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Nonnegative Factorization of a Data Matrix as a
Motivational Example for Basic Linear Algebra

Barak A. Pearlmutter and Helena Šmigoc

Abstract We present a motivating example for matrix multiplication based on fac-

toring a data matrix. Traditionally, matrix multiplication is motivated by applica-

tions in physics: composing rigid transformations, scaling, sheering, etc. We present

an engaging modern example which naturally motivates a variety of matrix manipu-

lations, and a variety of different ways of viewing matrix multiplication. We exhibit

a low-rank non-negative decomposition (NMF) of a “data matrix” whose entries are

word frequencies across a corpus of documents. We then explore the meaning of the

entries in the decomposition, find natural interpretations of intermediate quantities

that arise in several different ways of writing the matrix product, and show the util-

ity of various matrix operations. This example gives the students a glimpse of the

power of an advanced linear algebraic technique used in modern data science.

Key words: Nonnegative Matrix Factorization (NMF); Topic Modeling; Data Min-

ing; Matrix Multiplication

1 Introduction

Examples are an essential part of teaching any mathematical subject. They serve a

range of purposes, from checking understanding and deepening knowledge to giv-

ing a broader view of the subject and its applications. There are an abundance of

examples available in the literature, covering every topic of any basic linear alge-

bra course. However, it is not so easy to find examples that give an insight into the
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current development of the subject and are at the same time accessible to students.

As the applications of linear algebra are rapidly expanding, and several new devel-

opments in the subject are motivated by applications, examples showcasing current

applications of the subject are of particular interest.

Because of its utility in other domains, linear algebra is a classical subject rou-

tinely taught to students not majoring in mathematics. It is a prerequisite not just for

advanced mathematics but also for undergraduate degrees in Engineering, Physics,

Computer Science, Biology, Chemistry, Business, Statistics, and the like. Those stu-

dents in particular benefit from learning from examples, and appreciate seeing in-

teresting applications of the material they are learning. The benefits of using models

to introduce mathematical concepts has been studied (Lesh and English, 2005), and

models focusing on different concepts from linear algebra are available (Possani

et al., 2010; Salgado and Trigueros, 2015; Trigueros and Possani, 2013).

While very simple examples are essential when introducing a topic, examples of

applications presented in classrooms often seem contrived. For example, students’

knowledge of economics and agriculture is sufficiently sophisticated that simple

linear examples of acreage under cultivation invite criticism. On the other hand,

it is impossible to bring to the classroom, for instance, deep applications of linear

algebra in genetics (Ponnapalli et al., 2011), since most likely neither the instructor

nor the students have the necessary background to really understand how they work.

To quote Stewart and Thomas (2003),

While it is true that linear algebra can simplify the solution to many problems, this is only

true for those who are very familiar with the subject area. In contrast, the first year university

student has a long way to go before being able to see the whole picture.

The press is full of stories about data science: analysis of large corpora of data.

Some of these lend themselves naturally to use as motivating examples for various

concepts in linear algebra. For example, the Netflix challenge can be viewed as a

problem in matrix completion, where a company was highly motivated to recover a

low rank decomposition of an almost entirely incomplete matrix of movie ratings.

We present less abstract example, in which matrix multiplication is explicated

by examination of a nonnegative decomposition of a term-by-document matrix.

This particular example vividly illustrates various views of matrix multiplication (as

composition of linear functions; as a sum of outer products of columns with rows;

and as a table of inner products of rows with columns), while using only primi-

tive concepts. It also previews and motivates a variety of more advanced concepts

(the general algebraic concept of factoring, the notion of rank, approximation and

norms, iterative numeric algorithms, constraints like element-wise non-negativity,

and column-stochastic matrices), helping sketch the outlines of richer material cov-

ered in more advanced courses.

