
Results of the Abbadingo One DFA Learning
Competition and a New Evidence-Driven

State Merging Algorithm

Kevin J. Lang 1, Barak A. Pearlmutter 2, and Rodney A. Price 3

t NEC Research Institute, 4 Independence Way, Princeton, NJ 08540,
kevin@research, nj. nec. com

2 Comp Sci Dept, FEC 313, Univ of New Mexico, Albuquerque, NM 87131,
bap@cs, unm. edu

s Emtex, Milton Keynes, England, rod@emtex, corn

Abstract. This paper first describes the structure and results of the Abbadingo
One DFA Learning Competition. The competition was designed to encourage
work on algorithms that scale well--both to larger DFAs and to sparser training
data. We then describe and discuss the winning algorithm of Rodney Price, which
orders state merges according to the amount of evidence in their favor. A stcond
winning algorithm, of Hugues JuilM, will be described in a separate paper.

Part I: Abbadingo
1 Introduction

The Abbadingo One DFA Learning Competition was organized by two of the authors
(Lang and Pearlmutter) and consisted of a set of challenge problems posted to the in-
ternet and token cash prizes of $1024. The organizers had the following goals:

- Promote the development of new and better algorithms.
- Encourage learning theorists to implement some of their ideas and gather empirical

data concerning their performance on concrete problems which lie beyond proven
bounds, particulary in the direction of sparser training data.

- Encourage empiricists to test their favorite methods on target concepts with high
Kolmogorov complexity, under strict experimental conditions that permit compari-
son of results between different groups by eliminating the possibility of hill climb-
ing on test set performance.

1.1 The learning task

The task of the Abbadingo One competition was DFA learning from given training data
consisting of both positive and negative examples. The learner was provided with a set
of training strings that had been labeled by an unseen deterministic finite automaton
(the target concept), and was required to predict the labels that the target would assign
to a set of testing strings. All three of these--the DFA, the training strings, and the
testing strings--were drawn from uniform random distributions.

d~ training set density ,pn lower
U.B.=IV III II I bound

~m~t 64 4456 3478 2499 1521 542
target128 13894 10723 7553 4382 1211
size 256 36992 28413 198341125512676
1~, 512 115000 87500 60000 32500 5862

Table 1. Training set sizes for the Abbadingo One competition problems.

1.2 Some history

DFA learning can be very hard in the worst case. [5] proved that it is NP-hard to find
a DFA that is consistent with a given set of training strings and whose size is within a
polynomial factor of the size of the smallest such DFA. [4] proved that predicting the
output of a DFA can be as hard as breaking cryptosystems widely believed secure.

However, DFA learning does not seem to be so hard in the average case. [1] proved
that a simple state merging algorithm is guaranteed to find the smallest DFA consistent
with a complete training set consisting of all strings out to a given length. [6] showed
empirically that this same algorithm can often construct an approximately correct hy-
pothesis from a sparse subset of a complete training set, when both the target concept
and training sets are randomly chosen from uniform distributions. [8] proved the ap-
proximate learnability of DFA's with worst-case graph structure and randomly labeled
states, from randomly chosen training strings.l

We note that many papers have been published on the application of generic meth-
ods such as neural networks and genetic search to the problem of DFA learning. Un-
fortunately, this literature has largely focused on tiny benchmarks (the largest target
machine in the widely used "Tomita" suite contains five states), so the scalability of the
proposed methods is hard to assess.

2 Experimental setup

Abbadingo One used random target DFA's because they have some relevance to the
average case, they have high Kolmogorov complexity, and they are easy to generate in
any desired size. The procedure for constructing a target concept of nominal size n was:
construct a random degree-2 digraph on ~n nodes, extract the subgraph reachable from
the randomly chosen root node, and label the graph's states by flipping a fair coin.

This procedure yields graphs with a distribution of sizes centered near n, and a
distribution of depths centered near 2 log2 n - 2. The size variation is of no great con-
sequence, but the depth variation would complicate our training set construction, so it
was eliminated by selecting only those graphs with a depth 2 of exactly 2 log 2 n - 2.

