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Searching for Serendipitous Analogies 
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Abstract. Analogical reasoning is an acknowledged process 
behind many episodes of creativity. Typically, the creator chances 
upon information unrelated to the given problem – and solves the 
problem by analogy with this accidental source of inspiration. 
Current models of analogical retrieval do not explain how 
semantically unrelated source domains are retrieved. We present 
the RADAR algorithm that maps domains into a separate structure 
space, where domains with similar topological attributes are co-
located. Each axis in structure space records the occurrence 
frequency of that feature in each domain. Nearest neighbour 
retrieval in structure space identifies structurally similar domains - 
from a diversity of semantic backgrounds. Structure based retrieval 
opens the possibility for creating an analogy model with far greater 
creativity potential than human reasoning. 

1 INTRODUCTION 
Analogy plays an acknowledged role in many creative episodes, 
and much work has been carried out into modelling the analogy 
process. While work has been carried out on discovering analogies, 
none appears to have been carried out into discovering creative 
analogies. In this paper we describe a computational model capable 
of acting as the driving force behind the discovery of creative 
analogies.  
 In this paper we assume that we have some given problem 
domains. This domain is described by a collection of predicate 
calculus assertions, involving objects, first-order rations and high-
order causal relations.  We also assume that some background 
memory exists with a large number of other domains, in which we 
base our search for creativity. The task is to select all domains with 
the potential for forming an analogy with the given target. 
Additionally, we wish to support the semantically distant 
comparisons that are common to so many creative analogies.  
 First, we set the background for this project. There is a vast 
difference between interpreting a given creative analogy and 
discovering a new creative analogy. Interpreting a supplied analogy 
does not require significant “exploration”, as a good analogy must 
be relatively easy to interpret - even if its implications are quite 
profound and far reaching. However, when discovering a creative 
analogy, we rely on the serendipity explanation - that it was a 
chance happening upon the source domain that enabled the 
analogy.  
 Semantic based retrieval uses the problem (or target) 
domain’s description to identify previous domain description. 
Typically, these candidate sources share some content in common 
with the target problem. This direct semantic similarity may be 
augmented with a semantic lexicon, like WordNet, enabling 

retrieval via synonymous descriptors. However, this approach 
doesn’t explain why serendipity plays such an important part in 
many creative episodes. Nor does it explain how an algorithm 
might go about deliberately searching for serendipitous analogical 
comparisons.  
 Consider the problem of generating the famous solar-
system:atom analogy. The two domains originate in different 
disciplines (nuclear physics and astro-physics). Thus, the 
vocabulary used to describe each is very different, but must still be 
retrieved by a creativity model. For example, the target relation 
between the nucleus and the electron is the “electromagnetic 
attraction”, and Rutherford would most likely have thought of it as 
such. (The distinction between the four “fundamental forces” being 
a core distinction in physics). The corresponding relationship 
between source’s planet and electron is “gravity”. It is only after 
we have identified the analogy that we can generalise these 
relations and identify the “attracts” relation in each domain.  
 This example again highlights the difference between 
generating and interpreting an analogy. Generating an analogy 
must counteract the representational “vocabulary” problems. For 
example, WordNet does not currently contain specific relations for 
gravitational-attraction and electromagnetism, which would be 
essential in modelling a physicist’s expert knowledge. Thus, seeing 
gravity and electromagnetism as instances of attraction is arguably 
more a result of this analogy than a driving force behind its 
discovery.  
 In contrast, conveying a newly discovered analogy can be 
done in such a way as to highlight the newly discovered 
similarities. When conveying this analogy the term “attracts” can 
be used when describing each domain. This makes the processes of 
both remembering and interpreting the analogy much simpler.  
 While some creative analogies result in significant new 
discoveries in science or other disciplines, many less profound but 
still creative analogies are invented every-day. Indeed, for tutoring 
and instruction it is often vital that the source domain is 
semantically unrelated to the given problem, allowing teaching to 
be based in a domain that is familiar to the student. Coaches, 
instructors and tutors frequently invent and use analogies between 
semantically different domains (ie between-domains analogies). 
Examples include “golf-putting is like standing on train tracks” [1], 
“driving a race-car is like ice skating”, and “programming a 
computer is like writing a film script”. These between-domains 
comparisons are often the stock-in-trade of instructors, who 
regularly use them so that student’s will come to see the 
‘something strange’ as being ‘something familiar’. The semantic 
overlap between these analogies is minimal, and retrieval based on 
semantic similarity seems inadequate in explaining these regularly 
occurring creative analogies. 
 Basic metaphors that frame much of our understanding 
typically involve abstract source domains - the future is a 
container, an argument is a war etc. Identifying the source for each 
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target requires using structure to find the framing source - relying 
on semantics for retrieval is too constrained.  
 Semantic retrieval ignores the key role that structure plays in 
analogy. Structure should be the basis for retrieval, not semantics. 
In this paper we describe an algorithm that efficiently performs 
structure-based retrieval on analogy domain descriptions. 

