into two connected
components, exactly one of which is bounded. Let C be that bounded connected component. By
a similar argument13 using ray r as in the proof of Lemma 5.2, Pi+1,i+2,...,|P |−1 starts inside C.
However, since Pi+1,i+2,...,|P |−1 has at least one tile to the right of, or above Pj,j+1,...,i, then
Pi+1,i+2,...,|P |−1 cannot be entirely inside C. Therefore, P needs to cross the border of C, contra-
dicting either the fact that P is simple, or that glue(PiPi+1) or glue(PjPj+1) are visible.

By flipping the use of “+” and “-”, and “left” and “right”, in the statement of the previous
lemma, we immediately get the following corollary:

Corollary 5.4 (V −P glue order preserves path order). Let P ∈ P[U ] be a path producible by any
tile assembly system U = (U, σ, 1), and let i, j be such that glue(PiPi+1) ∈ V −P , glue(PjPj+1) ∈
V −P and xPi > xPj . If P has at least one tile Pk after Pi and Pj (i.e. i < k, j < k), where
pos(Pk) is to the right of, or above all tiles of Pmin(i,j),min(i,j)+1,...,max(i,j), then i < j.

In the proof of Lemma 5.10, we will attempt to pump a path segment. We will make use of
the following lemma stating that the V +

P glues on the prefix remain visible even if that prefix is
pumped. In other words visibility survives pumping.

Lemma 5.5 (Visibility survives pumping for V +
P ). Let P ∈ P[U ] be a path producible by any

tile assembly system U = (U, σ, 1), and i, j be two integers such that i < j, glue(PiPi+1) ∈ V +
P ,

glue(PjPj+1) ∈ V +
P , and type(glue(PiPi+1)) = type(glue(PjPj+1)). Let q be the pumping of P

13Here, r comes from the south with x-coordinate X(pos(Pi+1)) − 0.25, crosses sj,i (thus entering C), ends at
y-coordinate Y (pos(Pi+1)), and then we walk from that end point to pos(Pi+1) staying inside C.
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between i and j (as defined in Definition 2.4), and let Q be the maximal prefix of q that is an
assemblable path.

Then V +
P0,1,...,j

⊆ V +
Q . Intuitively, this means that all “+” glues visible relative to P0,1,...,j are

also visible relative to Q (note that Q contains P0,1,...,j as a prefix).

Proof. Setup. Let li be the visibility ray of glue(PiPi+1) and lj be the visibility ray of
glue(PjPj+1). Now let Pleft be a leftmost tile of σ ∪ asm(P0,1,...,j), and let lleft be the hori-
zontal ray to the west starting from pos(Pleft). Moreover, let Pbottom be a lowest tile of P0,1,...,j .

We now define two helper points of R2, far enough from P0,1,...,j :

A = Pleft +

(
−10

0

)
B =

(
X(mid(Pj , Pj+1))

Y (pos(Pbottom))− 10

)
where X(x, y) = x, Y (x, y) = y.

Intuitively, A has the same y-coordinate as, and is 10 units to the left of Pleft, and B has
the same x-coordinate as the glue between Pj and Pj+1, and is 10 units below the lowest point
of P0,1,...,j .

14

Define QA = {(x, y) ∈ R2|x ≤ xA ∧ y ≤ yA where A = (xA, yA)} (the quarter-plane below
and to the left of A) and QB = {(x, y) ∈ R2|x ≤ xB ∧y ≤ yB where B = (xB, yB)} (the quarter-
plane below and to the left of B). Also, let sj = [pos(Pj),mid(Pj , Pj+1)] be the half-unit
horizontal segment of R2 from pos(Pj) to mid(Pj , Pj+1).

Moreover, let c be the curve that is the concatenation of [(xA, yB), A], [A, pos(Pleft)], EPleft,left+1,...,j
,

sj , [mid(Pj , Pj+1), B], [B, (xA, yB)]. By Observation 2.10, c is a simple closed curve, hence de-
fines a bounded connected component C of R2.

Now, let Cj = QA ∪ QB ∪ C, which is also a single connected component of R2, because
(xA, yB) is in all components of the union ((xA, yB) ∈ Qa ∩ QB ∩ C) and each component is
connected.

Proof argument. We claim that for all k < j, lk ⊂ Cj since lk ⊂ QB ∪C which can be seen
as follows: (i) lBk = {(x, y) | (x, y) ∈ lk ∧ y ≤ B)} is contained in QB since lk is to the left of lj
(by the contrapositive of Lemma 5.3) and lBk reaches infinitely far to the south as does QB; and
(ii) by the definition of visibility the segment lk \ lBk is contained in Cj .

Now suppose, for the sake of contradiction, that EQj+1,j+2,... , the canonical embedding of the
path Qj+1,j+2,... in R2, intersects lk. Then EQj+1,j+2,... needs to enter Cj , because pos(Qj+1) is
outside Cj (by the contrapositive of Lemma 5.3). This crossing can happen at only four different
parts of the border of Cj :

• lleft, but this is impossible since pos(Pleft) is a leftmost point of σ∪ asm(P0,1,...,j) and
−−→
PiPj (as

a vector) has a strictly positive x-coordinate (by the contrapositive of Lemma 5.3).
• Pleft,left+1,...,j or sj , but this would contradict the fact that Q is simple.
• lj . We claim that this is impossible: assume, for the sake of contradiction, that it is not, and let
k0 > j be the smallest integer such that Qj+1,j+2,...,k0 intersects lj . Moreover, k0 − (j − i) >
j because Qi,i+1,...,j does not intersect its own visibility rays (except at their endpoints).
Therefore, Qj+1,j+2,...,k0−(j−i) would also intersect li, hence Qj+1,j+2,...,k0−(j−i) also enters Cj ,

14The choice of 10 units is arbitrary here, we simply need to define a curve with segments that are strictly to
the left of σ ∪ asm(P0,1,...,j) and below P0,1,...,j .
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contradicting the assumption that k0 is the smallest integer such that Qj,j+1,...,k0 intersects lj
(since in the previous bullet points we have shown that Qj+1,j+2,...,k0−(j−i) cannot cross other
parts of the border of Cj).

Therefore, EQj+1,j+2,... does not enter Cj , which is a contradiction, which in turn contradicts
our assumption that EQj+1,j+2,... intersects lk. Hence the canonical embedding of Q does not
cross any of the visibility rays defining V +

P0,1,...,j
, thus V +

P0,1,...,j
⊆ V +

Q .

By flipping the use of “+” and “−” in the statement of the previous lemma, and “left” and
“right” in the proof, we get the following corollary:

Corollary 5.6 (Visibility survives pumping for V −P ). Let P ∈ P[U ] be a path producible by any
tile assembly system U = (U, σ, 1), and i, j be two integers such that i < j, glue(PiPi+1) ∈ V −P
and glue(PjPj+1) ∈ V −P , and type(glue(PiPi+1)) = type(glue(PjPj+1)). Let q be the pumping of
P between i and j, and let Q be the maximal prefix of q that is an assemblable path.

Then V −P0,1,...,j
⊆ V −Q . Intuitively, this means that all “-” glues visible relative to P0,1,...,j are

also visible relative to Q (note that Q contains P0,1,...,j as a prefix).

5.2 Blocking any h-successful path

Keeping in mind that the seed assembly supertile of U includes the origin (0, 0) ∈ Z2, for the
rest of the paper fix a horizontal line at height h = 10m above the origin.

Definition 5.7 (The set of h-successful paths of U). The set of h-successful paths PU of U is
defined as:

PU = {P | P ∈ P[U ] and P contains exactly one tile at height h = 10m, its last tile}

where P[U ] is the set of producible paths of U (defined in Section 2.3).

Note that any claimed successful simulation by U of Tn (defined in Section 3) must exhibit
at least one path that has a h-successful prefix P . When we write “P is a h-successful path” we
mean P ∈ PU . The set of h-successful paths PU is finite because the tileset U is finite and the
area of the simulation zone below the horizontal line at height h is finite.

We define a “nowhere-h-successful path” to be a path that has no tile at height h. In other
words, a nowhere-h-successful path has no h-successful prefixes.

5.2.1 Visibility setup

We begin with the following lemma, which has a straightforward proof and is used merely to
define i, j and `, which are used extensively in later proofs. Recall that U is a tile assembly
system with tile set U simulating T10|U | at scale factor m.

Lemma 5.8. Let P ∈ PU be a h-successful path, and let ` be a vertical line in R2 with x-
coordinate |U |(3m+ 1) +m+ 1.5. If the visible glue placed by P on ` is a V +

P glue (respectively
a V −P glue), then there exist i < j ∈ N that satisfy all of the following properties:

1. pos(Pi) is to the right (respectively to the left) of ` (i.e. xPi > `, respectively xPi < `)
2. pos(Pj) is horizontal distance at least 3m from pos(Pi) (i.e. |xPi − xPj | ≥ 3m)
3. pos(Pj) is to the right (respectively to the left) of pos(Pi)
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4. glue(PiPi+1) ∈ V +
P and glue(PjPj+1) ∈ V +

P (respectively glue(PiPi+1) ∈ V −P and glue(PjPj+1) ∈
V −P )

5. type(glue(PiPi+1)) = type(glue(PjPj+1))
6. pos(Pi) and pos(Pj) are within vertical distance 3m (i.e. |yPj − yPi | ≤ 3m)

Proof. Firstly, the path P is of width (horizontal extent) ≥ 8|U |m + 2 (as we are simulating
T10|U | at scale factor m, see Figure 4.1). Secondly, since P is h-successful, P crosses `, and since
` is positioned at distance ≥ |U |(3m+ 1) + 1 to the right15 of the seed σ of U , there are at least
|U |(3m+ 1) + 1 visible glues to the left of `.