A training set for a target of nominal size n consisted of a random sample drawn
without replacement from a uniform distribution over the collection of 16n 2 - I binary

The [8] theorem concerns a slightly different protocol, in which the learner sees the label of
every state that is encountered rather than just the label of the final state.

2 By analogy to trees, the depth of a DFA is maximum over all nodes z of the length of the
shortest path from the root to x.

strings whose length lies between 0 and 2 log 2 n + 3 inclusively. A testing set was drawn
from the remaining strings in this same collection. Training strings were labeled, while
testing strings were not.

3 C o m p e t i t i o n design:
3.1 Target and training set sizes

As shown in table 1, the sixteen Abbadingo One problems represented the cross product
of 4 values of a target size parameter and 4 values of a training set density parameter.
Both of these parameters influenced the difficulty of the problems. Our intention was to
make the target concepts large enough to challenge the empirical learning community,
and the training data sparse enough to challenge the theoretical learning community.

The size parameter was simply the nominal size of the target concept. Its four values
were 64, 128, 256, and 512 states.

The density parameter took on values from one to four, shown as roman numerals
in the tables. A density parameter value p was turned into an actual training set size s
by linearly interpolating between rough upper and lower bounds on sample complexity:
s = L + (p/4)(U - L). The lower bound L came from the simple counting argument
which equates 2nn2n/(n- 1)[, an estimate of the number of different n-state (binary al-
phabet) target DFA's, with 28, the number of ways of labeling a training set of s strings.
The upper bound U was determined by visually inspecting the learning curves for the
Trakhtenbrot-Barzdin algorithm which appeared in [6]. In addition, some rounding was
performed on the training set sizes for targets of size 512.

Because the problems in column IV were already solvable by the Trakhtenbrot-
Barzdin state merging algorithm, an implementation of which we distributed before the
competition, these problems were considered practice problems, not official challenge
problems.

3.2 Testing protocol

Test set tuning is an insidious problem that afflicts even the well intentioned. The Ab-
badingo One testing protocol was designed to eliminate this phenomenon. The test set
for each problem consisted of 1800 unlabeled strings, none of which appeared in the
training set. Proposed labelings were submitted to a testing oracle provided by the Ab-
badingo web server at http://abbadingo.cs.unm.edu. Instead of providing a score that
could be used for hill climbing, the oracle provided only 1 bit of feedback, which told
whether or not the accuracy of the labeling was at least 99%. Since this was the thresh-
old at which a problem was considered solved, the feedback bit would always be zero
while a participant was working on a problem, so it carried essentially no information.

Thanks to a new cryptographic technique of Joe Kilian's, the testing oracle was
implemented without storing the answers anywhere online [11]. This reduced the temp-
tation to break into the Abbadingo web server.

3.3 Additional rules

Two rules governed the selection of competition winners. The priority rule stated that
the first person to solve a problem (to 99% accuracy) would get the credit for solving it.

~ training set size sp~,
III II I

~ t 64 JuilI6-PBS JuiI16-PBS Juill6-EDSM+search
target 128 JuilI6-PBS JuiI16-PBS unsolved

size 256 Price-EDSM JuiI16-EDSM unsolved
l~ 512 Price-EDSM Price-EDSM unsolved

Table 2. The person and algorithm that first solved each of the twelve challenge problems. The
data remains available at h t t p : / / a b b a d i n g o , c s . unm. edu

The dominance rule stated that problem A dominates problem B when TrainingSetDensity(A) <
TrainingSetDensity(B) and NodeCount(A) > NodeCount(B).

The winners of the competition would be participants who, at the termination of the
competition, had credit for solving problems that were not dominated by other solved
problems.

4 Competition results

According to our logs (which do not include accesses to the European mirror site),
training data was downloaded from the primary Abbadingo web site by about 460 IP
addresses, including many major proxy servers. Proposed test set labelings were sub-
mitted from 45 IP addresses, which we estimate corresponds to about 25 different par-
ticipants. 3 Nine of the twelve challenge problems were ultimately solved. The person
and algorithm that first solved each problem is shown in table 2. The order of events
was as follows.