2 ANALOGY AND CREATIVITY 
In this section we briefly describe analogy and the analogical 
reasoning process. We assess its role in some well-known 
examples of creative scientific reasoning. Then we examine the 
notion of creativity, and why we believe the RADAR (Retrieving 
Analogies with Derived AttRibutes) model can be considered an 
engine for creative scientific discovery.  
 Analogy is a form of reasoning that identifies, and extends, 
the structural similarity between two domains of information. 
Kekule acknowledged the key role of analogy behind his creative 
“invention” of organic chemistry, and later his creative “invention” 
of aromatic chemistry. Indeed, Hoffman [2] describes many famous 
scientific discoveries either driven by, or widely understood as 
analogical comparisons. 
 Every analogy juxtaposes two key collections of information 
- the source and the target. In scientific creativity the target 
(problem) is known a priori, though unlike the analogies described 
in much of the computational modelling literature, it typically 
contains much irrelevant information. 
 Combined work across the branches of cognitive science in 
recent years has greatly improved our understanding of this core 
cognitive process. In this paper we present a computational model 
that efficiently identifies creative candidate sources when presented 
with a target problem.  
Top-down and Bottom-up 
 Many of the major discoveries in science, especially the 
physical sciences, are driven in the bottom-up manner. Newly 
discovered facts contradict the predictions of an existing theory, 
thereby calling for a new all-encompassing theory. Observing the 
behaviour of smoke particles led to the analogy that gasses are like 
billiard balls. Kekule’s well-documented carbon ring analogy was 
driven by C6H6 (and other molecules) whose behaviour 
contradicted the existing carbon chain theory.   
 Analogy also plays a role in “top-down” scientific creativity, 
by enabling theoretical advances. This form of creativity generally 
suggests novel inferences that might require experimentation to 
verify. Einstein's discovery of relativity had to wait until detailed 
observations of a solar eclipse were made, before his theory was 
validated (laboratory experiments being all-but impossible in 
astrophysics). Of course these approaches often proceed in tandem 
- involving iterative combinations of either (or both) bottom-up 
and top-down flavours. Kekule’s carbon ring involved two distinct 
discoveries - the ring structure and also the carbon double-bond 
[3].  
Creative Limitations  
While a source & target comparison may generate a novel 
interpretation, each source domain implicitly creates its own 
conceptual limitations. Each analogy has its own focus and its own 
blind spots. Analogical comparisons create not only novel 
interpretation and inferences, but also they implicitly take attention 
away from competing theories. The very presence of a valid 
mapping further inhibits our search for a new comparison, so every 
breakthrough also represents a new block to subsequent creativity. 
 Because of the nature of analogy, you cannot separate the 
mapping from its implications. Likewise, it is impossible to 

separate the inspiration behind creativity from the limitations of 
that creative interpretation - however irrelevant those limitations 
may appear at the time. For example, the limitations of Newtonian 
mechanics did not become clear until Einstein's breakthrough. 
 It has been shown that people do not spontaneously 
recognise analogies, even when all information is available to 
them. In tests on human subjects Gick and Holyoak [4] showed 
that only when people are explicitly prompted to identify an 
analogy does solution rates jump from about 10% to around 90%. 
For this reason we believe that computational models have greater 
creative potential than people. Computers can be forced to search 
out creative sources, forced to look for alternate mappings and 
examine their inferences. In this paper we attempt to create the 
driving engine for a creativity machine that is capable of generating 
analogies that people could use to re-interpret any given problem 
domain.   