Moreover:

• If the visible glue placed by P on ` is in V +
P , then since P has at least one tile in the rightmost

2m positions of the simulation zone, P has at least |U |(3m+ 1) + 1 visible glues to the right
of `. By Lemma 5.2 all of these glues are in V +

P .
• Else, since ` is at horizontal distance at least |U |(3m+ 1) + 1.5 from the rightmost tile of σ,
P has at least |U |(3m + 1) + 1 visible glues to the left of ` By Lemma 5.2 all of these glues
are in V −P .

Thus, if we look at the first |U |(3m+1)+1 visible glues of P that are immediately to the right
(respectively to the left) of `, by the pigeonhole principle, at least one of their glue types appears
at least 3m+ 1 times. Since each x-coordinate has exactly one visible tile, we can find two V +

P

(respectively V −P ) glues, glue(PiPi+1) and glue(PjPj+1) for some i < j, with the same type, that
are at least horizontal distance 3m away from each other, which shows Conclusions 1, 2, 4 and 5
of this lemma. Taking the contrapositive of Lemma 5.3 (in that lemma letting Pk be the tile
of P at height h), we get that xPi < xPj (respectively, of Corollary 5.4, that xPj < xPi), which
shows Conclusion 3.

Finally, since the region we chose to apply the pigeonhole argument is located immediately
to the right of ` (respectively, left) and is of width merely |U |(3m+ 1) + 1 neither glue(PiPi+1)
nor glue(PjPj+1) are in the “vertical part” of the simulation zone (Figure 4.1), and since the
“horizontal part” of the simulation zone is of height 3m, this proves Conclusion 6.

5.2.2 Blocking any h-successful path by growing a branch from it

In this section we give Lemma 5.10 which is the first main tool used in this paper. We also
give Theorem 5.11 whose short proof gives a method to block any h-successful path. We begin
with the definition of an enclosing branch, which is a path D branching from P , and enclosing a
connected component of R2. The enclosing branch achieves this in one of two ways: (1) either by
intersecting σ∪P (see Figure 5.4(Left)) and hence the enclosure is bordered by P , the enclosing
branch and possibly σ, or (2) by placing a new visible glue on ` (see Figure 5.4(Right)) and
hence the enclosure is bordered by P , the enclosing branch, a segment of ` and possibly σ.

Definition 5.9. [Enclosing branch for a path] Let P ∈ PU be a h-successful path and for any `
that satisfies the hypotheses of Lemma 5.8: Let k ∈ {0, 1, . . . , |P | − 1} be such that P0,1,...,k

includes glue(P` P`+1), P ’s visible glue on `. We call a path D an enclosing branch for P at k
if P0,1,...,kD0,1,...,|D|−2 ∈ P[U ] is an assemblable path, pos(Pk+1) = pos(D0), glue(PkPk+1) =
glue(PkD0) and is visible relative to P0,1,...,kD0,1,...,|D|−2 ∈ P[U ], and at least one of the following
is the case:

15Note that the m×m seed supertile region contains the point (0, 0) ∈ Z2.
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1. at pos(D|D|−1) the path D intersects σ ∪ asm(P0,1,...,k),
16 or

2. mid(D|D|−2, D|D|−1) ∈ R2 is on ` and strictly below the points in the set EP ∩ `.17

`

P0,1,...,k

lk

σ

D

k

` lk

σ

D

k

P0,1,...,k

Figure 5.4: Enclosing branches that enclose the part of the plane shaded grey. Left: Example of an
enclosing branch D for P at i for Definition 5.9(1). D is the pink and red path, the last tile of D, which
intersects P , is drawn in red (hence PD is not a path because its last tile intersects an earlier part of
itself). Right: Example of an enclosing branch D for P at i for Definition 5.9(2). D is the pink and red
path, the last tile of D (immediately after D places a new visible glue on `) is drawn in red. Note that
Figure 5.13 shows a concrete construction of such an enclosing branch.

Before stating Lemma 5.10, we give an intuitive, although imprecise, summary of its state-
ment, of how we obtain such a statement and why we would want such a statement. Let P
be any h-successful path, which implies that P is long enough to repeat some glue type many
times. This implies one of two things (which are the two conclusions of the lemma):

1. There is a path, assemblable by U , that places tiles outside of the simulation zone. If the
proof yields this conclusion, then such a path is found either by repeating one part of P
enough times (this is point P1 in the proof), or else by deriving a h-successful path P ′ from
P , and “shortcutting” a part of P ′, so as to translate a suffix of P ′ by a large enough vector.
In both cases, this contradicts that U simulates T10|U |, which gives the proof of our main
theorem.

2. Else, we can grow a path of the form P0,1,...,kD0,1,...|D|−2, for some k ∈ {i, j}, which has the
following properties:

• glue(PkPk+1), which is visible relative to P , is also visible relative to D, and
• any h-successful path that turns to the right from D0,1,... must hide the visibility of

glue(PkPk+1).

First we observe that P must be blocked by such a P0,1,...,kD0,1,... (i.e. P cannot grow from
an assembly that already contains P0,1,...,kD0,1,...), because we can show that P turns to the
right from D0,1,...,a

18, but this causes a contradiction as P can not hide its own visible glue.
This is one useful fact from Conclusion 2.
The second useful fact (and the main reason for the particular form of Conclusion 2), is that
we have found a way to consume a finite resource: visible glues (note that the entire set of
h-successful paths is finite and each such path has a finite set of visible glues). Then, later in
the proof of Theorem 1.1, we will use this “consumption of visible glues” property to show

16and therefore D cannot grow completely from σ ∪ asm(P0,1,...,k) without intersecting σ ∪ asm(P0,1,...,k)
17And therefore D cannot grow completely from σ ∪ asm(P0,1,...,k) without placing a glue on ` that is lower

than P ’s visible glue on `.
18From the definition of enclosing branch P places a tile at pos(D0) therefore either P branches to the right

(see proof of Theorem 5.11) from D, or if it happens that type(Pk+1) 6= type(D0) then P is blocked by D.
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that the “supply of visible tiles” must decrease with each new “branch” to the right starting
from P0,1,...,kD0,1,...|D|−2; and the particular form of Conclusion 2 allows us to do this.

The previous intuitive overview of the lemma statement is somewhat incomplete, but may serve
as a guide. All the steps of the proof are given in Figure 5.5, with a running pictorial example,
and short summaries of each step.

Lemma 5.10 (Pumping or enclosing any h-successful path). Let P ∈ PU be a h-successful path,
let i, j, ` be as in Lemma 5.8 with P ’s visible glue on ` being in V +

P (respectively, V −P ). At least
one of the following holds:

1. There is an assemblable path (i.e. from P[U ]) that places tiles outside of the simulation zone
of U , contradicting that U simulates T10|U |.

2. (i) There is an enclosing branch D = D0,1,...,|D|−1 for P at some k ∈ {i, j}, such that
P0,1,...,kD0,1,...,|D|−2 ∈ P[U ] is an assemblable nowhere-h-successful path that has the same
visible glue on ` as P .
(ii) Furthermore, for all paths R such that for some a ≤ |D| − 2, P0,1,...,kD0,1,...,aR is h-
successful and turns right (respectively, left) from P0,1,...,kD0,1,...,|D|−2, at least one of the
following is the case:

• glue(PkPk+1) is not visible relative to P0,1,...,kD0,1,...,aR, or
• R has a lower visible glue on ` than P .

Proof. A tree representing the proof is shown in Figure 5.5. The proof performs a depth-
first, left-first, search of the tree. Points in the tree and proof are numbered P1, P3, . . . , P9
correspondingly.

`

P

li lj

σ

`

P

li lj

σ

Figure 5.6: Two example h-successful paths. For brevity, their suffixes that grow to height h are not
shown. Here, and in all figures in the paper, li and lj denote the two visibility rays of the glues glue(PiPi+1)
and glue(PiPi+1) respectively. Left: A path P where the segment Pi+1,i+2,...,j can be (infinitely) pumped
(see Figure 5.7). Right: A path P where the segment Pi+1,i+2,...,j can not be (infinitely) pumped (see
Figure 5.9).

Intuitively, let q be the sequence composed of P0,1,...,i followed by the “infinite pumping” of
the segment Pi+1,i+2,...,j . Formally, let q be the pumping of P between i and j (Definition 2.4),
and let Q ∈ P[U ] be the longest prefix of q that (a) is a path (i.e. non-self intersecting), (b) does
not intersect σ, and (c) is assemblable from the seed σ of U . Q is either infinite or finite.

P1 If Q is infinite (as in the example in Figure 5.7): Then since
−−→
PiPj has a nonzero horizontal

component (by Lemma 5.8 the horizontal distance between glue(PiPi+1) and glue(PjPj+1) is
≥ 3m), this infinite assembly reaches infinitely to the right for glue g in the lemma statement
being in V +

P (respectively, to the left for g being in V −P ), and thus places tiles outside of the
simulation zone, giving Conclusion 1.
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`

P0,1,...,j

Qj+1,j+2,...

li lj

σ

Figure 5.7: Case P1: Q is an infinite path because the sequence q does not intersect P0,1,...,j nor σ. Note
that Q is defined so that it shares a prefix with P : i.e. P0,1,...,j = Q0,1,...,j .