Although intuitive and implemented by a very short algorithm, the technique dis-

cussed (NMF) is far from a toy: it has enjoyed a myriad of accessible and engaging

applications (Asari et al., 2006; Helleday et al., 2014; Niegowski and Zivanovic,

2014; O’Grady and Pearlmutter, 2008; Ray and Bandyopadhyay, 2016; Smaragdis

and Brown, 2003; Wilson et al., 2008). For this reason, the example we present
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serves to give a taste of an interesting and accessible application of linear algebra.

Although briefly presented in this document for the sake of completeness, we do

not suggest attempting to derive the method in the classroom, leaving that too as

motivation for the pursuit of more advanced study.

The mathematical notation used below is standard. For example, ei denotes the

vector of appropriate size with i-th entry equal to one and other entries equal to

zero. The “discussion point” boxes are intended to be illustrative, and can be used

for classroom discussion, project-based learning, or as the basis for assignments.

2 Term-by-Document Matrix: A Small Example

Numeric data organised in a tabular format is something we are all familiar with

in our daily lives. Everyone can understand a spreadsheet whose rows are indexed

by products, columns by month, and whose entries contain sales. These are the

matrices that students entering a linear algebra course have already seen. In data

science, tabular data of this sort is known as a “data matrix”.

A data matrix of interest in library science is a tabulation of word frequencies by

documents. Rows are indexed by words, columns by documents, and the entries of

a matrix are the number of times a given word appears in a given document. This

particular kind of data matrix is sometimes called a term-by-document matrix. Al-

though this matrix completely ignores the actual arrangement of words within each

document (i.e., it is a bag-of-words model), it still contains sufficient information to

allow interesting structure to be discovered.

There are several ways in which matrices and matrix multiplication can be in-

troduced in the classroom. Term-by-document matrices can be one of the examples

given to the class, starting with a small example that can be given on a board. In

the classroom we can show a pre-prepared example, which can be built on by an

assignment in which students have the freedom to chose the documents they want

to consider. Since the search function in browsers automatically counts the num-

ber of times a word appears on a page, such an assignment is not necessarily time

demanding.

Here we present an example where the documents are the Wikipedia entries for

the four most venomous animals in the world (Box Jellyfish1, King Cobra2, Marbled

Cone Snail3, Blue-Ringed Octopus4) and we consider only five terms (venom, death,

danger, survive, Madagascar). This gives us Table 1.

Going from the table to the matrix

1 https://en.wikipedia.org/wiki/Box jellyfish
2 https://en.wikipedia.org/wiki/King cobra
3 https://en.wikipedia.org/wiki/Conus marmoreus
4 https://en.wikipedia.org/wiki/Blue-ringed octopus
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Table 1 Term-by-Document Matrix of the Four Most Venomous Animals

Documents

Jellyfish Cobra Snail Octopus

Terms venom 32 44 1 18

death 9 3 0 2

danger 6 4 0 4

survive 2 0 0 1

Madagascar 0 0 2 0

A =









32 44 1 18

9 3 0 2

6 4 0 4

2 0 0 1

0 0 2 0









we can lead the discussion in several directions. A representative set of questions

is given below. The questions are of course trivial to answer without referring to

matrices. The simplicity of the questions makes it easy for students to understand

the corresponding matrix operations and motivates them to think about extensions

to more involved tasks.

Discussion Point: Determine the frequency of terms appearing in the first

document, in the third document, in the first or third document. What is the

frequency of terms in all the documents together?

The above questions can all be answered using multiplication of a matrix by a

column vector.

A







1

0

0

0







=









32

9

6

2

0









A







0

0

1

0







=









1

0

0

0

2









A







1

0

1

0







=









33

9

6

2

2









A







1

1

1

1







=









95

14

14

3

2









On this small example matrix multiplication, while illustrative, does not help with

efficiency of obtaining an answer. However, we can lead the students to think further.
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Discussion Point: Can you think about other questions about the set of doc-

uments that can be answered using matrix multiplication? (E.g., differences

in word frequencies.) How would one extract information from very large

datasets? (This is for the computer science students in the class: strategies

for assembling, representing, storing, and operating upon a very large data

matrix.)