2.1 Scientific Creativity 

Boden [5] identifies 2 classes of creativity; P-creative ideas are 
new to the individual agent generating the novel idea whereas H-
creative ideas are historically new to all reasoning agents. Without 
a knowledge base containing all known ideas in history, any search 
for H-creative knowledge must be based in some psychological 
knowledge base - that is, a search for p-creativity. In RADAR the 
hunt for creativity is rooted in a memory of domain descriptions, 
where each domain is a collection of predicate calculus assertions. 
While RADAR searches for p-creative inferences, its architecture 
is centred on identifying inferences that are more likely to be h-
creative. This issue will be developed in later sections.  
 Ritchie [6] identifies the essential qualities of creativity as 
directed, novel and useful. We describe the RADAR model as 
directed, as its creativity is based on some given target problem for 
which we seek a new interpretation. All RADAR’s activities are 
driven by the target problem. RADAR’s output is novel as it 
locates a previously unidentified source comparison, that generates 
p-creative inferences that are new to the target domain. Finally, its 
output is potentially useful as the identified source makes novel 
predictions that are cognitively plausible about the target problem.  
 Colton and Steel [7] identify justification of findings as a key 
requirement for computational creativity. In RADAR, justification 
comes in two forms, both relating to the phases of analogy known 
as mapping and validation. An analogy is only identified when a 
sufficient proportion of a domain’s elements participate in the 
inter-domain mapping. Secondly, the inferences mandated by such 
a sufficiently credible comparison are subject to validation. At the 
lowest level validation can ensure that inferences do not directly 
contradict known facts - any analogy mandating such inferences 
can be immediately rejected. However, the focus in this paper is on 
improving the recall of analogical retrieval models. Our concern is 
that we identify all plausible sources of creativity, identifying 
domains with the potential of forming an analogy with the supplied 
target. 
 Boden [8] identifies three levels of creativity: improbable, 
exploratory and transformational. The first creates novel 
combinations of familiar ideas. At the more advanced end of this 
spectrum, transformation causes “the shock of amazement” at a 
fundamental restructuring of ideas. Interestingly, she places 
analogy into the improbable category, not the transformational. To 
place analogy in this category is to imply that no analogy is 
exploratory or transformational.  
 Keklue’s 1855 vision of two carbon atoms “dancing in the 
street” was revolutionary. Not only did this dancing analogy 
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resolve the conflict caused by many carbon compounds, but it 
simultaneously invented organic chemistry. Faraday discovered 
benzene in 1826, but its behaviour contradicted expectations. 
Kekule’s “carbon-chain is like a snake biting its tale” analogy (ie 
carbon ring) resolved this conflict in 1865, and simultaneously 
invented “aromatic chemistry”.  
 It is difficult to see these analogies as anything other than 
transformational. The first analogy introduced the revolutionary 
carbon-carbon bond (previously atoms only connected with non-
identical atoms). The second introduced alternating carbon-carbon 
double bonds - a key structural element to DNA’s double helix 
structure. Einstein said that much of his theory of relativity can be 
derived by considering an analogy between distance and the time 
taken to travel between logs floating up and down stream. 

3 ANALOGY MODELS 
An analogy is a comparison between two domains of information 
(called the source and target) that supports learning. Gentner [9] 
highlighted that the key to interpreting analogies lies in aligning 
the structure of these two domains - and in extending the observed 
similarities to generate new information. Analogy researchers 
subdivide the process into several distinct phases, and where 
individual differences remain, Keane et al [10] represents a typical 
model composed of: representation, retrieval, mapping, 
adaptation and induction. This decomposition has facilitated 
computational modelling of individual phases, as well as the entire 
process.   
 We argue that it is the retrieval phase that provides the key to 
discovering creative analogies. Retrieval identifies the source 
domain, which in turn acts as the driving force behind the creative 
inspiration. Mapping and subsequent phases act as filters on the 
domains that were initially identified by retrieval. The remainder of 
this paper is devoted to the analogical retrieval phase, and in 
creating a model that is capable of identifying “creative” source 
domains for any given target problem.   
Information Retrieval  
Before proceeding to examine existing analogy retrieval models 
and their limitations, we first examine metrics used to describe 
information retrieval algorithms. Information retrieval algorithms 
are frequently described in terms of two key qualities: recall and 
precision. Precision is defined as the ration between the number of 
relevant domains retrieved, divided by the total number of domains 
retrieved. Recall is defined as the number of relevant domains 
retrieved divided by the total number of relevant domains in the 
long-term memory. 