P2 If some prefix Q′ of Q is h-successful we claim that we get Conclusion 1 of the lemma
statement. To see this, note that P0,1,...,j is nowhere-h-successful. Therefore, if Q′ were h-
successful, Q would place a tile Qs = Q|Q′|−1 (where |Q′| ∈ N is the length of Q′) on the

horizontal line y = h, which means that Q would also have a tile at position pos(Qs −
−−→
PiPj)

(i.e. positioned one iteration of the “pumping” earlier, see Figure 5.8). But pos(Qs−
−−→
PiPj) is

outside of the simulation zone: pos(Qs) is in the simulation zone on line h, the “vertical part”
of the simulation zone (that intersects line h and for distance 7m below h) is of width 3m,−−→
PiPj has horizontal length ≥ 3m and vertical length ≤ 3m (Lemma 5.8). This immediately
gives Conclusion 1.

j − i ≥ 3m

. . .

Figure 5.8: Case P2: Q (in green and red in the picture) is h-successful. In this case, the last tile Q|Q|−1
of Q (circled in red) is at height h. Since |xPj

− xPi
| ≥ 3m, and because Qi,i+1,... is periodic, Q also

contains tile Q|Q|−1 −
−−→
PjPi (in red in the picture), which is outside of the simulation zone (in gray).

P3 Else Q is finite, and nowhere-h-successful. We assert the claim that q|Q| intersects σ ∪
asm(P0,1,...,j), which we will next prove.19

If q|Q| intersects σ, we are immediately done. Else, q intersects itself. Let a < |Q| be the
smallest integer such that pos(qa) = pos(q|Q|). We will show that a ≤ j. Assume, for the
sake of contradiction that a > j.
Note that |Q| − (j − i) ≥ a − (j − i) ≥ i + 1. Therefore, we can apply Lemma 2.5 to show

that Qa−(j−i) = Qa−
−−→
PiPj and Q|Q|−(j−i) = q|Q|−

−−→
PiPj . But then since pos(Qa) = pos(qa) =

pos(q|Q|), and since a > j,20 we get that pos(Qa−(j−i)) = pos(Qa)−
−−→
PiPj = pos(q|Q|)−

−−→
PiPj =

19Note that we already know that q|Q| intersects σ or q0,1,...,|Q|−1. Intuitively, if qj+1,j+2... intersects itself, then
since qi,i+1,... is periodic and i < j, we can find another self-intersection j − i indices earlier along q. Applying
this argument repeatedly will show an intersection with Pi,i+1,...,j .

20intuitively, we are in the ≥ 2nd iteration of pumping
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pos(Q|Q|−(j−i)). Therefore, Q intersects itself which is a contradiction. Hence a ≤ j and thus
q|Q| intersects σ ∪ asm(P0,1,...,j) as claimed.
An example of this case is shown in Figure 5.9.

`

P0,1,...,j

Qj+1,j+2,...

li lj

σ

Figure 5.9: Case P3: q conflicts with P0,1,...,j . The figure shows σ and the path Q. Note that Q is defined
so that it shares a prefix with P : i.e. P0,1,...,j = Q0,1,...,j .

P4 Let R be the set of all h-successful paths of the form Q0,1,...,rR ∈ P[U ], for any r such that
j < r ≤ |Q| − 1 and any path R, such that all of the following hold:

(i) Q0,1,...,rR turns right (respectively, left) from Q,
(ii) glue(PjPj+1) = glue(QjQj+1) is visible relative to Q0,1,...,rR,

(iii) Q0,1,...,rR has the same visible glue as P on `.

If R is empty21, then we claim that we get Conclusion 2 of the lemma statement, with
k = j and D = qj+1,j+2,...,|Q|. Indeed, D is an enclosing branch for P at j with the same
visible glue on ` as P . Moreover, by Lemma 5.5 (respectively, Corollary 5.6), Q does not
hide the visibility of glue(PiPi+1) or glue(PjPj+1), hence D satisfies Conclusion 2(i). Then,
Conclusion 2(ii) is immediately satisfied since R is empty (intuitively, R is the set of paths
that do not meet that conclusion).

P5 Else, R is not empty. Until the end of this proof, let r and R be such that Q0,1,...,rR is
the most right-priority (respectively, left-priority) of R. Note that since all paths of R are
h-successful, the last tile of R|R|−1 is the only tile of R at height h. Such a path is shown in
Figure 5.10. Notice that, because R is the most right-priority path of R, R does not turn
left from Q (before turning right from Q), or else we could find a h-successful path turning
right earlier than R.

`

Qr R

P0,1,...,j

li lj

σ

Figure 5.10: Case P5: there is at least one path in R. Let Q0,1,...,rR ∈ R be the most right-priority one.

We grow σ ∪ asm(P0,1,...,i) = σ ∪ asm(Q0,1,...,i), and then the maximal assemblable prefix of

the following “translated path”: (Qj+1,j+2,...,rR) +
−−→
PjPi. In other words, starting from σ, we

grow the following path: Q0,1,...,i((Qj+1,j+2,...,rR) +
−−→
PjPi) (Figure 5.11 below highlights this

21which includes in particular the case where no h-successful path can branch from Q
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“backwards translation”).

P6 If all of (Qj+1,j+2,...,rR) +
−−→
PjPi is assemblable from σ ∪ asm(P0,1,...,i), as in the example in

Figure 5.11, then we claim that pos(R|R|−1 +
−−→
PjPi) is outside the simulation zone, yielding

Conclusion 1. To see this first note that since R is h-successful the tile R|R|−1 (i.e. untrans-
lated) is on the horizontal line y = h and thus in the “vertical part” of the simulation zone

(see Figure 4.1) which is of width 3m. But, by Lemma 5.8,
−−→
PjPi has horizontal length ≥ 3m

and vertical length ≤ 3m. This means that pos(R|R|−1 +
−−→
PjPi) is outside of the simulation

zone, giving Conclusion 1.

`

P0,1,...,i

li

σ

R+
−−→
PjPi

Figure 5.11: Case P6: (Qj+1,j+2,...,rR) +
−−→
PjPi is assemblable from σ ∪ asm(P0,1,...,i).

P7 Else not all of (Qj+1,j+2,...,rR) +
−−→
PjPi is assemblable from σ ∪ asm(P0,1,...,i). Let R′ be the

longest prefix of R such that R′ +
−−→
PjPi does not intersect σ ∪ asm(P0,1,...,i) and R′ +

−−→
PjPi

does not have any visible glue on ` below the visible glue of P on `. (See Figure 5.12 for

an example where the longest assemblable prefix of R+
−−→
PjPi does not place any new visible

glue on `, and Figure 5.13 for an example where it does.)

In this case, we make the more specific claim that R+
−−→
PjPi conflicts with σ ∪ asm(P0,1,...,i):

indeed, by its definition in P5 above, R does not conflict with Q0,1,...,r, and hence does

not conflict with Qj+1,j+2,...,r, hence R +
−−→
PjPi does not conflict with Qj+1,j+2,...,r +

−−→
PjPi =

Qi+1Qi+2 . . . Qr−(j−i). The only part of the assembly σ∪asm(P0,1,...,i)∪(asm(Qj+1,j+2,...,r +
−−→
PjPi))

that R+
−−→
PjPi can conflict with is therefore σ ∪ asm(P0,1,...,i).

Observe that (Qj+1,j+2,...,rR0,1,...,|R′|)+
−−→
PjPi is an enclosing branch for P at i (Definition 5.922).

`

P0,1,...,i

li

σ

R′ +
−−→
PjPi

Figure 5.12: Case P7: Not all of (Qj+1,j+2,...,rR) +
−−→
PjPi is assemblable from σ ∪ asm(P0,1,...,i).

P8 We now consider the set S of h-successful paths of the form P0,1,...,iXS for some prefix X of

(Qj+1,j+2,...,rR
′) +
−−→
PjPi and some path S, such that all of the following hold:

22Note that both of the cases (1) and (2) of Definition 5.9 can happen here.
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` li lj

σ

R

` li lj

σ

R+
−−→
PjPi

` li

σ

R′ +
−−→
PjPi

Figure 5.13: Left: an example path R from P7 (the red cross is an intersection of Q with itself). Centre:

Example for P7, i.e. R +
−−→
PjPi places a glue on ` below the visible glue of P on `. Right: R′ +

−−→
PjPi is

the largest prefix of R+
−−→
PjPi that does not place a visible glue on ` below the visible glue of P on `.

• P0,1,...,iXS turns right (respectively, left) from P0,1,...,i((Qj+1,j+2,...,rR
′) +
−−→
PjPi),

• glue(PiPi+1) is visible relative to P0,1,...,iXS, and
• the visible glue of P on ` is visible relative to P0,1,...,iXS.

There are two cases:

(a) If S is empty this gives Conclusion 2 with D = Qj+1,j+2,...,rR0,1,...,|R′| +
−−→
PjPi and k = i.

In particular, as noted in case P7, D is an enclosing branch for P at i, which satisfies
Conclusion 2(i).
Moreover, the fact that S is empty immediately shows Conclusion 2(ii) (intuitively, S is
the set of paths that do not meet that conclusion).

(b) Else, there is at least one path P0,1,...,iXS in S. See Figure 5.14 for two examples.

`

P0,1,...,i

σ

li

S

` li

σ

S

Figure 5.14: Two different example paths S that illustrate Case P8b: At least one h-successful path XS

can turn right from (Qj+1,j+2,...,rR
′)+
−−→
PjPi without hiding the visibility of glue(PiPi+1) nor of the visible

glue of P on `.