At this point the students can appreciate that in order to get the information5

about the terms in the i-th document we need to multiply A by ei, to find the infor-

mation about the terms in documents i, j and k we need to multiply A by ei+e j+ek,

or equivalently, add Aei, Ae j, and Aek. We can view the matrix A as a transformation

that takes information about documents (i, j, k) to information about terms (Aei,

Ae j, Aek).

words
A
←− documents

Furthermore, we can remark that this transformation obeys certain rules

A(ei + e j + ek) = Aei +Ae j +Aek

which can be developed into the definition of linearity. We continue the discussion

by presenting the transpose matrix.

AT =







32 9 6 2 0

44 3 4 0 0

1 0 0 0 2

18 2 4 1 0







Discussion Point: Which documents contain the third term, the fifth term, the

third or the fifth term?

AT









0

0

1

0

0









=







6

4

0

4







AT









0

0

0

0

1









=







0

0

2

0







AT









0

0

1

0

1









=







6

4

2

4







Students can see the similarity with the discussion above. To find out how the i-th

term is featured in documents we need to multiply ei by AT
.

5 The “information” here can be viewed as histograms over either documents or terms, which is

something the students should be comfortable with.
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documents
AT

←− words

Further questions can be discussed in this framework, touching upon elementary

ideas not routinely discussed in the first course on linear algebra, such as non-

negativity and sparsity.6

Discussion Point: Note that the term Madagascar only appears in the third

document. Can we draw any conclusions from this?

Discussion Point: If we were to make a table that includes all the terms that

appear in at least one of the four documents, would we expect most of the

entries in the matrix to be equal to zero? Why?

Discussion Point: Note that all the elements in the matrix are non-negative

integers. Can you think of any other tables with only non-negative integers?

How about tables containing only non-negative real elements? Can you think

about any other conditions on the entries that are imposed naturally in a par-

ticular setting?

Discussion Point: In class, we usually label the rows and columns of a ma-

trix with successive integers: 1, . . . ,n. These are generally used as “nominal

numbers”, meaning only their identities are important—like building num-

bers, course numbers, or social security numbers. And when we write ∑
n
i=1,

what we usually mean is really ∑i∈rows. We can change most of our formu-

las to use this convention. But in actual applications, as in the example here,

often the rows and columns have natural labels: names of chemicals, words,

documents, people, months, cities, etc. When this holds, we can use these la-

bels instead of numbers as indices. And we can freely rearrange the rows and

columns, keeping their labels, while still representing the same underlying

mathematical object: the same matrix.

This point is illustrated by a term-by-document matrix, which has rows labeled by

terms and columns labeled by documents. Let us look at another example. The two

tables below contain movie ratings given by four users to five movies:

6 Sparsity is of particular importance in computer science, where it impacts the representation and

manipulation of both matrices and graphs.
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Table 2 Labeling Rows and Columns

Alice Becky Cindy Dora

Alien 4 1 4 5

Animal House 1 5 4 2

Beetlejuice 2 2 5 3

Jaws 5 1 5 5

Life of Brian 1 5 5 1

Becky Cindy Dora Alice

Animal House 5 4 2 1

Life of Brian 5 5 1 1

Beetlejuice 2 5 3 2

Jaws 1 5 5 5

Alien 1 4 5 4

Discussion Point: Compare the two tables. Do they contain the same infor-

mation? Can you figure out the principle behind the ordering of rows and

columns on the left and on the right?

3 Matrix Factorization

Students are familiar with the idea of factoring an integer as a product of prime

numbers. Writing 6 = 3× 2 gives us some information about the number 6. An-

other example is factoring a polynomial. Writing x4− 10x3 + 35x2− 50x+ 24 as

(x−1)(x−2)(x−3)(x−4) uncovers useful information. Both prime factor decom-

position and factoring a polynomial are in general hard to do. Given two integers it

is straightforward to find their product, but there is no known efficient algorithm for

integer factorization.