Ideally we would like both precision and recall of our 
analogy retrieval model to be 100%. But, from a creative 
perspective it is recall that is most important. We want to ensure 
that RADAR supports maximum creativity, even if this entails that 
many inferences are not creative. The post-retrieval phases identify 
the mapping and inferences, and these must assume responsibility 
for rejecting all the fruitless comparisons – thereby improving 
precision.  

We now look at three existing analogy retrieval 
algorithms, and how each retrieves candidate sources when 
presented with some target problem. It should be noted that the 
objective of the following models is to identify candidate sources 
as opposed to creative candidate sources. Thus, the candidate 
sources RADAR seeks are more general than the other models. 

MAC/FAC [11] uses normalised content vectors to 
represent a domain’s contents. Retrieval in MAC/FAC is based on 
the dot product of two content vectors, and so is incapable of 

semantically distant retrieval. This two-stage algorithm firstly 
identifies potentially useful domains, before computing structural 
similarity. Thus the recall of MAC/FAC is poor.  

ARCS [12] uses WordNet to allow synonyms to 
influence retrieval, and thus would have higher recall than 
MAC/FAC. This greatly increases the range of candidate sources 
that are considered as possible sources. However, distant domains 
are frequently described using a different vocabulary and thus 
ARCS would still not retrieve some semantically distant domains. 
Indeed, analogies are often said to invent similarity between 
domains, rather than relying on pre-existing similarity. Thus, while 
recall in ARCS improves on MAC/FAC it is not designed to 
address the problem of semantically distant retrieval.  

Plate’s [13] Holographic Reduced Representation 
(HRR’s) use common attributes of domain objects as a basis for 
retrieval. Domains are identified when their objects share common 
attributes. Interestingly, HRR’s also includes structure in the 
retrieval process, by introducing role-filler bindings into the 
representation. However, recall on semantically distant candidate 
sources with “missing” causal and other relations (ie creative 
analogies) will still result in poor recall for HRR’s. 

4 THE RADAR MODEL 
We now examine the structure of the RADAR model for structure-
based retrieval. We see each phase of analogy, subsequent to 
retrieval, as acting as a filter on the information passed to it. 
Successfully identifying an inter-domain mapping, causes the 
inference and validation process to be invoked. Thus, the creativity 
of an analogy model depends directly on the creativity of the initial 
retrieval phase. Any model that fails to identify potentially useful 
candidate source cannot be considered a useful model of analogical 
creativity. A useful retrieval tool capable of identifying creative 
analogies must support the following: 
 

i. Retrieve semantically distant domains 
ii. Favour structurally similar domains 
iii. Allow the (possible) inclusion of semantic, pragmatic and 

other factors in retrieval 
iv. Operate on a large memory containing a many domain 

descriptions from a variety of disciplines. 
 
We adapt the five-phase model of analogy [10], by expanding the 
retrieval phase. To favour creative analogies, we must use structure 
(not semantics) as the basis for retrieval – the means of performing 
structure-based retrieval are explained in the next section. While 
this approach will inevitably identify many fruitless sources 
(thereby affecting precision) it will enable 100% recall.   
 

structure
retrieval

semantic
biasing

mapping

retrieval

representation validation

 
Figure 1: A two-part model of Analogical Retrieval 

 
The architecture of an analogy model encompassing structure-
based retrieval is displayed in Figure 1. This details the expanded 
model of the retrieval phase. Semantic biasing is not currently 
implemented, but could easily be added as an ordering mechanism 
for the selected domains.  
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 From a pool of structurally similar candidate sources, we may 
wish to begin with semantically similar domains – though this has 
not been implemented in the RADAR model. This structure 
ensures we identify semantically disconnected sources, but can still 
include a semantic biasing if required. Finally, we point out that 
this is not intended to directly model human behaviour, but rather 
it serves as a means to implement a computational model with 
greater potential for generating creative analogies. 
 Introducing a semantic similarity threshold could help to 
improve the precision but reduce recall - effectively achieving 
similar recall to existing models. Hence, we do not intend to 
introduce a semantic similarity threshold to RADAR. 
 Clearly such a profligate retrieval strategy places great strain 
on mapping and other phases. Many structurally similar domains 
must be rejected either by virtue of a small inter-domain or by 
identifying the invalid inferences generated. RADAR forms part of 
a larger project that identifies many invalid inferences - however, 
we shall not discuss the validation phase further herein.  