P9 The only unresolved case after step P8 is therefore case P8b, which we now reason about
with the goal of obtaining Conclusion 2.

We next grow the longest assemblable prefix of the “forward translated” segment XS+
−−→
PiPj =

(XS) +
−−→
PiPj and use this to show that in all remaining cases we get Conclusion 2. See

Figure 5.15 for an example.

For notation, let X ′ = X +
−−→
PiPj and S′ = S +

−−→
PiPj . Suppose that the visible glue of P on `

is in V +
P (respectively, in V −P ).

From P8b, S does not hide the visibility of glue(Pi Pi+1). Therefore, S′ does not place a
glue directly below mid(Pj , Pj+1) either. Notice that P0,1,...,jX

′ is assemblable (as it is a
prefix of P0,1,...,jQj+1,...,rR), and let s be the largest integer such that P0,1,...,jX

′S′0,1,...,s−1 is
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assemblable and has the same visible glue as P on `.
If s = |S|, then the last point of S′ is outside of the simulation zone, because the last tile
of S (i.e. untranslated) is at height h. This yields Conclusion 1.
Else, s < |S|. Moreover, we picked S in case P8b so that XS turns right (respectively, left)

at least once from (Qj+1,j+2,...,rR
′) +
−−→
PjPi, therefore S′ also turns right (respectively, left) at

least once from Qj+1,j+2,...,rR
′.

`

P0,1,...,j

li

σ

lj

Figure 5.15: Case P9: We have just constructed an enclosing branch for P at j. In the drawing, that
enclosing branch is made of the path following the green, red and then brown tiles. In this example, X
is the concatenation of the green (Qj,j+1,...,r) and red (a prefix of R′) paths and S is in brown (but in
general S can start from any of the green or red tiles).

Let D = X ′S′0,1,...,s, and let Z be any path such that P0,1,...,jD0,1,...,aZ is h-successful and turns
right (respectively, left) from P0,1,...,jD0,1,...,|D|−2, for some a ≥ 0. Note that P0,1,...,jD0,1,...,aZ
cannot be in R, because then P0,1,...,jD0,1,...,aZ would more right-priority (respectively, left-
priority) than Q0,1,...,rR, r > j (contradicting our choice of R in P5) since: P0,1,...,jD0,1,...,aZ
either turns right (respectively, left) from Q earlier than R, or turns right (respectively, left)
from R, or turn right (respectively, left) from S′ (which turns right (respectively, left) from
Qj+1,j+2...rR

′).
Therefore,23 Z must either have its visible glue on ` lower than that of P , or hide the
visibility of glue(PjPj+1). This is precisely Conclusion 2 with k = j. Notice that D is in fact
an enclosing branch for P at j because: neither R′ nor S′ hide the visibility of glue(PjPj+1),
and by Lemma 5.5 (respectively Corollary 5.6), neither does Qj,j+1,..., and finally that D is
composed of subpaths from these paths.

The following theorem (5.11) essentially states that for any path P , we can grow an assembly
containing no h-successful path, conflicting with P . The proof is almost a direct consequence
of Lemma 5.10. Note that we can think of Theorem 5.11 as a weaker version of our main
result (Theorem 1.1). That main result (Theorem 1.1) builds a single assembly containing no
h-successful path and that conflicts with all possible h-successful paths.

Theorem 5.11. Let P ∈ PU be a h-successful path. Then either there is a producible as-
sembly α ∈ A[U ] with tiles outside of the simulation zone, or else there is an assemblable
nowhere-h-successful path of the form P0,1,...,kD0,1,...,|D|−2 that conflicts with P , and thus σ ∪
asm(P0,1,...,kD0,1,...,|D|−2) prevents P from growing to be h-successful. Moreover, D is constructed
as in Lemma 5.10.

23I.e. we have a path P0,1,...,jD0,1,...,aZ of the form Q0,1,...rR (see P4), and that turns right from Q (satisfies
P4(i)), yet is not in R hence P0,1,...,jD0,1,...,aZ violates Conditions P4(ii) and P4(iii).
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Proof. We apply Lemma 5.10. If we get Conclusion 1, we are immediately done (we get α in the
statement). Else, let i, j, ` be as defined in Lemma 5.8, let k ∈ {i, j} and let D be the enclosing
branch constructed in Conclusion 2 of Lemma 5.10, assuming P places a V +

P (respectively, V −P )
glue on `. We begin by defining a connected component C. There are two cases:

• If D intersects σ∪asm(P0,1,...,k) let P be any path from pos(D|D|−1) (the first such intersection)
to pos(Pk) in the grid graph of σ∪asm(P0,1,...,k). Let C be the bounded connected component
of R2 enclosed by the concatenation of EP and ED (the canonical embedding of the paths P
and D, respectively).

• Else, D = D0,1,...,|D|−1 places a glue, denoted glue(D|D|−2D|D|−1), on ` below the visible glue
of P on `, and D does not intersect σ∪asm(P0,1,...,k). In this case, we let c be the concatenation
of the following four curves (where glue(P`P`+1) is the visible glue of P on `):

[mid(P`, P`+1), pos(P`+1)]

EP`+1,...,kD0,1,...,|D|−2

[pos(D|D|−2),mid(D|D|−2, D|D|−1)]

[mid(D|D|−2, D|D|−1),mid(P`, P`+1)]

By Observation 2.10, c is a finite closed simple curve and thus defines a bounded connected
component C.

In both cases, by the fact that D is an enclosing branch, glue(PkD0) is visible relative to
P0,1,...,kD0,1,...,|D|−2, which implies that the left-hand side (respectively, right-hand side) of
glue(PkD0) is inside C (when walking in the direction from Pk to D0).

Also, in both cases, P0,1,...,kD0,1,...,|D|−2 is not h-successful (by Lemma 5.10). Therefore, if P
can still grow to be h-successful after P0,1,...,kD0,1,...,|D|−2 is grown, then Pk,k+1,... turns right
(respectively, left) from PkD0,1,...,|D|−2, and thus R from the statement of Lemma 5.10 is a
suffix of P . But this implies that P places a lower visible glue than glue(P`P`+1) (on `) and/or
glue(PkD0) (on the visibility ray lk), which contradicts the visibility of glue(P`P`+1) and/or
glue(Pk Pk+1) = glue(PkD0) relative to P .

Therefore, P conflicts with P0,1,...,kD0,1,...,|D|−2 and thus P cannot grow to be h-successful
from the assembly σ ∪ asm(P0,1,...,kD0,1,...,|D|−2).

6 Blocking all paths

We restate our main theorem here:

Theorem 1.1. The noncooperative abstract tile assembly model is not intrinsically universal.
In other words, there is no tileset U that at temperature 1 simulates all noncooperative tile
assembly systems.

This result is an immediate corollary of Theorem 6.1 below. Intuitively, Theorem 6.1 states
that there is no tile set that, at temperature 1, produces (or simulates) the “shapes” of all
TN systems,24 even if the simulator is allowed to use spatial rescaling. Thus Definition 2.1
is violated which immediately implies (via Observation A.2) that there is no tile set that, at
temperature 1, simulates the productions of all TN systems (thus contradicting Definition A.1,
“equivalent productions”), which in turn contradicts Definition A.6 (“intrinsicially universal”,
at temperature 1), giving Theorem 1.1.

24The class of “flipped-L” tile assembly systems {TN | N ∈ Z+} were defined earlier in Section 3.

32



Theorem 6.1. There is no tileset U , scale factor m ∈ Z+, seed σ and m-block supertile represen-
tation function Rm such that for all N ≥ 10|U |, dom(R∗m(σ)) = dom(σN ) and {dom(R∗m(α)) |
α ∈ A�[U ]} = {dom(β) | β ∈ A�[TN ]} where U = (U, σ, 1) and TN = (TN , σN , 1).

Proof. Assume, for the sake of contradiction, that there is a tileset U such that for N = 10|U |,
there is an integer m, a seed assembly σ ∈ asm(U), and an m-block representation function Rm
such that the terminal assemblies of U = (U, σ, 1) map cleanly to the terminal assemblies of
T10|U | under Rm, where T10|U | is the flipped-L tile assembly system defined in Definition 3.1.

We will show that U also produces terminal assemblies mapping to non-terminal or non-
producible assemblies of T10|U | under Rm. More specifically, we will show that either some of
the assemblies of U map cleanly to non-producible assemblies of T10|U | under Rm, or else we
will construct one producible assembly α ∈ A[U ] conflicting with all h-successful paths of U .
This will then conclude the proof since α grows into a terminal assembly, i.e. α →U α′ where
α′ ∈ A�[U ], that does not map cleanly to a terminal assembly of A�[T10|U |] under Rm (since all
tiles of α′ are below the horizontal line at height h).

Blocking h-successful paths individually For the remainder of the proof, let ` be a vertical
(glue) line at x-coordinate |U |(3m+ 1) +m+ 1.5 (in other words, at distance ≥ |U |(3m+ 1) + 1
to the right of the rightmost tile of σ), as defined by Lemma 5.8. We apply Lemma 5.10 on each
h-successful path P , individually25. For each such P , Lemma 5.10 has one of two conclusions,
numbered Conclusion 1 and Conclusion 2. If we get Conclusion 1 for any of the h-successful
paths, we can conclude the proof immediately, because that conclusion shows that it is possible
to grow a path from σ that places tiles outside of the simulation zone of U , contradicting that U
simulates T10|U |, and hence assemblies of U do not simulate the shape of T10|U | and we are done
with the proof of Theorem 6.1.