This concept can, in some sense, be extended to matrices. Given a matrix, we

want to write it as a product of two (or more) “simpler” matrices. There are several

ways this can be done. A wide range of factorizations of matrices are used in appli-

cations, where—depending on the application—different properties of the factors

are desired. An example that can be presented in the classroom is given below. The

matrix

A =







2 −1 1 2

−1 1 −2 −1

1 −2 5 1

2 −1 1 2







can be factored in several ways:
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A =
1

21







1 1 −1 1

−1 0 0 3

2 −1 0 1

1 1 1 0













7 0 0 0

0 3 0 0

0 0 0 0

0 0 0 0













3 −3 6 3

7 0 −7 7

−10 3 1 11

1 6 2 1







=







1 1

−1 0

2 −1

1 1







(
1 −1 2 1

1 0 −1 1

)

=







2 −1 0 0

−1 1 0 0

1 −2 1 0

2 −1 0 1













1 0 −1 1

0 1 −3 0

0 0 0 0

0 0 0 0







The students may not have the mathematical tools to develop the factorizations

above, but we can ask them to check their correctness, and to explore properties

of the factors.

Demands from applications frequently impose conditions on the factors that are

too strong to be satisfied exactly. For example, not every matrix can be written as a

product of a column by a row. Or more generally, not every matrix can be written as

a product of two low rank matrices. If we are unwilling to relax the conditions, we

need to resort to approximate factorizations. Let us consider the matrix

A =







1 1 1 1.01

1 1 1.01 1

1 1.01 1 1

1.01 1 1 1






.

Using elementary tools one can check that A cannot be written as a product of a

column and a row.

Discussion Point: Can we find a matrix that is close to the matrix A that can

be written as a product of a column by a row?

Students are likely to come up with the following solution:

A1 =







1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1







=







1

1

1

1







(
1 1 1 1

)
,

and we may present another one:
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A2 =







1.0025 1.0025 1.0025 1.0025

1.0025 1.0025 1.0025 1.0025

1.0025 1.0025 1.0025 1.0025

1.0025 1.0025 1.0025 1.0025







=







1

1

1

1







(
1.0025 1.0025 1.0025 1.0025

)
.

Discussion Point: Which solutions is better? What does it mean for a matrix

B to be close to A?

This question could be an introduction to the concept of matrix norms.

Factorizations of matrices have been developed that are used in applications, with

the aim of uncovering hidden structure. We present a factorization that requires the

factors to be non-negative and of a given low rank r. Those conditions are too strong,

so the factorization will not be exact. This means that given a matrix V , we obtain

matrices W and H so that the matrix V̂ =W H is in some sense close to V .

V ≈ W
H

Non-negative matrix factorization, or NMF (Paatero and Tapper, 1994; Lee and

Seung, 1999; Wang and Zhang, 2013), is a class of techniques for approximately

factoring a matrix of non-negative numbers into the product of two such matrices:

given an entry-wise non-negative n×m matrix V , find two entry-wise non-negative

matrices W and H, of sizes n× r and r×m, such that V ≈W H. (Even after a value

for r has been chosen, and an appropriate measure of similarity of two matrices

has been chosen, there can be many possible solutions. However, popular NMF

algorithms empirically usually find good solutions, a phenomenon which has been

the subject of considerable analysis (Donoho and Stodden, 2004).)

Let us look at the nonnegative matrix factorization of the matrix that corresponds

to the left side of Table 2:

A =









4 5 4 1

5 5 5 1

5 3 2 2

4 2 1 5

5 1 1 5









First we take r to be equal to one. That means that we want to approximate A by a

product of a nonnegative column and a nonnegative row. The algorithm returns the

following result:

W1 =









7.137

8.214

6.398

5.974

6.155









H1 =
(

0.6709 0.4898 0.406 0.381
)
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A−W1H1 =









−0.7885 1.504 1.102 −1.72

−0.511 0.977 1.665 −2.13

0.7077 −0.1334 −0.5976 −0.4378

−0.008175 −0.926 −1.426 2.724

0.8703 −2.015 −1.499 2.655









Taking r = 2 we get:

