
VEAP: A Visualisation Engine and Analyzer for PreSS#

Natalie Culligan
 Department of Computer Science,

Maynooth,
 Co. Kildare,

 Ireland
 natalie.culligan@nuim.ie

Keith Quille
 Department of Computer Science,

 Maynooth,
 Co Kildare,

 Ireland
 kquille@stconlethscc.ie

Susan Bergin
Department of Computer Science,

Maynooth,
Co. Kildare,

Ireland
sbergin@cs.nuim.ie

ABSTRACT
Computer science courses have been shown to have a

low rate of student retention. There are many possible reasons for
this, and our research group have had considerable success in
pinpointing the factors that influence outcome when learning to
program. The earlier we are able to make these predictions, the
earlier a teacher can intervene and provide help to an at-risk
student, before they fail and/or drop out. PreSS (Predict
Student Success) is a semi-automated machine learning
system developed between 2002 and 2006 that can predict the
performance of students on an introductory programming module
with 80% accuracy, after minimal programming exposure.
Between 2013 and 2015, a fully automated web-based system was
developed, known as PreSS#, that replicates the original system
but provides: a streamlined user interface; an easy acquisition
process; automatic modeling; and reporting. Currently, the
reporting component of PreSS# outputs a value that indicates if
the student is a “weak” or “strong” programmer, along with a
measure of confidence in the prediction. This paper will discuss
the development of VEAP: a Visualisation Engine
and Analyser for PreSS#. This software provides a
comprehensive data visualisation and user interface, that will
allow teachers to view data gathered and processed about
institutions, classes and individual students, and provides access
to further user-defined analysis, to allow a teacher to view how an
intervention could influence a student’s predicted outcome.

CCS Concepts
Social and professional topics Professional Topics Computing➝ ➝
Education

Keywords
Computer science; Education; Data Visualization ; Educational
Tools

1. INTRODUCTION
There is a significant student retention problem in third

level computer science courses, and many institutions report a

high failure and drop-out rate [13, 14]. Studies show that
intervention and feedback for students who are either struggling
with the material, or who find the material too easy and are in
danger of disengaging, can be successful in reducing the drop-out
rate if the students are identified as at-risk early in the module [9,
10]. Thus, projects to successfully identify the students that are in
danger of dropping out, so that interventions can be made, are
vital. There are many systems for predicting student success, but
arguably, the most successful system is PreSS [2]: a semi-
automatic machine learning system developed between 2002 and
2006 that predicts how well a student is likely to perform on an
introductory programming module with more than 80% accuracy,
after only 2-4 hours of exposure to basic programming concepts.
Conversely, PreSS# [1] is a fully automated web-based system,
built between 2013 and 2015, that accurately replicates the
PreSS system. PreSS# provides an easy-to-use system that a
student can log into and complete basic survey type questions,
after minimal exposure to programming concepts. The system
predicts if the student is likely to perform well and is a “strong
programmer”, or if they are likely to struggle and are a “weak
programmer”. The issue addressed in this paper is: how do we
best deliver this information to the teachers in order to ensure that
the data and functions provided by PreSS# are used to their full
potential.

To this end we have developed VEAP, the
Visualisation Engine and Analyser for
PreSS#. VEAP is a teacher focused piece of software with
three main functions:

 Generating visualisations of the data produced and
gathered by PreSS# on the user's students

 Navigating and displaying the data of individual
students

 Running further analysis on student results
This system allows teachers to identify students at risk

of failure or disengagement and allows for interventions early on
in a module, before the student has failed or disengaged. Further
development of VEAP could provide educational institutions with
the ability to help at-risk students, and to lower the drop-out rate
in computer science courses.

2. Related Research
To date there appears to be no system that can predict

student outcome with the accuracy of PreSS# after such
minimal exposure to programming concepts. VEAP is the only
visualisation engine and user interface created for use with the
PreSS# system. Extensive research has been conducted on the
factors that contribute to student success and predicting student
outcome from these factors. Some of the larger studies are
outlined below.