Therefore, in the rest of this proof, we assume that for all h-successful paths of U we get
Conclusion 2 of Lemma 5.10. That conclusion gives, for each h-successful path P , a nowhere-h-
successful enclosing branch D for P at some integer kP .

If it were the case that the entire set of these enclosing branches could grow together in
the same assembly, we would immediately be done: indeed, the union of the seed with all of
these enclosing branches (and their prefixes from P ) would be an assembly conflicting with all
h-successful paths of U (implying in particular that this union does not contain any h-successful
path).

The rest of the proof deals with the situation where this is not the case, i.e. at least one (and
possibly very many) enclosing branches D from Lemma 5.10 conflict with other paths or with
other enclosing branches, and thus not all enclosing branches D can grow completely together
in the same assembly.

Path order We will build an assembly that does not reach height h and that blocks all of the
paths from the set of h-successful paths PU of U . Recall that the set of h-successful paths of U is
finite. In order to block them all, we will tackle h-successful paths in a specific order, called the
“path order,” defined as follows. Let ≺ be the path order relation on the set PU of h-successful
paths of U where for P,Q ∈ PU with P 6= Q we say that P ≺ Q if and only if at least one of (A)
or (B) holds:

25By “individually” we mean that we are currently merely looking at the case where we grow each path
separately: of course it may be the case that not all of these paths can be simultaneously grown as they may
conflict with each other—the main point of this proof is to handled this.
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(A) the visible glue of P on ` is strictly higher than the visible glue of Q on `, or
(B) the visible glues glue(PpPp+1) and glue(QqQq+1) of P and Q on ` are at the same position26

and one of the following holds:

• glue(PpPp+1) ∈ V +
P and glue(QqQq+1) ∈ V −Q , or

• glue(PpPp+1) ∈ V +
P , glue(QqQq+1) ∈ V +

Q , and Qq,q+1,...,|Q|−1 is the right-priority path of
Pp,p+1,...,|P |−1 and Qq,q+1,...,|Q|−1, or

• glue(PpPp+1) ∈ V −P , glue(QqQq+1) ∈ V −Q , and Qq,q+1,...,|Q|−1 is the left-priority path
Pp,p+1,...,|P |−1 and Qq,q+1,...,|P |−1, or
• Else, notice that P and Q share their suffix from their visible glue on ` onwards until

their last tile at height h (because none of these suffixes is the right-priority or left-priority
one). Then P is the right priority path of P and Q if P and Q share two consecutive tiles
PaPa+1 = QbQb+1 before disagreeing (note that P 6= Q), and if they do not share such a
pair then P is the lexicographically first path of P and Q if we describe both using some
canonical encoding of P and Q as two binary strings.

Here is an intuitive description of the path order: we first consider paths by the height of their
visible glue on ` (highest first), and then if both visible glues on ` are in the same direction, we
first consider the most right-priority of P and Q after they cross ` if these glues are in V +

P and
V +
Q , or the most left-priority if these glues are in V −P and V −Q , and if the glues are at the same

position with different +/- orientations, the one with a “+” visible glue on ` comes first. Finally
if P and Q happen to agree (are equal) on their suffix from their visible glue on ` onwards, then
we (arbitrarily) choose the right priority path (note that in this latter case all of the differences
between P and Q must be before their respective visible glues on `).

Note that the relation ≺ is a total order on the set PU of h-successful paths, since the last case
of the definition of ≺ covers all remaining cases using right-priority, and right-priority is itself a
total order. Also, recall that the set of h-successful paths is a finite number (see Section 5.2),
and let H be that number.

Thus let P 0 ≺ P 1 ≺ P 2 ≺ . . . ≺ PH−1 be the list of all h-successful paths according to path
order (so that no path has a higher visible glue on ` than P 0).

Enclosing branch Dn. For each path Pn, applying Lemma 5.10 gives an index kn and an
“enclosing branch Dn for Pn at kn” such that Pn0,1,...,knD

n
0,1,...,|D|−2 conflicts with Pn (by Theo-

rem 5.11). Let

En
def
= P0,1,...,knD

n
0,1,...,|D|−2

The “path blocking” assembly αn. Let the notation α P denote the path that is the
longest assemblable prefix of P that can be grown from the assembly α.27

We define an assembly αn which has a special form (composed of σ and assemblable prefixes
of Ek grown in path, i.e. k, order), to be used in our induction hypothesis:

αn = σ ∪
(

n⋃
k=0

asm(F k)

)

where F 0 = σ E0 = E0
0,1,...,|E0|−1 and for all k ≥ 1, F k = αk−1 Ek.

26I.e. mid(Pp, Pp+1) = mid(Qq, Qq+1).
27Observe that if α is producible by some tile assembly system then for all paths P it is (trivially) the case that

α ∪ asm(α P ) is an assembly producible by that same tile assembly system.
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Claim: for all n ≥ 0, αn ∈ A[U ]. To see this claim note that:

• First, α0 is producible: indeed, F 0 = E0 = P 0
0,1,...,k0

D0
0,1,...,|D|−2 is a producible path of U , by

Lemma 5.10. Therefore, α0 = σ ∪ asm(F 0) is producible.
• Then, assuming αn is producible, i.e. αn ∈ A[U ], remember that αn En+1 is the maximal

prefix of En+1 that can grow from αn. Therefore, αn →U
(
αn ∪ asm(αn Fn+1)

)
= αn+1, and

therefore αn+1 ∈ A[U ].

Hence αn ∈ A[U ] as claimed.

To conclude the proof we will consider the assembly28 αH−1 ∈ A[U ] which we claim has the
(as yet unproven) property that all producible h-successful paths conflict with it. Then allowing
tiles to attach to αH−1 will eventually yield29 a terminal assembly α ∈ A�[U ] with no tiles at
height h and thus no tiles above height h, which contradicts that U simulates (the shape of)
T10|U |. We will use induction to show that all producible h-successful paths conflict with αH−1.

Induction hypothesis: All of the paths P 0, P 1, . . . , Pn conflict with αn.

Some intuition and implications of our induction hypothesis: The induction hypothesis im-
plies that for ∀k ≤ n, αn P k is not h-successful. To see this note that since for all k the last
tile of P k is its only tile at height h, and the induction hypothesis implies that P k can not grow
from αn to be h-successful. Also, no tile of αn reaches height h (because Ek is constructed via
Lemma 5.10) which implies that none of the F k (of which αn is composed) are h-successful.
Finally, since there are a finite number H of h-successful paths the induction exhausts those
H paths in H steps, and thus yields an assembly αH−1 which is a finite union of finite (path)
assemblies, and thus αH−1 is a finite producible assembly that blocks all h-successful paths.

Initial step of induction (P 0 and α0). At the initial step of the induction, we apply
Lemma 5.10 to P 0, to obtain an enclosing branch P 0

0,1,...,k0
D0

0,1,...,|D0|−1. This proves our in-

duction hypothesis for the initial step: by Theorem 5.11, P 0 conflicts with α0 (i.e. P 0 can-
not grow to be h-successful from α0), and we have already defined α0 = σ ∪ asm(F 0) where
F 0 = σ E0 = E0

0,1,...,|E0|−2 = P 0
0,1,...,k0

D0
0,1,...,|D0|−2.

Inductive step (Pn+1 and αn+1). The remainder of the proof is concerned with the inductive
step. For any n ≥ 0 suppose the induction hypothesis holds,30 i.e. all of first n + 1 paths
P 0, P 1, . . . , Pn conflict with αn.

We recall that Fn+1 = αn En+1 is the maximal prefix of En+1 that can grow from αn, and
that αn+1 = αn ∪ asm(Fn+1). If Pn+1 conflicts with αn, then we are immediately done with
the induction step for αn+1, because this proves that Pn+1 cannot grow from αn+1. Hence from
now we will assume that Pn+1 does not conflict with αn.

If Pn+1 conflicts with Fn+1, then we are immediately done with the induction step for
αn+1, because this proves that Pn+1 cannot grow from αn+1. Otherwise Pn+1 does not conflict
with Fn+1. This implies that Fn+1 is a strict prefix of En+1 (otherwise we would contradict

28Recall that H is the number of h-successful paths of U .
29Growth can only happen within the finite area simulation zone below height h so must eventually stop.
30Recall that αn contains only the seed σ and assembled paths F 0, F 1, . . . , Fn (i.e. αn = σ ∪

(⋃n
k=0 asm(F k)

)
)

that are respective prefixes of E0, E1, . . . , En, none of which are h-successful.
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Theorem 5.11) and therefore En+1 (and in particular Dn+1) conflicts with F k for some k ∈
{0, 1, . . . , n}. We will reason about this F k.

We next split the inductive step into three cases31 each of which will be concluded indepen-
dently:

(Case 1) Pn+1 and F k share the position of their visible glue on `, one of these glues is a V +

glue, the other one is a V − glue.
(Case 2) Pn+1 and F k do not share the position of their visible glue on ` (which includes the

case where F k does not reach `).
(Case 3) Pn+1 and F k share the position of their visible glue on `, and either both are V + glues,

or both are V − glues.

In all three cases, let F k’s visible glue on ` be denoted glue(F kf F
k
f+1) and let Pn+1’s visible

glue on on ` be denoted glue(Pn+1
p Pn+1

p+1 ).