4.1 Attributes of Structure 

We introduce the concept of “attributes of structure”. These are 
simple numeric attributes representing structural qualities of the 
representation of each given domain. Rather than representing 
attributes of the content, we represent attributes of the 
representation itself. This abstracts away from the problem data, 
and allows us reason about the structure independently from the 
content. For example, we might count the number of predicates 
found in each domain and thereby favour similarly proportioned 
candidate sources. Other structural attributes then represent 
different qualities derived from the representation.  
 All candidate sources, together with the target domain, are 
mapped into this N-dimensional structure space. Domains that are 
structurally similar are mapped into similar regions of this n-
dimensional space. We can then use retrieval algorithms to identify 
candidate sources that are located in the vicinity of the target 
domain within structure space. Of course the actual distance varies 
depending upon the set of structural attributes employed, but 
similarly structured domains are generally located in the same 
regions of structure space. 
 An important factor from a computational creativity 
perspective, is that structure based retrieval is oblivious to the 
target domain semantics. Thus, retrieving a semantically dis-
connected domain is equally as likely as finding one related to the 
presented target. We have therefore overcome the overbearing 
semantic restriction repelling semantically distant sources. In 
practice, typical retrieval episodes randomly intersperse 
semantically related and disconnected domains - as dictated by 
each sources structural similarity to the given problem. Of course, 
pure random selection of candidate sources also does this, but our 
algorithm ensures that the candidate sources are structurally 
capable of forming analogy with the given target. Thus we can 
compute the candidate inferences with the standard “pattern 
completion” algorithm for analogical inference.  
 Let the structure index of the target domains be: ta1 for target 
attribute1, ta2 for target attribute 2. Similarly let the structure 
index of each candidate source be: s1a1 for structural attribute 1 of 
source domain 1, s2a2 for structural attribute 2 of source domain 2 
etc. The distance between the target and any source is calculated by 
the following equation: 
 

 ( ) ...)22(11 22 +−+−= astaastad xx
 (1) 

 
Diagrammatically, we can think of each domain occupying a 
location in structure space. Domains close to the target share 
similar structural features with it. Distant domains then have little 
structural similarity with the target – regardless of the semantic 
content of that domain description. 
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Figure 2: Nearest Neighbours in Structure Space 

 
Structure space represents an abstract region in which we can 
reason about domains of information. In structure space we are free 
from the semantic contents of each description, and can examine 
the similarities and differences between domain descriptions.   

4.2 List of Structural Attributes  

Now we list the structural attributes actually used in the RADAR 
model. The derived attributes of topography used by RADAR are:  
 
1) Number of first-order predicates - specifying associations 

between objects. Useful high-order relations include cause, 
result-in, prohibits, xor, but-not and 
neither. Because analogies frequently introduce causal 
predicates (high-order relations) into the target domain, we 
should expect our analogy retrieval system to favour the 
selection of candidate sources with a greater number of causal 
relations than the presented target. 

2) Number of high-order predicates – specifying associations 
between first-order predicates. Generally, source domains 
contain more causal relations than the impoverished target.  

3) Number of root predicates – predicates that are not arguments 
to other predicates. Root predicates play a crucial role in 
incremental mapping models like IAM and SME. Including 
root-predicates in structure space will facilitate identification of 
suitable sources, particularly isomorphic sources. While a 
useful source will generally have more causal structure and 
therefore fewer root predicates, it was felt that including roots 
would be useful in many retrieval problems.  

4) Number of objects – representing domain entities. In almost all 
examples of analogies found in the literature, the number of 
objects in the source and target are identical.  

5) Number of unique first-order predicates - this differs from the 
number of predicates, as we do not count duplicate predicates. 
This identifies domains that rely on repeated use of a small 
number of predicates, from domains that use a few instances of 
many different predicates.  
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6) Number of unique high-order predicates - some domains rely 
on repeated usage of a single causal relation whereas others 
rely on a combination of different relations (eg cause + inhibit).  

7) Maximum agent object usage - this counts the frequency that 
each object is used in either the agent or patient role of a 
relation. If an object appears in the agent role of two relations, 
then this value will be two. 

8) Maximum patient usage – this counts the frequency of objecxts 
used in the paritent role of the domains realtions.  