Bergin and Reilly [12] examined fifteen attributes that
may influence student success in an introductory programming
module. The goal of the study was to find if there were factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
Koli Calling 2016, November 24-27, 2016, Koli, Finland
© 2016 ACM. ISBN 978-1-4503-4770-9/16/11…$15.00
DOI: http://dx.doi.org/10.1145/2999541.2999553

130

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2999541.2999553

that could be used to predict a student’s likely performance, and to
allow for informed and personalised interventions. A
questionnaire and a custom-made cognitive test were used to
gather data from students on: prior academic results; comfort level
in the module; programming skill; self-perception; and some
specific cognitive skills. They found the most important factors in
success in a programming module to be the student's perception of
their own understanding of the module. Other factors that were
also found to be important were comfort level in the module, as
well as high school maths and science scores, with some gender
differences identified.

Doyle, et al [5] examined factors that influence student
success in an introductory programming module, and found that:
gender; programming language; and student attitude towards
technology, did not affect student success, but that: mathematics
exam scores; previous programming experience; and enrolling in
an optional laboratory sessions, were all associated with student
success.

Rountree, et al [6] investigated the factors that
influenced student success using a survey collecting information
about: age; gender; mathematical background; as well as
expectations on the difficulty of the course. Like the PreSS
study, it was found that mathematical ability and confidence to be
important factors, but that a student's expectation of a high grade
was the strongest indicator of success.

Byrne and Lyons [7] examined how: gender; prior
computing experience; learning style; and academic performance,
relate to results in a first year programming module. Like the
PreSS study, they found a relationship between mathematics and
final results, no significant link between gender and final results,
and a possible link between learning style and student success.

Wilson and Shrock [8] investigated 12 factors and how
they contributed to student success in an introductory computer
science course. Their study concluded that comfort level in the
class was the biggest indicator of success in the course and, like
PreSS, found that mathematical ability was an important factor
in predicting success, while computer game-playing had a
negative effect on student success.

Self-esteem is a serious problem in computer science
education. Eliasson et. al [5] found that students’ confidence in
their programming abilities seemed to significantly drop after
completing a module, signifying that self-esteem is an important
area of investigation for future study into computer science course
retention.

2.1 PreSS and PreSS#
VEAP is an interface for PreSS# that is based on

PreSS [2], a semi-automated prediction system. It is state-of-the
art: no other system is able to predict introductory programming
success with the level of accuracy that PreSS# has achieved, to
the best of our knowledge. The underlying model has been
continuously tested over the past ten years with multiple
institutions and consistently achieves this high level of accuracy,
irrespective of language or student cohort. The closest any other
system has achieved is around 40%-50% [3]. PreSS#'s
predictive performance is based on three student factors to
determine the student's outcome. They are:

 Mathematical ability
 Time spent playing computer games
 Programming self-esteem

Mathematical ability is defined by the score received in the last
mathematics exam taken by the student, which is converted into a
numerical value between 1 and 12.

Hours spent playing computer games is defined as the
number of hours a student spends per week during term time. The
value for this is a number between 0 and 10, with 0 indicating 5
hours or less of game playing, and 10 indicating a very high
amount of game playing, more than 45 hours a week.

Programming self-esteem measures how confident a
student is in their programming ability. To calculate this value,
PreSS# records the answer to 10 questions about the student's
perception of their own programming ability. These questions are
modified Rosenberg self-esteem questions [4] which have been
validated for reliability and consistency [2]. These 10 answers are
then reduced to a single value using Principal Component
Analysis. The system uses a Bayesian learning algorithm on these
three attributes to generate two values: [1] a prediction of success
or failure, and [2] a measure of confidence in the prediction,
between 0.1 and 1.0.