Case 1: Pn+1 and F k share the position of their visible glue on `, one of these glues is
a V + glue, the other one is a V − glue. Exactly one of glue(F kf F

k
f+1) and glue(Pn+1

p Pn+1
p+1 )

is in V + and the other is in V −. (See Figure 6.1 for an example.) At the beginning of the
inductive step, we assumed that Pn+1 does not conflict with αn, hence Pn+1 and F k agree on
all points where they intersect. Moreover, since Pn+1 and F k share their visible glue on ` (i.e.
mid(Pn+1

p , Pn+1
p+1 ) = mid(F kf , F

k
f+1), i.e. their visible glues on ` are at the same position) we

know they agree on at least two tiles each, specifically F kf = Pn+1
p+1 and F kf+1 = Pn+1

p . Now

let b be the largest integer such that there is an integer a ≤ f where F ka = Pn+1
b . Since

mid(Pn+1
p , Pn+1

p+1 ) = mid(F kf , F
k
f+1) we know that p + 1 ≤ b, also b ≤ |Pn+1| − 2 since Pn+1 is

h-successful and Ek is not. Consider the sequence Q = F k0,1,...,aP
n+1
b+1,b+2,...,|P |−1. First note that

the positions of Q form a connected sequence of positions in Z2: this follows from the fact that
the positions of F k0,1,...,a are connected, the positions of Pn+1

b+1,b+2,...,|P |−1 are connected, and that

F ka = Pn+1
b . Also, we claim that Q is simple: to see this, note that (i) F k0,1,...,a is simple, (ii)

Pn+1
b+1,b+2,...,|P |−1 is simple, and finally that (iiix) Pn+1

b+1,b+2,...,|P |−1 does not intersect F k0,1,...,a (by

definition of b). Since Q has a connected simple set of positions, Q is a path. Furthermore it
is the case that Q ∈ P[U ], which follows immediately from the following facts: Q is a path,
F k0,1,...,a ∈ P[U ], Pn+1 ∈ P[U ] and F ka = Pn+1

b .

Next we claim that Q ≺ Pn+1. First, we know that, since b ≥ p + 1 all of the glues that
Pn+1
b+1,b+2,... places on ` are at height strictly higher than the height of glue(Pn+1

p Pn+1
p+1 ) on `

which is Pn+1’s visible (i.e. lowest) glue on `. Second, since a ≤ f we know that all of the
glues that F k0,1,...,f places on ` are at height strictly higher than the height of glue(F kf F

k
f+1) on `

which is F k’s visible glue on ` which is at the same height as Pn+1’s visible glue on `. Since
Q = F k0,1,...,aP

n+1
b+1,b+2,..., then Q’s visible glue on ` is strictly higher than the visible glue of Pn+1

on `. Thus Q ≺ Pn+1.
Since Pn+1 is h-successful, and since Pn+1 and Q share a nonempty suffix Pn+1

b+1,b+2,...,|Pn+1|−1
,

this implies that Q is also h-successful. Moreover, no strict prefix of Q is h-successful, because F k

is not h-successful and by the definition of h-successful no strict prefix of Pn+1 is h-successful.
But since Q ≺ Pn+1, this means that Q satisfies the induction hypothesis, meaning that Q
conflicts with αn. Since asm(F k0,1,...,a) is a subassembly of αn then the prefix F k0,1,...,a of Q does

31For the sake of proof simplicity, we present them in the order in which we handle these cases.
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`

σ

F k

Pn+1

`

σ

Q

Figure 6.1: Left: An example of Case 1, where F k places a V − glue on `. Right: The path Q =
F k
0,1,...,aP

n+1
b+1,b+2,... which has the property that it comes earlier in path order than Pn+1, i.e. Q ≺ Pn+1,

since the visible glue of Q on ` is higher than the visible glue of Pn+1 on `.

not conflict with αn, which in turn implies that the suffix Pn+1
b+1,b+2,...,|Pn+1|−1

of Q conflicts with

αn, which implies that Pn+1 conflicts with αn, satisfying the induction hypothesis.32

Case 2: Pn+1 and F k do not share the position of their visible glue on ` (which
includes the case where F k does not reach `). Moreover, the glue placed by Pn+1 on `
is a V +

Pn+1 glue (respectively a V −
Pn+1 glue). We assumed that Pn+1 does not conflict with αn,

hence Pn+1 does not conflict with F k. We first show that Pn+1
p+1,p+2,...,|Pn+1|−1

intersects and

agrees with F k, and then use an argument similar to Case 1 above:

• Assume, for the sake of contradiction, that Pn+1
p+1,p+2,...,|Pn+1|−1

does not intersect F k. Let

a ≥ p be the smallest33 integer such that pos(En+1
a ) = pos(F kb ) for some b. We are going

to define a closed connected component in which Pn+1 starts to grow. First note that F k is
connected, connected to σ, and En+1 is connected to σ. Therefore, σ∪asm(F k)∪asm(Pn+1

0,1,...,p)

contains at least one path from F kb to Pn+1
p (note that Pn+1

0,1,...,p is a prefix of En+1). Let P be
any shortest such path.
Let then c be the closed curve defined by the concatenation of ck = EP and cn+1 = EEn+1

p,p+1,...,a
.

Curve c is simple because cn+1 and ck only intersect at their endpoints because a was chosen
to be the smallest integer (≥ p) such that pos(En+1

a ) = pos(F kb ) and because P is a shortest
path.
Therefore, by the Jordan Curve Theorem, c encloses a single bounded connected component
C of R2. (This connected component is shown in gray in the example in Figure 6.2.)
Now, mid(Pn+1

p , Pn+1
p+1 ), the position of the visible glue glue(Pn+1

p Pn+1
p+1 ) of Pn+1 on `, is

on curve c. Moreover, since no other point of c intersects ` at the height of, or below
mid(Pn+1

p , Pn+1
p+1 ), then mid(Pn+1

p , Pn+1
p+1 ) is the unique lowest intersection of c and `.

Then, since glue(Pn+1
p Pn+1

p+1 ) is in V +
Pn+1 (respectively in V −

Pn+1), the left-hand side (respec-

tively right-hand side) of c is inside C. Therefore, since Pn+1 is h-successful and places tiles
(with positions) on c, Pn+1

p,p+1,...,|P |−1 needs to turn from c (because all points of c are below

height h). However, by Lemma 5.10, Pn+1 cannot turn right (respectively, left) from Dn+1,
hence from En+1; if it did Pn+1 would hide at least one of its own visible glues, which is

32Recall that we have already defined Fn+1 = αn En+1 and αn+1 = αn ∪ asm(Fn+1).
33There is at least one such integer since we know that En+1 conflicts with F k, and we know that this conflict

happens after (in En+1 order) the visible glue (glue(Pn+1
p Pn+1

p+1 )) of Pn+1 and En+1.
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`

F k

σ
Dn+1

Pn+1

Figure 6.2: An example of Case 2, where Pn+1 and F k both place a V + glue on `, at different heights.

impossible. Therefore, Pn+1
p,p+1,...,|Pn+1|−1

must turn from, and thus intersect, other parts of c,

i.e. σ or F k, which is a contradiction. Hence Pn+1
p,p+1,...,|Pn+1|−1

intersects F k.

• We have shown that Pn+1
p+1,p+2,...,|Pn+1|−1

intersects (and agrees with) F k at least once. In

fact all such intersections are agreements because Pn+1 does not conflict with F k. Let a ≥
p + 1 be the largest integer such that Pn+1

a = F kb for some integer b. We claim that Q =
F k0,1,...,bP

n+1
a+1,a+2,... is a path: indeed, Pn+1

a+1,a+2,... does not intersect F k0,1,...,b by the definition

of a, and Q is connected. Moreover, Q ∈ P[U ]. Furthermore, Q ≺ Pn+1, because since a > p
and Pn+1 is simple, and since the visible glue of F k on ` is not shared with that of Pn+1,
all glues of Q on ` are strictly higher than glue(Pn+1

p Pn+1
p+1 ). Therefore, by the induction

hypothesis, Q conflicts with αn, and hence αn+1, which means that Pn+1
a+1,a+2,... conflicts with

αn+1 (since F k0,1,...,b does not conflict with αn+1).

Case 3: Pn+1 and F k share the position of their visible glue on `, and either both
are V + glues, or both are V − glues. In this case, because P k ≺ Pn+1, and Pn+1 and F k,
and hence P k, share their visible glue at the same height on `, we know by the definition of ≺
that either:

• Pn+1
p,p+1,... is more right-priority (respectively, left-priority) than P kf,f+1,... if glue(Pn+1

p Pn+1
p+1 ),

glue(P kf P
k
f+1) are both V + glues (respectively, V − glues), where glue(Pn+1

p Pn+1
p+1 ) is the visible

glue of Pn+1 on `, and glue(P kf P
k
f+1) is the visible glue of P k on `.

• Pn+1
p,p+1,... = P kf,f+1,...

However, in the second case, since αn conflicts with P k (by the induction hypothesis, since
k ≤ n), and F k places the visible glue of P k on `, then αn conflicts with P kf,f+1,..., hence

αn also conflicts with Pn+1
p,p+1,..., and we are done with Case 3 by simply letting αn+1 = αn ∪

asm(αn En+1).
To conclude this proof, we will therefore handle the first case, i.e. the case where Pn+1

p,p+1,... is

more right-priority (respectively, left-priority) than P kf,f+1,....

We assumed that Pn+1 does not conflict with αn, hence in particular Pn+1
p,p+1,... does not

conflict with F kf,f+1,..., and does not conflict with P kf,f+1,.... Let q ≥ p and g ≥ f be the smallest

integers such that Pn+1
q 6= F kg . An example of this situation is shown in Figure 6.3.