 
 These last two structural attributes play a key role in 
distinguishing between structurally similar, though not identical, 
domain descriptions. Consider the domain descriptions in Figure 3, 
both involving three objects and three relations. On the left we 
have the “love triangle” domain and on the right we have the “un-
requited love” domain. Although both are semantically similar in 
terms of their use of the same objects and relations, the structure of 
these domains is central to their semantics.  
 Structure based retrieval must be able to distinguish between 
these structures, and when presented with one structure should 
favor the isomorphic domain over the homomorphic domain. 
When presented with a domain analogous to the love-triangle, we 
wish to retrieve the love-triangle source. More importantly, we do 
not wish retrieve the “un-requited love” domain on the right of 
figure 3.  
 In the love-triangle domain, each object is used once as an 
agent and once as a patient. But in the un-requited love domain one 
object never occupies the patient role of the loves relation. These 
structural attributes help distinguish between the two domains, 
based purely on the structure of the representation.   
 

loves

loves

lovesa c

b

loves loves

a c

b

loves

 
Figure 3: Structurally distinct domains 

 
 Of course, this is not an exhaustive list of all possible derived 
attributes, but these attributes do serve to distinguish between a 
variety of domain structures. Additional attributes might include 
identifying “loops” with the representation, the ratio of predicates 
to objects etc. Another distinction might be to quantify the use of 
commutative (adjacent-to) and non-commutative (taller-
than) relations within a domain description. First order relations 
(taking objects as arguments) are central to a domain description. 
Such relations can also be classified using their temporal signature, 
whether they are actions or states. Quantifying the number 
of each type of first-order relation may also help improve 
precision. Experiments are ongoing to identify the most 
appropriate set of these structural attributes.  
 
 
 
 
 
 
 
 
 

RADAR Retrieval Algorithm 
1. For each candidate source  
2. For each derived attribute type  
3. Populate Structure space by computing the value for that 

structural attribute  
4. Retrieve similar sources 
5. For each derived attribute type  
6. Compute the targets value for that structural attribute 
7. Compute the distance to each candidate source  
8. Sort candidate sources by distance, and select top K. 
 
 

5 RESULTS 
We now examine some results generated by RADAR, and compare 
them to the algorithms discussed earlier. Throughout this section 
we assume there is a known target domain, for which we seek a 
source domain that supports some creative interpretation. We 
examine the retrieval performance under a number of different 
circumstances to highlight its abilities. Firstly, we examine 
retrieval of isomorphic sources from a background memory of 
semantically similar domains.  
 Before beginning however, we again point out that while 
RADAR has much better recall than competing algorithms, 
correspondingly its precision is quite poor. We see this as an 
inevitable consequence of our search for creative source domains. 
Improving the precision of RADAR could make use of the 
semantic biasing of other retrieval algorithms, but would also 
require a better model of analogical validation.  

5.1 Isomorphic Same-Domain Example  

Consider the following target domain (from [13])“Spot bit Jane 
causing Jane to flee from Spot”. We now wish to identify creative 
candidate sources for this target problem.  
 
 cause(bite, flee) 
 bite (spot, jane) 
 flee-from(jane, stop) 
 
The topographic structure is clear from a diagrammatic perspective.   

   

jane    spot   

flee - from   bite   

cause   

 
Figure 4: Domain Topology  

 
We wish to identify domains that contain two objects (Spot and 
Jane), two distinct first order relations (bite and flee) and one 
causal relation (amongst the attributes listed in the previous 
section).  RADAR will place each of the following sentences at the 
same location in structure space, even though their retrieval 
generated by the other algorithms will vary. 
 

i) “Spot bit Mary causing Mary to flee from Spot” 
ii) “Rex bit John causing John to flee from Rex”. 
iii) “Mort bit Felix causing Felix to flee from Mort”. 
iv) “John hit Rex causing Rex to flee from John”. 
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Because each of these domains is structurally identical to the given 
target, the distance in structure space between these domains and 
the target is 0 in each case. Therefore, this indicates structural 
identity with the target and we are guaranteed to retrieve them.  

5.2 Isomorphic Semantically-Distant Retrieval  

Now consider the problem of retrieving the following domains. 
Note that while the semantics of each of these domains is very 
different to the source, they are all structurally identical to it. 
Because of the lack of semantic overlap the other algorithms will 
not retrieve these potential sources of creativity. 
 

v) “The comet skimmed off the atmosphere causing the comet 
to leave the atmosphere” 

vi) “The city encroached on the countryside causing the 
countryside to recede from the city” 

vii) The tanks approached on the infantry causing the infantry 
to counter-attack the tanks”. 