2.2 Issues with the current PreSS# system
While PreSS# has been very successful, it does not

include a system for teachers to properly utilise the full potential
of the data and functions provided by PreSS#. The system
simply outputs a '1' or '0' to indicate if the student is a 'strong' or
'weak' programmer, along with a measure of confidence in the
prediction. While these numbers are useful, there is currently no
way for teachers to access this information easily and intuitively,
nor is there any way to view the individual scores for each
attribute. There is also no way for teachers to use the system to
predict how well a student is likely to perform after a
hypothetically successful intervention, even though the system has
the potential to provide this function.

3. Description of the Tool
To address the issues with the current PreSS# system,

VEAP provides a visualisation engine that allows for teachers to
see, at a glance, which of their students are at risk of failure. The
students can be arranged within the visualisation by two user
selected parameters from the student's attributes, class, institution,
gender, attributes, or outcome, thus allowing teachers to
appropriately plan additional tutorials, interventions, or more
advanced material.

As well as an overview of a class, the teacher also has
the option to view an individual student’s profile. Each student
profile contains a paragraph about the student, describing their
rating in each of the three attributes, and the student's prediction.
The three attributes are represented by coloured bars, with an
indication of how the student rated in each attribute, ranging from
0% to 100%. The teacher can manually alter these attributes, and
re-run the Naive Bayes algorithm with the altered data to
hypothetically test a student's predicted outcome after a successful
intervention.

To fully utilise the PreSS# system and its rich data
repository, VEAP was designed to include the following:

1. An overview of all the students in a class, presented in a
digestible graphical form that uses a “traffic light”
system to indicate which students are predicted to be
strong (green), which are borderline (orange), and
which are predicted to be weak (red), using the
prediction and measure of confidence from PreSS# .
This allows a teacher to see how many students are in
danger of failing, at a glance.

2 131

2. The ability to “zoom in” to selected areas of the data
visualization. As introductory programming courses can
often have a large number of students, and a teacher
may teach several classes, so this feature is important
for visualizations of very large data sets.

3. Customisation settings for the student overview,
allowing the teacher to view the students arranged by
one or two parameters, selecting from:

 mathematical ability
 time spent playing computer games
 self-esteem
 class
 institution
 gender
 outcome

4. A student profile for every student that displays their
information, including their: name; age; gender; student
number; attribute ratings; and predicted outcome, as
well as a visual representation of the student's attribute
ratings that uses a bar chart and the “traffic light”
system.

5. The ability to run further analysis on a student by
manually modifying their attributes and re-calibrating
by re-running the learning algorithm to indicate how an
intervention may influence a student's prediction.

With these features, the teacher can arrange the students
by their ratings for attributes, within a class or institution,

allowing them to plan additional tutorials or more advanced
materials for the appropriate groups of students. The teacher can
also view an individual student's information, and use the re-
calibration feature to decide how best to intervene by addressing
the key attribute or attributes influencing the student's
performance.

Fig 2 An example of a student's profile

3.1 Interface Design
The visualisation tool is designed to be a flexible and

dynamic interface for the information and predictions made by
PreSS# and for the re-calibration functionality.

Each student is represented as a circle, within one or
two of the user-defined sub-groups. The students are colour coded

Fig 1: An example of a teacher's homepage

132

and sized according to their predictions, so as to draw attention to
the students in danger of failing. A teacher can click on any
student circle to be brought to the student's profile page and view
extra information about the student, and run extra analysis on their
data.

Fig 3 An example of a teachers students arranged by a single
attribute: mathematical ability

On the student profile page, the teacher can view the student's
attributes as slider bars, which change colour to represent the
student's rating in that attribute, from red (poor), to orange
(borderline), to green (good).

4. Re-calibration Tool

 Fig 4 The slider bars showing the ratings of attributes for a student

 It is a much simpler way of representing the three
attributes, and is not intended to be as accurate and precise as the
original PreSS# attribute values. Instead, it is a way to give
teachers an idea of how a given student is likely to perform, and
indicate what area the student is having issues with, to help the
teacher to decide how best to plan an intervention for said student.