W2 =









6.968 1.086

7.908 1.364

3.763 3.558

0.5117 6.448

0 7.197









H2 =

(
0.5171 0.6379 0.5707 0

0.6658 0.1897 0.1095 0.7133

)

A−W2H2 =









−0.3256 0.3496 −0.09564 0.2257

0.002296 −0.3033 0.337 0.02677

0.6857 −0.07508 −0.5374 −0.5376

−0.5576 0.4506 0.001623 0.4004

0.2088 −0.365 0.2117 −0.1333









Discussion Point: Compare A−W1H1 and A−W2H2. Can you find a nonneg-

ative factorization of A for r = 4?

Let us have a closer look at W2 and H2. Recall that the rows of W2 correspond to

movies, and the columns of H2 correspond to users.

Discussion Point: Can we give sensible labels to the columns of W2, or equiv-

alently, the rows of H2.

Note that the highest values in the first column of W2 correspond to movies Alien

and Jaws, while the highest values in the second column correspond to movies Ani-

mal House and Life of Brian. Based on this, we may agree to label the first column

“Horror”, and the second column “Comedy”. The rows of H2 are labeled corre-

spondingly. Values in H2 can now be interpreted in the following way. Cindy likes

both horror and comedy movies, Dora and Alice prefer horror movies, and Becky

likes comedy, but not horror movies. Matrix factorization uncovered genre for our

movies.

In the context of the small example, we can look at V as a transformation from

“movies” to “people”. Now we have the third notion appearing: “genres”. The ma-

trix H can be seen as a transformation that takes movies to genres, and W takes

genres to people.

people

V
︷ ︸︸ ︷

W
←− genres

H
←−movies
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We may remark to the students that they are justified in finding this example a bit

contrived. The is example is too small (and also made up) to be very convincing.

We give a larger example based on term-by-document matrix later in the chapter.

The formula for matrix multiplication, A = BC,

ai j =
m

∑
k=1

bikck j

can be intimidating to students.

From the point of view of our example, where the rows of V are indexed by

“movies” and the columns by “people”, we can write down the same formula in the

following way:

v̂movie,person = ∑
g∈genre

wmovie,g hg,person

The entry in the matrix V̂ that represents a rating of a chosen “movie” to a chosen

“person” is computed by summing up the product of how much the person likes

genre g and how much the movie is in genre g, over all genres. This process can be

depicted graphically:









V̂

•









=









W











 H





On the other hand we may notice that V̂ is the sum of rank one matrices, each of

them giving the contribution of a particular genre.









V̂









=∑
g









W•,g









[
Hg,•

]
.

This is written as:

V =
r

∑
g=1

(g-th column of W ) · (g-th row of H)

= ∑
g∈genres

Ratings Matrix for genre g

= sum of rank-one per-genre matrices
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This interpretation reinforces the power of the nonnegative matrix factorization.

From a bundle of documents, it singles out a particular genre in way that agrees

with our intuition in a surprisingly strong way.

Let us go back to the example of movie ratings discussed earlier. We have ap-

proximated our matrix A by W2H2. Below this product is written as a sum of two

rank one matrices:

W2H2 =









6.968 1.086

7.908 1.364

3.763 3.558

0.5117 6.448

0 7.197









(
0.5171 0.6379 0.5707 0

0.6658 0.1897 0.1095 0.7133

)

=









6.968

7.908

3.763

0.5117

0









(
0.5171 0.6379 0.5707 0

)

+









1.086

1.364

3.558

6.448

7.197









(
0.6658 0.1897 0.1095 0.7133

)

=









3.603 4.445 3.977 0

4.089 5.045 4.514 0

1.946 2.4 2.148 0

0.2646 0.3264 0.292 0

0 0 0 0









+









0.7227 0.2059 0.1189 0.7743

0.9084 0.2588 0.1495 0.9732

2.368 0.6747 0.3897 2.538

4.293 1.223 0.7064 4.6

4.791 1.365 0.7883 5.133









Supplementary Advanced Material

To minimize the Frobenius norm, ‖V −WH‖F , a surprisingly simple method

is available. Two updates can be iterated

H := H⊙ (WTV ÷WTW H)

W := W ⊙ (VHT ÷WHHT )

where ⊙ denotes elementwise multiplication and ÷ denotes elementwise di-

vision. Typically after each update of W its columns are normalized to unit

sum.