First, Hugues Juill6 solved the four problems in the upper left of the table using a
parallel beam search technique. Because this method was computationally expensive
and didn't scale well to the larger problems, there was a lull in the competition un-
til Rodney Price discovered an evidence driven state merging algorithm (EDSM) that
handles sparse data better than previous state merging algorithms, and that has much
better time complexity than the beam search method which Juill6 had been using. This
algorithm, 4 which is discussed in detail below, quickly polished off the problems in
columns II and III. Note that according to the competition rules, these results domi-
nated the earlier results of Juill6. However, Price's algorithm could not handle training
data as sparse as that in column I. There was another lull in the competition until Juill6
solved the smallest problem in column I, using EDSM augmented with some search
over its initial decisions.

According to the competition's priority and dominance rules, the two winners were
Rodney Price, by virtue of solving problem 512-11, and Hugues Juill6, by virtue of
solving problem 64-1.

The three largest problems in column I remain unsolved.

3 Participants did not necessarily submit labelings to the Oracle. They could tune their algo-
rithms using cross-validation or their own DFAs drawn from the same distribution. We made
no attempt to count such silent participants.

4 Including a similar program which Juill6 coded up after a conversation with Price.

64
nominal 128

256
target 512

64
size 128

256
512

d ~ training set density spsxse
IV III II I

2000.0 15.0 2.4 2.1
1600.0 21.0 2.6 2.1
850.0 8.1 2.1 2.0
130.0 13.0 2.2 2.0

2700.0 900.0 250.0 2.1
4500.0 2400.0 720.0 2.1
6600.0 2500.0 700.0 2.0
11000.0 6800.0 2300.0 2.0

TB-92

EDSM-97

Table 3. Median reciprocal error rates of two algorithms on 100 new random instances of each of
the 16 Abbadingo One problems. Higher scores are better; the values 2.0 and 100.0 correspond to
generalization rates of 50 percent and 99 percent respectively. The latter value is the Abbadingo
threshold for considering a problem solved. TB-92 is an implementation of the Trakhtenbrot-
Barzdin state merging algorithm. EDSM-97 is an earlier and worse version of the reference al-
gorithm of section 9. It is interesting to note that EDSM is getting better as one moves to lower
matrix rows, while TB is getting worse.

5 Post-competition work

We have done some additional work since the competition. First, we ran EDSM on new
random problems lying on the Abbadingo problem grid to discover the algorithm's typ-
ical behavior. The results are summarized by table 3. EDSM works well on columns IV,
III, and II, whereas Trakhtenbrot-Barzdin can only handle column IV. Both algorithms
die on column I.

Second, because differing choices about small details can turn Price's basic idea into
many different programs of varying performance, we decided to provide some guidance
by defining an official reference version of the EDSM algorithm. This algorithm will
be described in part 2 of this paper. We will also describe a couple of optimizations
which make the reference algorithm practical without hurting its performance too much,
plus Juill6's fast and simple implementation of EDSM using the "blue-fringe" control
strategy.

6 Conclusion of Part I

The Abbadingo One competition had three goals. The goal of promoting the develop-
ment of new and better algorithms was clearly satisfied. Both Rodney Price and Hugues
Juill6 made useful contributions to the state of the art in DFA induction.

Although we have heard a few amusing anecdotes, we have no solid evidence that
theorists have empirically explored the limits of their algorithms in the sparse data
regime, or that empiricists have carefully measured the scaling properties of their al-
gorithms. We therefore conclude this report by repeating our call for theorists to imple-
ment their best ideas, and for experimentalists to try their ideas on problems that are
hard enough to really test them.

Meanwhile, we are preparing a more flexible DFA learning challenge problem gen-
eration scheme, and considering other grammar learning tasks that might be appropriate
for Abbadingo Two.

Part II: Evidence driven state merging
7 Background

A simple and effective method for DFA induction from positive and negative examples
is the state merging method [1,6, 7]. This method starts with the prefix tree acceptor for
the training set and folds it up into a compact hypothesis by merging compatible pairs
of states. 5 Two states are compatible when no suffix leads from them to differing labels.