The argument follows along the same lines as Case 2 (building a closed connected component
in which Pn+1 starts to grow), but requires a new technique to identify the inside and outside
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`

F k

σ

Pn+1

g

q

Figure 6.3: An example of Case 3, where Pn+1 and F k (and by implication P k) both place a V + glue
on `, at the same height.

of that connected component.

• Assume, for the sake of contradiction, that Pn+1
q,q+1,... does not intersect F k.

We will now describe a closed connected component inside which a suffix of Pn+1 starts to
grow.
We first introduce a new variant of embedding of paths into R2, which we call the nano-
embedding of a path P , denoted NP . This is illustrated in Figure 6.4 and defined as follows.
For a path P consider its canonical embedding EP . Then, define NP to be the curve in
R2 where all of the points of NP are at L∞ distance exactly 0.25 from their closest point
on EP , and are positioned on the right (respectively, left) hand side of EP as we walk along
EP from EP (0) to EP (1). For tiles on P with input side being their west side, we show in
Figure 6.4(top) all three cases of nano-embeddings. Other cases where the input side is north,
east or south are rotations of these three cases. Special cases for start and end tiles of a path
are illustrated in Figure 6.4.
Since En+1 intersects F k (because in particular, En+1 conflicts with F k), let b > q be the
smallest integer such that pos(En+1

b ) = pos(F kd ) for some integer d.
We now define a simple closed curve c inside which a suffix of Pn+1 starts to grow: let c
be the concatenation of NFn+1

p,p+1,...,b−1
, then a length < 1 line segment from the final point

of NFn+1
p,p+1,...,b−1

to pos(F kd ), then E←
Fkf,f+1,...,d

, and finally a line segment of length 0.25 from

pos(F kf ) to NFn+1
p,p+1,...,b−1

(0), which is the first point of NFn+1
p,p+1,...,b−1

. (Figure 6.5 shows an

example c.)
We claim that c is simple: indeed, since F k only turns left from Fn+1, and since NFn+1 stays
immediately to the right of Fn+1, the four curves used to construct c intersect each other only
at the last and first endpoints of each pair of consecutive curves. Notice that c is also closed.
Therefore, by the Jordan Curve Theorem, c encloses a bounded connected component C of
R2. Moreover, at the visible glue of Pn+1 and P k on `, the nano-embedding NPn+1 of Pn+1

is below EPn+1 , and since Pn+1 places a V +
Pn+1 (respectively, V −

Pn+1) glue on `, the left-hand
(respectively, right-hand) side of c is the inside of C.
Finally, since Pn+1 does not turn right from Fn+1 (otherwise, by Lemma 5.10 Pn+1 would hide
the visibility of at least one of its own glues, which is impossible), a suffix of Pn+1 starts inside
C or on c. But since no point of C is at or above height h, and Pn+1 is h-successful, the last
tile of Pn+1 is positioned outside of C, which can happen in only two different ways: either
Pn+1 turns right from Fn+1

p,p+1,...,b−1 (contradicting Lemma 5.10), or else EPn+1
q,q+1,...

intersects

39



EP
NP

input west, output north

EP
NP

input west, output east

EP
NP

input west, output south

start

P0

Q0

P1

Q1

P2

Q2
P3 P4 P5

Q3

Q4 Q5 Q6 Q7

Q8

sm sg

E←P

NQ

Figure 6.4: Nano-embedding and canonical embedding of a path in R2. Top: Three tiles on some path P
that have their input side as their west side, and their output sides as north, east and south respectively,
as indicated. In each of the three cases, the canonical embedding EP of P is shown in blue, and the
nano-embedding NP is shown in red. Each point in NP is L∞ distance exactly 0.25 from its closest
point in EP . Rotating these diagrams by 90◦, 180◦ and 270◦ give the other 9 cases needed to define the
nano-embedding of any tile on a path, except for the first and last tile. Bottom left: two paths that start
at the common tile P0 = Q0; path P is shown in pink and grey, Q is shown in pink and red. Bottom right:
example showing how we combine the canonical embedding EP of the path P and the nano-embedding
NQ of the path Q to make a simple closed curve c in R2. The start tile on the left is a special case
(in our construction it is always the case that start tile of a nano-embedding has its output side on the
east). For the start tile a short vertical magenta segment sm is drawn so that it ends at the start point
of NQ. We follow NQ until it ends (“in” the last tile of Q), then draw a short green segment sg to the
position (“center”) of the last tile of P . From there the reverse of EP , denoted E←P , traces backwards
through the positions of tiles of P to the start point of the magenta segment. The resulting curve c is
the concatenation of the curves sm,NQ, sg,E

←
P and is a simple closed curve in R2.

`

F k

σ

Fn+1

Figure 6.5: An example of case 3.1, showing the paths Fn+1 and F k. The nano-embedding of Fn+1 is
shown as the red curve, and the canonical embedding of F k is shown as the blue curve. Together with
the two small (length ≤ 1) magenta and green segments, these four curves form a simple closed curve c
in R2.

40



E←
Fkg,g+1,...,d

which is also a contradiction.

• Therefore, Pn+1
q,q+1,... intersects F k. Moreover, that intersection is necessarily an agreement.

Let therefore q′ be the largest integer such that Pn+1
q′ = F kg′ for some g′ ≥ 0 (notice that q′ ≥ q),

and let Q = F k0,1,...,g′P
n+1
q′+1,q′+2,...,|Pn+1|−1

. Note that Q is connected, and that Pn+1
q′+1,q′+2,... does

not intersect F k0,1,...,g′ (because of our choice of q′), and that the tiles F kg′ and Pn+1
q′+1 bind (since

Pn+1
q′ = F kg′). Therefore, Q is an assemblable path in U .

– If g′ ≥ f , then Q and Pn+1 have the same visible glue on ` (this visible glue is on F k0,1,...,g′),

and the first difference between Qf,f+1,... and Pn+1
p,p+1,... is a right turn of Pn+1

p,p+1,... from

Qf,f+1,..., meaning that Qf,f+1,... is less right-priority than Pn+1
p,p+1,.... Therefore, Q ≺ Pn+1.

– Else, g′ < f , and hence the visible glue of Q on ` is not the same as the visible glue of Pn+1

on `. Therefore, the visible glue of Q on ` is strictly higher than that of Pn+1. This means
that Q ≺ Pn+1.

In both cases, Q ≺ Pn+1, hence Q conflicts with αn by the induction hypothesis. Recall that
Q = F k0,1,...,g′P

n+1
q′+1,q′+2,...,|Pn+1|−1

, and that asm(F k) v αn, and therefore Pn+1
q′+1,q′+2,...,|Pn+1|−1

conflicts with αn.
Hence Pn+1 conflicts with αn which proves the induction hypothesis for αn+1.

7 Noncooperative tile assembly: Impossibility of bounded Tur-
ing machine simulation

We begin by restating Theorem 1.2. Note that the “bounding function” BM in the statement
is an arbitrary upperbound on the space usage of the Turing machine M as we wish to allow
any claimed temperature 1 simulator of Turing machines to be arbitrarily 2D-space-inefficient
in it’s attempt to do so.

Theorem 1.2. Let t : N→ N, s : N→ N and let BM : N→ N such that ∀n ∈ N, BM (n) ≥ s(n).
Let M be any Turing machine that halts on all inputs x ∈ {0, 1}∗ in time t(|x|) using space s(|x|).
There is no pair (V,BM ) where V is a tileset and BM is a function such that for all x ∈ {0, 1}∗,
|x| = n, there is a seed assembly σM,x and tile assembly system Vx = (V, σM,x, 1) such that:

1. dom(σM,x) ⊆ {0, 1, . . . , BM (n)− 1} × {0, 1, . . . , BM (n)− 1}
2. for all α ∈ A�[V], dom(α) ⊆ {0, 1, . . . , t(n)BM (n) − 1} × {0, 1, . . . , BM (n) − 1}, dom(α) ∩

({b+ 1, b+ 2, . . . , b+BM (n)− 1} × {0, 1, . . . , BM (n)− 1}) 6= ∅ where b = BM (n)(t(n) − 1)
and α places at least one occurrence of a special tile type H ∈ V on the rightmost column,
and nowhere else, of dom(α) if and only if M accepts x.

Proof. Intuitively, the proof proceeds by supposing for the sake of contradiction that there is
such a tileset V and then modifying V to get another tile set that that can be instantiated as an
infinite set of tile assembly systems each one of which produces terminal assemblies that have
the same scaled (simulated) shape as some system TN defined in Section 3. But this violates
Theorem 6.1, giving a contradiction. We argue this as follows.

Let M be a Turing machine with input alphabet {1}∗ that accepts all of its inputs x ∈ {1}n
using space s(n) and time t(n). So suppose for the sake of contradiction that there is a tileset V
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that simulates M on all inputs using some “bounding function” BM as described in the theorem
statement.

We will modify the tile set V . Since the tile type H is on the rightmost vertical column
of every terminal assembly α, H’s east glue type gE is either (a) of strength 0, or else (b) of
strength 1 and matches no west glue in the tile set V . On tile type H we replace gE with a
new glue type g′E that is of strength 1 and where g′E appears on no other tile type of V . We
also add two new tile types t1, t2 to V : the west side of t1 has the glue type g′E and so binds to
the east side of H, and the south side of t2 binds to the north side of t1, and the south side of
t2 binds to the north side of itself. When H appears in some assembly α it is always possible
to bind a tile of type t1 to the east side of H in α (by hypothesis H is placed in the rightmost
column of α hence there is always sufficient (unit) space to the right of H to place t1). There
may be a number of places where tiles of type t1 can bind (each to the east of a tile of type H),
nevertheless every terminal assembly will have an infinite vertical line of t2 tiles growing to the
north of some instance of t1 (i.e. since H is in the rightmost column, there can be nothing to the
north of a tile of type t1, other than possibly another tile of type t1, and hence there is nothing
to stop some tile of type t1 growing an the infinite vertical line of t2 tiles to its north).