An enormous number of variations and embellishments of the basic NMF algorithm

have been developed, with applications ranging from astronomy to zoology.
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4 Example using Module Descriptors

We give an example of factoring a data matrix involving a corpus of documents:

module descriptors for 62 mathematics modules that were taught in the School of

Mathematics and Statistics, University College Dublin (UCD) in 2015. Module de-

scriptors are relatively short documents that give overviews of the courses. Here are

two representative examples of module descriptors.

Numbers and Functions

This module is an introduction to the joys and challenges of mathematical reasoning

and mathematical problem-solving, organised primarily around the theme of properties

of the whole numbers. It begins with an introduction to some basic notions of

mathematics and logic such as proof by contradiction and mathematical induction. It

introduces the language of sets and functions, including injective surjective and

bijective maps and the related notions of left-, right- and 2-sided inverses. Equivalence

relations, equivalence classes. It covers basic important principles in combinatorics such

as the Principle of Inclusion-Exclusion and the Pigeonhole Principle. The greater part of

the module is devoted to number theory: integers, greatest common divisors, prime

numbers, Euclid’s algorithm, the Fundamental Theorem of Arithmetic, congruences,

Fermat’s theorem, Euler’s theorem, and arithmetic modulo a prime and applications.

The module concludes with some topics from elementary coding theory / cryptography

such as the RSA encryption system.

Groups, Rings and Fields

This course will be an introduction to group theory, ring theory and field theory. We will

cover the following topics: definition and examples of groups, subgroups, cosets and

Lagrange’s Theorem, the order of an element of a group, normal subgroups and quotient

groups, group homomorphisms and the homomorphism theorem, more isomorphism

theorems, definitions of a commutative ring with unity, integral domains and fields,

units, irreducibles and primes in a ring, ideals and quotient rings, prime and maximal

ideals, ring homomorphisms and the homomorphism theorem, polynomial rings, the

division algorithm, gcd for polynomials, irreducible polynomials and field extensions.

Time permitting, we may cover the Sylow theorems, solvable groups and further

examples of groups.

This set was chosen because the example was developed for the first linear al-

gebra classes at UCD. All the students in those classes were quite familiar with the

chosen set of documents, which they need to navigate each semester when choosing

and registering for their modules. The number of documents is large enough that we

can make a case for needing a computer to help navigate them, but small enough

that we can exert some manual control and can be familiar with the entire corpus.

All the words that appear in any of the 62 documents were collected. So-called

stop words (common words like “and”, “the”, and the like), and all the words that

appeared fewer than four times, were removed. Words were also down-cased and

stemmed, so for example the terms Eigenvalue and eigenvalues are deemed equiva-

lent. This resulted in a 290× 62 matrix V of word counts. Below we show some of

the data, starting with lists of the most and the least frequent words.
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Table 3 Most and Least Frequent Words

Most Frequent Words

word count

function 117

theorem 75

linear 72

matrix 66

theory 58

equation 53

mathematical 52

mathematics 52

understand 49

science 48

problem 44

Least Frequent Words

addition advanced arguments background behaviour

classify column computation constrained construct

continuous definite depth described directional

double elimination engineering evaluate expressions

flow foundations general importance independence

induction integrate interpret introduces known

manipulate max maxima min minima

nash nullity numerical original possible

prime quadratic range related riemann

row sample search significant solid

special stock sum sylow together

uncountable variety

Using the standard Octave (Eaton et al., 2015) package for NMF, the entry-wise

nonnegative matrix V is factored as

V ≈WH,

where W is an entry-wise non-negative 290× r matrix and H is an entry-wise non-

negative r× 62 matrix. We will see that factoring a matrix in this way reveals a

particular structure of the matrix which reveals something about the content of the

original documents. Different values for r are used below, and we will see how the

information that we obtain changes as we increase r.