When a state merging algorithm is applied to sparse training data, it can almost
never be sure that an apparently compatible merge is truly valid. Thus, most of the al-
gorithm's actions are hopeful guesses, which unfortunately have serious consequences
later: each merge introduces new constraints on future merges, and these new con-
straints will be wrong when an incorrect merge is made.

Because there is a snowballing of right or wrong decisions, it is critically important
for the algorithm's early decisions to be correct, and hence a good strategy is to first
perform those merges that are supported by the most evidence. [6] claimed that this
consideration supported the choice of breadth-first order for candidate merges, because
then the earliest merges must survive the comparison of the largest trees of suffixes.

[10] suggested that a better strategy is to look at the training data and perform
merges exactly in order of the amount of evidence, rather than in a predetermined order
that hopefully correlates with that quantity. While this is a very good point, the actual
algorithm described in [10] does not work well on the Abbadingo challenge problems
due to a couple of flaws. One was a mistake in the algorithm's control strategy that
will be described in section 10. A more serious mistake was the measure of evidence
that they proposed, essentially the number of labels on strings that pass through the two
candidate nodes. This quantity is only a weak upper bound on evidence, since labeled
nodes on one side which line up with unlabeled nodes on the other side have abso-
lutely no value in testing whether the two candidate nodes actually represent the same
mapping from suffixes to labels.

Rodney Price was able to win the Abbadingo One competition because he realized
that a more accurate evidence measure is the number of labels tested during a merge.

8 Price's motivation for EDSM

Suppose that a state merging program does m merges, and that each merge is verified
by t independent tests, each of which has a probability p of revealing that an incorrect
merge is wrong. Let c be the probability that any given one of these m merges is valid,
and d be the probability that all of them are valid. Then, d = c m, 1 - c = (1 - p)t , and
finally t = log(1 - d-~) / log(1 - b) shows how many tests will suffice to ensure that
the whole computation is correct with confidence d.

Blue-fringe state merging algorithms do at most n(a - 1) + 1 merges when con-
structing an n-state hypothesis over an alphabet of size a. Combining this fact with the
calculation of the previous paragraph and the assumption that the label comparisons

5 Note that state merging frequently introduces non-determinism into the hypothesis, which can
then be removed by a determinization procedure that recursively merges the children of the
original node. In this paper, we always do merging with determinization.

which occur during a merge are independent tests having a 50 percent chance of re-
vealing an invalid merge, one can see that problems in the top row of the Abbadingo
matrix can be solved with confidence .93 by restricting the program to merges that are
supported by 10 or more label comparisons. Since the highest scoring initial merges for
the top-row problems in columns III, II, and I have scores of 19, 13, and 5 respectively,
one would expect this method to work for the first two problems, but not the last, which
is exactly what happens.

Note that while one could write a program that is willing to do any merge whose
score exceeds the threshold computed above, better performance can be obtained by
ignoring the threshold and simply doing the highest scoring merge in all cases.

9 Reference a l g o r i t h m

Here we describe a post-competition version of EDSM. Compared to the programs that
were used during the competition, this algorithm produces a slightly better distribution
of generalization rates on random problems (see section 11).

9.1 Definition of a merge's score

We award one point for each state label which, as a result of a merge, undergoes an
identity check and turns out to be okay. Any mismatch results in a negative overall
score. Details appear in section 9.4.

9.2 Initial hypothesis

The initial hypothesis is the prefix tree acceptor directly embodying the training set.

9.3 Outer loop

The key insight of EDSM is that bad merges (which can't be directly detected when the
training data is very sparse) can often be avoided if we instead do high scoring merges
that have passed many tests and hence are likely to be correct. To have the best chance
of finding a high-scoring merge to perform at any given moment, we need the largest
possible pool of candidate merges. Thus, we would like to consider the possibility of
merging every pair of hypothesis nodes, as in the following outer loop:

1. For every pair of nodes in the hypothesis, compute the score for merging that pair.
2. If any merge is valid, perform the highest scoring one, otherwise halt.

3. Go to step 1.

Note that this outer loop requires us to be able to merge nodes that are the roots of
arbitrary subgraphs of the hypothesis, not just nodes that are the roots of trees. In the
next section we show how to do this.