The re-calibration tool uses a simplified version of the
PreSS# algorithm. The three attributes generated by PreSS#
are represented by a slider, ranging from 0% to 100% for
mathematics and self-esteem and from 8 hours to 0 hours (per
day) for hours spent playing computer games.

Using these slider bars, the teacher can use the mouse to
drag the sliders to indicate a higher or lower score for each
attribute. This allows them to estimate the effect of a successful
intervention on a student’s prediction by raising the score for one
of more ratings and clicking the “Prediction!” button.

Extra classes could be provided for students with a
weak mathematical background, and students can be advised to
cut down on their gaming time during term time, but low self-
esteem is more complex, and is thus more difficult to tackle.

Fig 5 Demonstrating that the student from Fig 1.1 can raise their
prediction from a fail to a strong pass by reducing their game playing and
improving their self efficacy

4.1 Architecture
The visualisation engine has three main components:

• The database
• The controller
• The GUI
The system was built in C# in Visual Studio to facilitate

interaction and integration with PreSS#. The system generates
visualisations using the data from the connected database, but is
not able to write to the database, ensuring the data gathered by
PreSS# cannot be modified. All data created within the
interface, such as modified attribute data, is stored as JavaScript
variables or JSON data.

The controller is the computational engine behind the
visualisation. It is written in C# and is responsible for: querying
the database; constructing JSON files for the GUI to interpret; and
running the Bayesian learning algorithm for the re-calibration
function. The learning algorithm is run using the Accord.Net
plugin for machine learning in .Net.

The GUI interprets teacher input and database queries to
create an interactive visualisation and interface for the teacher to
view the information and predictions gathered by PreSS#, using
javascript plugin D3.

5. Discussion
The goal of VEAP is to enable teachers to provide a

tailored educational experience for every student to help them

4 133

succeed. By using PreSS# and delivering it to teachers, we aim
to combat the worrying drop-out rates in computer science
courses by pinpointing the at-risk students, and assessing how to
best help these students.

The interface provides a way for a teacher to see, at a
glance: how many students are in danger of failing; how many are
weak at mathematics; students’ programming self confidence; and
time spent playing computer games. It can be used to decide what
area students need help in, and teachers can use this information
to plan extra tutorials or other interventions.

Interventions could consist of mathematics classes, to
bring struggling students up to an adequate level of mathematical
ability in comparison with other students, or simply pointing the
student towards online maths courses such as KhanAcademy or
Coursera, and providing them with a suggested time line for
covering the necessary topics for bringing the students level of
mathematics up to par. McDowell et al [6] suggests that pair
programming increases student confidence and improves student
retention. Similarly, a teacher could arrange for pair programming
assignments, perhaps matching “weak” programmers with
“strong” programmers.

For students who are in danger of failing due to a high
amount of hours spent playing computer games, the intervention
could take the form of a one-to-one talk, an email, or byat rids
addressing the issue with the class.

The issue of self-esteem is a much more difficult
problem. In VEAP, self-esteem is represented on a scale of 0-
100%, but it is difficult to see how this relates to a student's
confidence within a real-world setting. This is a non-trivial
problem that requires research beyond the scope of this paper, and
one that VEAP deals with quite crudely. Nonetheless, we believe
that there is a real value in what VEAP provides: tangible evidence
for a student that the only attribute preventing them from
achieving a “strong” programmer prediction may be enough to
boost that student's self-esteem.

6. Evaluation
Teachers with experience in PreSS# were asked to

participate in an evaluation of the VEAP tool. They were given a
short tutorial on how to use the tool, and were then asked to
answer 4 questions:

• What did you like about the tool?
• What did you dislike about the tool?
• What would you change or add?
• Would you use the tool?