For easier interpretation, the entries in each column of W have been permuted

so that they appear in descending order, and the term corresponding to each row

is shown. (Recall the discussion about labelling rows and columns at the end of

Section 2.) We also present a few columns of the matrix H for r = 3.

Table 4 W -matrix, r = 2

function 23.0

linear 11.1

matrix 11.0

equation 9.9

derivative 9.4

calculus 7.8

differential 6.5

solve 6.1

problem 5.9

mathematical 5.3

science 5.2

compute 5.1

variable 4.7

applications 4.7

integral 4.6

group 17.9

theorem 15.0

theory 6.9

ring 6.6

understand 4.0

structure 3.3

example 3.0

number 2.9

isomorphism 2.7

concepts 2.6

homomorphisms 2.5

sylow 2.3

subgroups 2.3

quotient 2.2

cauchy 2.2



Nonnegative Factorization of a Data Matrix as a Motivational Example . . . 15

Table 5 W -matrix, r = 3

group 18.1

theorem 14.8

theory 6.8

ring 6.7

understand 3.9

structure 3.4

number 3.0

example 2.9

isomorphism 2.6

homomorphisms 2.6

concepts 2.5

sylow 2.3

subgroups 2.3

applications 2.2

quotient 2.2

cauchy 2.1

time 2.1

finite 2.1

algebraic 2.1

permitting 2.0

function 27.1

derivative 11.1

calculus 9.2

equation 6.3

differential 5.8

integral 5.7

problem 5.5

variable 5.3

graph 4.8

limit 4.6

solve 4.5

mathematics 4.3

calculate 3.9

applications 3.8

science 3.5

introduction 3.5

mathematical 3.5

method 3.4

polynomial 3.4

differentiation 3.3

matrix 19.1

linear 14.9

space 9.5

vector 8.7

algebra 7.1

basis 6.5

equation 6.4

compute 5.7

system 4.9

rank 3.5

complex 3.5

product 3.4

number 3.3

mathematical 3.3

science 3.3

solve 3.2

dimensional 3.0

eigenvalues 2.9

set 2.8

eigenvectors 2.7

Table 6 W -matrix, r = 4

group 20.5

theorem 11.3

ring 6.7

theory 4.8

structure 3.9

isomorphism 3.0

homomorphisms 2.9

applications 2.7

sylow 2.6

subgroups 2.6

quotient 2.6

algebra 2.3

algebraic 2.2

time 2.1

permitting 2.1

finite 1.9

lagrange 1.8

special 1.7

construct 1.5

function 25.2

derivative 11.7

calculus 8.4

equation 6.7

differential 6.3

problem 5.8

variable 5.5

graph 4.9

solve 4.8

limit 4.3

applications 4.2

integral 4.1

calculate 4.1

polynomial 3.7

differentiation 3.4

science 3.3

mathematics 3.2

introduction 3.2

inverse 3.0

matrix 19.3

linear 14.8

space 9.0

vector 8.7

algebra 7.1

basis 6.5

equation 6.4

compute 5.7

system 4.8

rank 3.6

product 3.4

solve 3.1

science 3.1

complex 3.0

eigenvalues 2.9

dimensional 2.9

eigenvectors 2.8

number 2.7

mathematical 2.6

theorem 9.0

understand 8.7

question 6.3

complex 6.1

number 5.6

example 5.6

concepts 5.4

mathematical 5.2

function 5.1

cauchy 4.9

theory 4.6

integral 3.8

demonstrate 3.8

correctly 3.4

method 3.4

series 3.3

write 3.3

set 3.3

sequence 3.3
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Table 7 H-matrix, r = 3