(define (compute-classes hypo ; current hypothesis DFA (not modified)
ufer ; union-find data structure (modified)
input-set) ; list of nodes asserted to be equivalent

(when (> (length input-set) I)
(let ((learned-something-new? #f)

(guyl (car input-set)))
(dolist (guy2 (cdr input-set))

(when (not (uf-same-class? ufer guyl guy2))
(uf-unify-classes ufer guyl guy2)
(set! learned-something-new? #t)))

(when learned-something-new?
(dotimes (i alphabet-size)

(compute-classes hypo ufer
(delete-duplicates-and-undefineds

(map (lambda (node) (get-child hypo node i))
(uf-get-members-of-guys-class ufer guyl)))))))))

Fig. 1. Scheme code for working out which states are combined by a given merge.

9.4 Merging and scoring

To merge a pair of nodes, we must work out the partition of hypothesis nodes into equiv-
alence classes which is implied by the assertion that the two candidate nodes are equiv-
alent, plus the determinization rule which states that the children of equivalent nodes
must be equivalent. Note that we can perform this computation regardless of whether
the merge is valid, since validity depends on state labeling, whereas the equivalence
classes only depend on the transition function.

Once we have determined the set of equivalence classes, it is trivial to consult the
labels and compute a merge score, and, if the merge is in fact valid, to construct a new
hypothesis reflecting the merge.

Computing equivalence classes Figure 1 shows the Scheme language subroutine
c o m p u t e - c l a s s e s , which works out the equivalence classes implied by a merge
and the determinization rule. It employs a union-find data structure to keep track of sets
of states that are known to be equivalent.

To assert that a particular set of states is equivalent, we call c o m p u t e - c l a s s e s
on that set. The procedure checks the union-find data structure to determine whether
the assertion is new information. If not, the routine returns immediately. Otherwise, it
unifies the equivalence classes associated with all the members of the input set, and
then calls itself recursively on each of the sets of i 'h children of members of the newly
unified equivalence class.

When considering a merge, we initiate the computation by calling c o m p u t e -
c l a s s e s on the set consisting of the two nodes that we are thinking of merging. We
also pass in a fresh union-find data structure that has been initialized with a singleton
set for each state in the pre-merge hypothesis.

Note that the computation terminates because recursive calls only occur when sep-
arate classes have actually been unified, and the number of states in the hypothesis is an
upper bound on the number of times this can happen.

Scoring A merge's score is the sum over equivalence classes of the following quantity:
if there are conflicting labels in the class, minus infinity; if there are no labels in the
class, zero; otherwise, the number of labels minus one. We subtract one because the
first label in the class establishes the correct label for the class, but is not checked.

Constructing a merged hypothesis Once a candidate merge has been shown valid
by a non-negative score, and we have decided to actually perform the merge, we can
construct an updated hypothesis from the equivalence classes as follows. The new hy-
pothesis has one state per equivalence class.

Let C1 be an equivalence class, and i be an input symbol. Let Sl be any state in C1
that has a defined transition for i. Let sz be the target of that transition, and let C9. be
the class of s2. Then i takes us from (71 to C'2. If no state in C'1 has a defined transition
for i, then C1 's transition for i is undefined.

Let s3 be any state in C'1 that has a defined label. The label of sa becomes the label
for C1. If no state in C1 has a defined label, then C1 's label is undefined.

10 Blue-fringe algorithm

Because the algorithm of section 9 performs merges in arbitary order, both nodes in
a merge can be the roots of arbitrary subgraphs of the hypothesis. It turns out that by
placing a restriction on merge order (described below), one can guarantee that one of
the two candidate nodes is always the root of a tree, resulting in a very simple algorithm
for merging two nodes (see figure 2).

Much previous work has employed a restriction of this type, including the papers
of [6, 7, 10]; and the Abbadingo competition programs of Price and Juill6. Note that the
restriction shrinks the pool of merge candidates, so it increases the failure rate of the
algorithm as compared to the unrestricted algorithm of section 9. However, the idea is
well worth describing.