For each x, |x| = n, using the modified tileset V , the system Vx = (V, σM,x, 1) builds
an assembly that has (roughly) the same rescaled shape as TBM (n)/BM (n)t(n) = Tt(n) (defined
in Section 3), but with some spatial rescaling (by a factor of BM (n)). Let x be any input
such that, with |x| = n, t(n) ≥ 10|V | (e.g. choosing |x| ≥ 10|V | does the trick). Finally, setting
m = BM (n), let Rm be the m-block supertile representation function that is undefined on empty
m-blocks and maps nonempty m-blocks to the tile σ ∈ T .34 Then dom(R∗m(σVx)) = dom(σTn)
and {dom(R∗m(α)) | α ∈ A�[Vx]} = {dom(β) | β ∈ A�[Tn]} for n ≥ 10|V |. Hence our modified
V violates violates Theorem 6.1 where in the theorem statement we set U = V , m = BM ,
σ = σM,x and Rm = RBM .
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A Additional simulation definitions

This appendix continues the definitions in Section 2.2 and were used in previous work on intrinsic
universality [6–9,11,20].

Definition A.1. We say that S and T have equivalent productions (under R), and we write
S ⇔ T if the following conditions hold:

1. {R∗(α′)|α′ ∈ A[S]} = A[T ].
2. {R∗(α′)|α′ ∈ A�[S]} = A�[T ].

34m-block supertile representation functions were defined in Section 2.2. Since the proof of Theorem 1.2
reasons merely about the shapes of terminal assemblies, we do not even require that Rm sometimes maps different
nonempty m-blocks to different tile types of T . In other words, having Rm map nonempty m-blocks to some tile
type of T (here σ ∈ T ) is sufficient to reason about the shape of assemblies under Rm.
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3. For all α′ ∈ A[S], α′ maps cleanly to R∗(α′).

Observation A.2. If S and T that have equivalent productions (they satisfy Definition A.1)
then they have equivalent shapes (they satisfy Definition 2.1).

The following two definitions (for simulation dynamics) can be safely ignored by the reader
and are included only for the sake of completeness.

Definition A.3. We say that T follows S (under R), and we write T aR S if α′ →S β′, for
some α′, β′ ∈ A[S], implies that R∗(α′)→T R∗(β′).

Definition A.4. We say that S models T (under R), and we write S |=R T , if for every
α ∈ A[T ], there exists Π ⊂ A[S] where R∗(α′) = α for all α′ ∈ Π, such that, for every β ∈ A[T ]
where α→T β, (1) for every α′ ∈ Π there exists β′ ∈ A[S] where R∗(β′) = β and α′ →S β′, and
(2) for every α′′ ∈ A[S] where α′′ →S β′, β′ ∈ A[S], R∗(α′′) = α, and R∗(β′) = β, there exists
α′ ∈ Π such that α′ →S α′′.

The previous definition essentially specifies that whenever S simulates an assembly α ∈ A[T ],
there must be at least one valid growth path in S for each of the possible next steps T could
make from α.

Definition A.5. We say that S simulates T (under R) if S ⇔R T (equivalent productions),
T aR S and S |=R T (equivalent dynamics).

A.1 Intrinsic universality

Now that we have a formal definition of what it means for one tile assembly system to simulate
another, we can proceed to formally define the concept of intrinsic universality, i.e. when there
is one general-purpose tile set that can be appropriately programmed to simulate any other tile
system from a specified class of tile assembly systems. Let REPR denote the set of all supertile
representation functions (i.e. m-block supertile representation functions for all m ∈ Z+). Define
C to be a class of tile assembly systems, C1 to be the class of all temperature 1 tile assembly
systems, and let U be a tileset.

Definition A.6. We say U is intrinsically universal for C at temperature τ ′ ∈ Z+ if there are
functions R : C → REPR and S : C → AU<∞ such that, for each T = (T, σ, τ) ∈ C, there is a
constant m ∈ N such that, letting R = R(T ), σT = S(T ), and UT = (U, σT , τ

′), UT simulates T
at scale m and using supertile representation function R.

That is, R = R(T ) is a representation function that interprets assemblies of UT as assemblies
of T , and σT = S(T ) is the seed assembly used to program tiles from U to represent the seed
assembly of T . In this paper, we disprove the existence of an intrinsically universal tileset for C1

(the set of all temperature 1 tile assembly systems) at temperature τ ′ = 1.
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[1] B. Behsaz, J. Maňuch, and L. Stacho. Turing universality of step-wise and stage assembly
at temperature 1. In DNA18: Proc. of International Meeting on DNA Computing and
Molecular Programming, volume 7433 of LNCS, pages 1–11. Springer, 2012.

43



[2] M. Bousquet-Mélou. Families of prudent self-avoiding walks. J. Comb. Theory, Ser. A,
117(3):313–344, 2010.

[3] S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J. Patitz, R. Schweller, S. M.
Summers, and A. Winslow. Two hands are better than one (up to constant factors). In
STACS: Proceedings of the Thirtieth International Symposium on Theoretical Aspects of
Computer Science, pages 172–184. LIPIcs, 2013. Arxiv preprint: 1201.1650.

[4] H. Chandran, N. Gopalkrishnan, and J. Reif. Tile complexity of approximate squares.
Algorithmica, 66(1):1–17, 2013.

[5] M. Cook, Y. Fu, and R. T. Schweller. Temperature 1 self-assembly: deterministic assem-
bly in 3D and probabilistic assembly in 2D. In SODA: Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 570–589, 2011. Arxiv preprint:
arXiv:0912.0027.

[6] E. D. Demaine, M. L. Demaine, S. P. Fekete, M. J. Patitz, R. T. Schweller, A. Winslow,
and D. Woods. One tile to rule them all: Simulating any tile assembly system with a single
universal tile. In ICALP: Proceedings of the 41st International Colloquium on Automata,
Languages, and Programming, volume 8572 of LNCS, pages 368–379. Springer, 2014. Arxiv
preprint: arXiv:1212.4756.

[7] E. D. Demaine, M. J. Patitz, T. A. Rogers, R. T. Schweller, S. M. Summers, and D. Woods.
The two-handed tile assembly model is not intrinsically universal. In ICALP: Proceedings
of the 40th International Colloquium on Automata, Languages, and Programming, volume
7965 of LNCS, pages 400–412. Springer, July 2013. Arxiv preprint: arXiv:1306.6710.

[8] D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers, and D. Woods. The tile
assembly model is intrinsically universal. In FOCS: Proceedings of the 53rd Annual IEEE
Symposium on Foundations of Computer Science, pages 439–446. IEEE, Oct. 2012. Arxiv
preprint: arXiv:1111.3097.

[9] D. Doty, J. H. Lutz, M. J. Patitz, S. M. Summers, and D. Woods. Intrinsic universality in
self-assembly. In STACS: Proceedings of the 27th International Symposium on Theoretical
Aspects of Computer Science, pages 275–286, 2009. Arxiv preprint: arXiv:1001.0208.

[10] D. Doty, M. J. Patitz, and S. M. Summers. Limitations of self-assembly at temperature 1.
Theoretical Computer Science, 412(1–2):145–158, 2011. Arxiv preprint: arXiv:0906.3251.

[11] S. P. Fekete, J. Hendricks, M. J. Patitz, T. A. Rogers, and R. T. Schweller. Universal
computation with arbitrary polyomino tiles in non-cooperative self-assembly. In SODA:
ACM-SIAM Symposium on Discrete Algorithms, pages 148–167. SIAM, 2015.

[12] P. J. Flory. Principles of Polymer Chemistry. Cornell University Press, 1953.

[13] B. Fu, M. J. Patitz, R. T. Schweller, and R. Sheline. Self-assembly with geometric tiles.
In ICALP: Proceedings of the 39th International Colloquium on Automata, Languages, and
Programming, volume 7391 of LNCS, pages 714–725. Springer, 2012.

[14] O. Gilbert, J. Hendricks, M. J. Patitz, and T. A. Rogers. Computing in continuous space
with self-assembling polygonal tiles. In SODA: ACM-SIAM Symposium on Discrete Algo-
rithms, pages 937–956. SIAM, 2016. Arxiv preprint: arXiv:1503.00327.

44

http://arxiv.org/abs/1201.1650
http://arxiv.org/abs/0912.0027
http://arxiv.org/abs/1212.4756
http://arxiv.org/abs/1306.6710
http://arxiv.org/abs/1111.3097
http://arxiv.org/abs/1001.0208
http://arxiv.org/abs/0906.3251
http://arxiv.org/abs/1503.00327


[15] J. Hendricks, M. J. Patitz, T. A. Rogers, and S. M. Summers. The power of duples (in
self-assembly): It’s not so hip to be square. In COCOON: Proceedings of 20th Interna-
tional Computing and Combinatorics Conference, pages 215–226, 2014. Arxiv preprint:
arXiv:1402.4515.

[16] N. Jonoska and D. Karpenko. Active tile self-assembly, part 1: Universality at temperature
1. Int. J. Found. Comput. Sci., 25(2):141–164, 2014.

[17] D. E. Knuth. Mathematics and computer science: coping with finiteness. Mathematics:
people, problems, results, 2, 1984.
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