Module Names

Numbers and
Functions

Linear Algebra with

Applications to Economics

Groups, Rings,

and Fields

Differential Equations

via Computer Algebra

0.1 0.0 0.3 0.0

0.1 0.0 0.0 0.1

0.0 0.2 0.0 0.0
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5 Discussion

Following on from the discussion around the small example presented above, the

students understand how the frequency of the terms across all documents is com-

puted. This gives an easy and automated way to derive the most and least frequent

words, given in Table 3. While in small example shown the most and least frequent

words could easily be found by hand, this is impractical when the matrix becomes

large.

Discussion Point: Consider different columns of the matrix W for r = 2,3

given in Tables 4 and 5. What do you observe?

Already in the case when r = 2, we can see some regularity in the way the terms are

grouped into columns. For example, it makes sense that the terms function, deriva-

tive, differential, integral appear in the same column. In the second column we see

the terms group, ring, isomorphism, homomorphism, sylow, subgroups, quotient,

cauchy appearing together.

The factorization is perhaps the most informative for the choice r = 3, so let us

take a closer look at this case. The terms in the matrix W are grouped in such a

sensible way that we can challenge the students to give them titles. Those students

who’ve read ahead a little may suggest Abstract Algebra for the first column, while

most should find Calculus appropriate for the second, and Linear Algebra for the

third. Things become a little less clear when we consider the matrix W for r = 4

(Table 6).

Discussion Point: What are the advantages and disadvantages of choosing r

to be small or big?

While higher values of r will make V̂ closer to V , they can make it more difficult

to interpret the results. An informed choice of r, dependent on the needs of the

applications, needs to be made. This problem of “model complexity” has been the

subject of a great deal of research in Statistics and Machine Learning.

Discussion Point: In the r = 3 case, we were able to give titles to columns of

the matrix W . Those titles could be called “topics”. The rows of W are indexed

by “words” and the columns by “topics”. For the multiplication W H to make

sense we need to have the rows of H marked by “topics”. Let us look at the

matrix H given in Table 7 to see if this makes sense.

Representative columns given for the matrix H agree with our prediction that the

first row corresponds to Abstract Algebra, the second row to Calculus and the third

row to Linear Algebra. For example, the course Linear Algebra with Applications to
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Economics has the only nonzero entry in the third row, while the course Differential

Equations via Computer Algebra has the only nonzero entry in the second row.

6 Conclusion

While this is a black box experiment for the students, they are able to appreciate the

result and understand the emergence of the topics in an example. The NMF algo-

rithm yields this topic analysis, helping us appreciate the strengths of the method. If

we want to bring the discussion further, it can be pointed out how this class of algo-

rithm is used to decompose speech and music into phonemes and notes (Asari et al.,

2006; O’Grady and Pearlmutter, 2008; Smaragdis and Brown, 2003), in speech de-

noising (Wilson et al., 2008) and recognition (Hurmalainen, 2014), in chemistry

(Siy et al., 2008) and biomedical sciences (Helleday et al., 2014; Ortega-Martorell

et al., 2012; Paine et al., 2016; Ray and Bandyopadhyay, 2016), in the analysis of

the cosmic microwave background radiation (Cardoso et al., 2003), etc.

The example presented above can be adapted for classroom needs in various

ways. An aspect not discussed here is the potential to turn some of the above ideas

into student projects. We are aware that the computational aspects of this may be

a big stumbling block, so we are developing a web-based tool to make it easy for

students to analyse a set of document in this way. We see a potential for interdis-

ciplinary projects, where students are charged with the task of analyzing a large

body of documents on a particular subject, and use linear algebra to reach some

conclusions.

In collaboration with Miao Wei,7 we have created an end-to-end interactive

browser-based implementation of the processing pipeline discussed above (taking

documents as input and processing them through stemming, the construction of a

term-by-document matrix, NMF, and visualization of the resulting factor matrices),

which is being made available online.8
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