As usual, we start with the prefix tree acceptor. The root is colored red. Its children
are blue, and all other nodes are white. We maintain the following invariants:

- There is an arbitrary connected graph of mutually unmergeable red nodes.
- All non-red children of red nodes are blue.
- Blue nodes are the roots of isolated trees.

We restrict ourselves to the following actions:

- Compute the score for merging a red/blue pair.
- Promote a blue node to red if it is unmergeable with any red node.
- Merge a blue node with a red node. 6

This basic framework of invariants and actions can be turned into different algorithms
of widely varying performance, depending on the details of the policy for choosing
which action to perform when. A particularly good policy is described in [12]:

6 Note that the last two actions might also require some white nodes to be recolored blue.

10

(define (merge-and-compute-score red-cand blue-cand)
(make-blue-guys-father-point-to-red-guy red-cand blue-cand)
(set! score O) ; using global variable for simplicity here
(merging-walk-it red-cand blue-cand)
score)

(define (merging-walk-it r b)
(let ((r-label (get-label r))(b-label (get-label b)))

(when (defined? b-label)
(if (defined? r-label)

(if (= r-label b-label) ; compare labels
(set! score (+ score 1))
(set! score -infinity))

(set-label! r b-label)))) ; copy in missing label
(dotimes (i alphabet-size)

(let ((r-child (get-child r i))(b-child (get-child b i)))
(when (defined? b-child)

(if (defined? r-child)
(merging-walk-it r-child b-child)
(set-child! r i b-child)))))) ; splice in missing branch

Fig. 2. Code for performing and scoring a merge in the blue-fringe framework.

1. Evaluate all red/blue merges.
2. If there exists a blue node that cannot be merged with any red node, promote the

shallowest such blue node to red, then goto step 1.
3. Otherwise (if no blue node is promoteable), perform the highest scoring red/blue

merge that we know about, then goto step 1.
4. Halt.

Note that the algorithm of [10] has the priority of steps 2 and 3 reversed, which dras-
tically reduces its effectiveness. 7 It is important to not start merging until many merge
candidates have accumulated, so that one with a high score is likely to be available.

11 A comparison of two EDSM implementations

We have described two implementations of EDSM. A table (like table 3) could be made
for either one showing that it scales well, s and that it can usually solve problems at
density level II but not density level I. In this section we put aside the question of scaling
and focus on the question of how well the two versions can generalize on problems that
lie halfway between columns II and I, that is, near the edge of typical solvability for the
EDSM method.

Table 4 shows the results of a comparison on a set of 1000 such problems. Clearly,
both implementations of EDSM are much more powerful than the plain Trakhtenbrot-
Barzdin program. The reference program is slightly more effective than the blue-fringe
program. We attribute this to its larger pool of candidate merges.

7 On a set of 100 problems like the ones in section 11 but with 2500 training strings, the median
generalization error rate for Juill6's policy is .004. Reversing the priority of steps 2 and 3
increases this to .39, which is nearly as bad as the value of .44 for the plain Trakhtenbrot-
Barzdin algorithm.

s The reference algorithm needs some speedups to be practical. See the appendix.

11

algorithm

Trakhtenbrot-Barzdin
blue-fringe EDSM (Juill6)

reference EDSM
combination of the previous two

median
generalization

rate
.537
.809 311
.934 379
.955 423

number of
solutions

(out of I000) I
26

Table 4. A comparison of two implementations of EDSM on 1000 random problems. Each prob-
lem had 2000 training strings of length 0-15, and a depth-10 target DFA with about 64 states.
Solutions are hypotheses with a generalization rate of .99 or better.

We also mention that there is a strong stochastic component to the behavior of
both EDSM programs, 9 and that there are many problem instances where the reference
program fails and the blue-fringe program succeeds. Given the somewhat uncorrelated
failures of the two programs, it is natural to combine them by running both and then
choosing the smaller of the two resulting DFA's. Table 4 shows that this combined
approach works better than either program alone. In fact, the combined performance
level is well into the range reported by [12] for the search-intensive SAGE system.

12 Notes on run time

The run time of Trakhtenbrot-Barzdin is upper bounded by P H 2, where P is the size
of the inital PTA, and H is the number of nodes in the final hypothesis. The bound for
the blue-fringe algorithm is P H 3. We don' t have a tight upper bound on the run time of
the reference algorithm, but we conjecture that it would be closer to p3H than to p4H.