All users expressed that the ability to arrange the
students by different attributes would be useful in planning
interventions or extra classes. They all also stated that the re-
calibration tool was something that would be useful when dealing
with individual students who may be struggling. Some users felt
that the tool could be more intuitive, or that it could display more
information on screen. For example one user noted that the
student profile page would state that a student had “good maths
skills” or “poor maths skills”, and wanted to know what the
system considered “good” or “poor”. The user suggested
displaying information on the students last exam taken, as this
information is in the system and may be helpful in understanding
the students level of maths, and what kind of help they might
benefit from.

66% of the users said they disliked the differing size of
the circles that represented the individual students. They felt that,
although it was helpful to see the students in danger of failing, it
could lead to ignoring students who are doing well in the module,

who may be in danger of disengaging. They suggested giving the
user an option to invert the size of the circles, or to set them all to
the same size. One user suggested that a student search function
would be helpful. 100% of the participants confirmed that they
would use the system.

7. Future work
VEAP provides an interface and visualisation and

analysis engine for teachers, but it does not connect to the student
outside of the initial prediction by PreSS#. Future work in this
area could concentrate on the features requested in the
evaluations, and on a student focused interface where a student
could track their own progress, receive automatically generated
advice on how to raise their prediction, and receive additional
predictions at set points during the term.

8. References
[1] K. Quille, Susan Bergin, 2015. PreSS#, A Web-Based

Educational System to Predict Programming
Performance. International Journal of Computer
Science and Software Engineering, vol. 4, no. 7,.

[2] S. Bergin, 2006. "A computational model to predict
programming performance", Ph.D, Maynooth
University,

[3] S. Bergin, 2015. Using Machine Learning Techniques to
Predict Introductory Programming Performance.
International Journal of Computer Science and
Software Engineering, vol. 4, no. 12, pp. 323-328,

[4] Winch and M. Rosenberg, 1965. Society and the
Adolescent Self-Image. Social Forces, vol. 44, no. 2, p.
255

[5] 2006. Investigating Students' Confidence In
Programming And Problem Solving. ASEE/IEEE
Frontiers In Education Conference. San Diego, CA:
IEEE, Print.

[6] McDowell, Charlie et al. 2006. Pair Programming
Improves Student Retention, Confidence, And Program
Quality. Communications of the ACM 49.8 90-95. Web.

[7] P. Byrne and G. Lyons, 2001. The effect of student
attributes on success in programming. SIGCSE Bull vol.
33, no. 3, pp. 49-52.

[8] B. Wilson and S. Shrock, 2001. Contributing to success
in an introductory computer science course. SIGCSE
Bull., vol. 33, no. 1, pp. 184-188.

[9] van Schalkwyk, S. 2010. Early assessment: using a
university-wide student support initiative to effect real
change. Teaching in Higher Education, 15(3), pp.299-
310.

[10] Tinto, V. 2003. Student success and the building of
involving education communities. Higher Education
Monograph Series, Syracuse University.

[11] Bergin, S. Mooney, A, Ghent, G and Quille K. Using
Machine Learning Techniques to Predict Introductory
Programming Performance. International Journal of
Computer Science and Software Engineering 4, no. 12
(2015): pp323-328

[12] [Bergin, S. and Reilly, R. (2005). Programming:Factors
that influence Success. SIGCSE Bull., 37(1), p.411.

[13] M. Morgan, R. Flanagan, and T. Kellaghan,2001. A
Study of Non-Completion in Undergraduate University
Courses. Dublin: Higher Education Authority.

[14] J. Bennedsen and M. E. Caspersen, 2007. Failure rates
in introductory programming. SIGCSE Bull, vol. 39, no.
2, pp. 32–36.

134

	1. INTRODUCTION
	2. Related Research
	2.1 PreSS and PreSS#
	2.2 Issues with the current PreSS# system

	3. Description of the Tool
	3.1 Interface Design
	4. Re-calibration Tool
	4.1 Architecture

	5. Discussion
	6. Evaluation
	7. Future work
	8. References