 
Each of these domains can be considered a source of creative 
inspiration for the earlier target domain. Therefore, we would like a 
creative analogy retrieval algorithm to be capable identify these. 
RADAR identifies that the structural attributes of these domains 
are identical and thus are co-located in structure space.  

5.3 Homomorphic Same-Domain Retrieval  

Now, consider the following domains that are also semantically 
similar to the target, and that the other algorithms will retrieve but 
RADAR will not.  
 

viii) “Spot and Jane fled from the bull”. 
ix) “Spot caused Jane to flee from Spot” 
x) “Spot saw Jane causing Spot to flee from Jane” 

 
Although each of these sentences contains information from the 
same semantic domain as the earlier source, they can not form an 
analogy with that source. This is caused by the lack of structural 
similarity with that target. Keane et al [10] refer to the IAM 
constraint to ensure that at least half the entities in the source 
domain participate in a mapping for the comparison to even be 
considered an analogy.   

5.4 Homomorphic Retrieval 

Consider the problem of generating (not just interpreting) the 
frequently referenced “solar-system is like an atom” analogy. This 
is a particularly challenging retrieval problem firstly because the 
source and targets are semantically quite distant. Secondly, the 
target is missing a causal relation and hence has a different (though 
somewhat similar) structure.  
 Useful source domains generally contain more causal 
structure than the driving target, and so more causal (high-order) 
relations than the target. Thus we expect that the performance of 
RADAR might be improved by reducing the influence of this axis 
in structure space retrieval. This is easily achieved by scaling that 
axis by a constant factor (β < 1) before performing retrieval, while 
setting β = 0 will eliminate the influence of this attribute on 
retrieval. However, more testing must be performed before this can 
be properly verified.  
 

 ( ) ...)22(11 22 +−+−= astaastad xx β  (2) 

 
 The target ‘atom’ domain would cause the retrieval of 
domains with a similar number of objects, first-order relations etc. 
This will include the universe domain, though in this case the 
distance in structure space will be greater than 0. The usual 
description of the universe contains the object ‘planets’ though this 
should be nine separate objects - one per planet. Structure based 
retrieval would thereby favour retrieving Fluorine with its 9 
electrons. Because we use K-Nearest Neighbours retrieval, we can 
retrieve all domains with similar (though not identical) structural 
qualities. Thus any of the smaller elements would suffice. The 
following representation of the atom domain containing just one 
electron object, would favour retrieving the domain description 
containing the single object ‘planets’. 

electrons nucleus

revolve-aroundheavier smaller-thanattracts

causes

 
Figure 5: Domain Topology 

 
Thus, RADAR is capable of identifying semantically distant but 
structurally similar source domains. This we feel is a crucial 
quality for generating creative analogies. It is this ability that 
separates RADAR from existing retrieval algorithms.  

6 CONCLUSION 
Retrieval models hold the key to generating a computational mode 
of truly creative analogical reasoning. Current models are 
hampered in their search for creative analogies by basing 
analogical retrieval in the semantics of the given problem domain. 
This approach as two main problems, firstly it considers only a 
small percentage of the possible candidate sources that are 
structurally similarity to the problem. Secondly, those domains that 
are considered are generally those that a human problem solver 
will already have considered. Thus, the potential of these models 
for identifying a creative comparison is severely constrained. 
Algorithms will remain blind to sources of creativity until 
structure, and not semantics, becomes the driving force behind 
analogical retrieval. 
 Structure based retrieval is a useful and flexible means of 
identifying candidate sources. Crucially, it overcomes the semantic 
constraint suffered by alternative retrieval models, greatly 
increasing the possibility of generating truly creative analogies. 
Domains are mapped into structure space where each axis 
identifies a topological feature of a domain description. A variety 
of structural attributes are derived from each domains 
representation, thereby creating a structure space that accurately 
reflects the structure of each domain’s description. Analogical 
retrieval then takes place in structure space, by identifying domains 
located in the same region of structure space. Therefore, analogical 
retrieval is based on the structural similarity required by an 
analogy. This technique is oblivious to the semantic content these 
domains, resulting in a more creative model of analogical retrieval. 
Structure based retrieval opens the possibility for creating an 
analogy model with far greater creative potential than a human 
reasoning agent.  
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