13 Conclusion of Part II

We have described two versions of a polynomial time DFA learning algorithm that
works very well on randomly generated problems. While the algorithm can be defeated
by a malicious adversary, we believe that it will degrade gracefully as one moves gradu-
ally away from the average case. We recommend that anyone faced with a DFA learning
task give this algorithm a try.

Acknowledgements

We thank Hugues Juill6 for sending us code and an early draft of [12], which is the
source of the blue-fringe control policy described in section 10.

9 This is due to randomness in the training data and the fact that even high scoring merges can
be wrong.

12

Appendix: speedups for the reference algorithm

For the experiment of section 11, we sped up the reference algorithm by only consid-
ering merges between nodes that lie within a distance w of the root on a list of nodes
created by a breadth-first traversal of the hypothesis. This change hurts performance by
causing the algorithm to miss the (relatively rare) high scoring merges involving deep
nodes. Note that while the existence of the new w parameter appears to make the algo-
rithm less general by requiring prior knowledge of the size of the target DFA, one can
use the standard doubling trick to eliminate this requirement. However, in our section
11 experiment on size-64 DFA's, we simply used a w value of 256.

We also employed the following opfimizafions, which don't change the behavior
of the algorithm except to make it faster. Whenever the deeper of a pair of candidate
nodes is the root of an isolated tree, the blue fringe scoring routine of figure 2 is used
to cheaply compute the same score that would be returned by the expensive general-
purpose code of section 9.4. Also, before finally resorting to the general-purpose code,
we first do a quick walk looking for labeling conflicts; if one is found, we can immedi-
ately return a score of minus infinity.

References

1. B. Trakhtenbrot and Ya. Barzdin'. (1973) Finite Automata: Behavior and Synthesis. North-
Holland Publishing Company, Amsterdam.

2. D. Angluin. (1978) On the Complexity of Minimum Inference of Regular Sets. Information
and Control, Vol. 39, pp. 337-350.

3. L. Veelenturf. (1978) Inference of Sequential Machines from Sample Computations. IEEE
Transactions on Computers, Vol. 27, pp. 167-170.

4. M. Kearns and L. Valiant. (1989) Cryptographic Limitations on Learning Boolean Formulae
and Finite Automata. STOC-89.

5. L. Pitt and M. Warmuth. (1989) The Minimum DFA Consistency Problem Cannot be Approx-
imated Within any Polynomial. STOC-89.

6. Kevin J. Lang. Random DFA's can be Approximately Learned from Sparse Uniform Exam-
pies. In Proceedings of the Fifth Annual A CM Workshop on Computational Learning Theory,
pp 45-52, July 1992.

7. J. Oncina and E Garcia. Inferring Regular Languages in Polynomial Updated Time. In Pat-
tern Recognition and Image Analysis. pp. 49-61, World Scientific, 1992.

8. Yoav Freund, Michael Kearns, Dana Ron, Ronitt Rubinfeld, Robert Schapire, and Linda
Sellie. Efficient Learning of Typical Finite Automata from Random Walks, STOC-93, pp.
315-324.

9. E Dupont, L. Miclet, and E. Vidal. What is the search space of the regular inference? In
Proceedings of the International Colloquium on Grammatical Inference ICGA-94, Lecture
Notes in Artificial Intelligence 862, pp. 25-37, Spdnger-Verlag, 1994.

10. C. de la Higuera, J. Oncina, and E. Vidal, Identification of DFA: Data-Dependent Versus
Data-Independent Algorithms. In Proceedings of the International Colloquium on Grammat.
ical Inference ICGA-96 Lecture Notes in Artificial Intelligence 1147, pp. 313-325, Springer-
Verlag, 1996.

1 I. Joe Kilian and Kevin J. Lang. (1997) A Scheme for Secure Pass-Fail Tests. NECI Technical
Note 97-016N.

12. Hugues Juill6 and Jordan B. Pollack. (1998) SAGE: a Sampling-based Heuristic for Tree
Search. Submitted to Machine Learning.

