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Abstract. We explore the consequences of introducing a complex conductivity into the quantum
Hall effect. This leads naturally to an action of the modular group on the upper-half complex
conductivity plane. Assuming that the action of a certain subgroup, compatible with the law of
corresponding states, commutes with the renormalization group flow, we derive many properties
of both the integer and fractional quantum Hall effects including: universality; the selection rule
|p1g2 — p2q1| = 1 for transitions between quantum Hall states characterized by filling factors
v1 = pi1/q1 andve = p2/qo; critical values of the conductivity tensor; and Farey sequences
of transitions. Extra assumptions about the form of the renormalization group flow lead to the
semicircle rule for transitions between Hall plateaux.

The purpose of this letter is to explore the consequences of the proposal, made in [1] and
examined further in [2, 3], that the hierarchical structure of the zero-temperature integer and
fractional quantum Hall effects can be interpreted in terms of the properties of a subgroup of
the modular group§i (2, Z) := I' (1)—specifically the subgroup which consists of elements of

" (1) whose bottom left entry is even, sometimes dendig@) in the mathematical literature.

This group acts on the upper-half complex plane, parametrized by the complex conductivity,
0 = Oyy + 0y, N UNits offh—z, and is generated by two operationfs,: ¢ — o + 1 and

. o a b .
X110 —> 579 Ify = <2€ d) € I'g(2), with a, b, ¢, andd € Z andad — 2cb = 1,
theny (o) = 2. ThusT = 11 andX = Lo Some consequences of this
2co+d” 0O 1 2 1 )

assumption for the phase diagram in thglane were examined in [2] and in the second of
these references the author notes that there is a connection with the work of Kivedd p4,

but remarks that the comparison between [2] and [4] is hot immediate. One of the aims of this
paper is to explore the relation between these two approaches.

Following [1-3], it will be assumed that the phase diagram for the quantum Hall effect
can be generated by the actionl@f(2) on the upper-halé plane. This immediately implies
the ‘law of corresponding states’ of [4] and [5]. At Hall plateaux we haye= 0 ando,, = s
wheres is a ratio of two mutually prime integers, with odd denominator (noteshabeing
used here to label the quantum phases and is denotggd iny{4]). Plateaux can be related to
each other by repeated actionfoBndX. At the centre of the plateaux, the filling factor,is
equaltotheratio = p/q andT : v — v+1isthe Landau level addition transformation of [4]
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while X : v — 575 is the flux attachment transformation. The particle-hole transformation
v — 1 — v, can be realized as the outer automorphism> 1 — & acting on the upper-half
plane, wheré&s = o,, — ioy, (it will be assumed throughout that the electron spins are split,
for the spin-degenerate case one must rescale 20).

The upper-halfo-plane can be completely covered by copies of a single ‘tile’, or
fundamental region (see e.g. [6]), related to each other by elemengsdf The fundamental
region has cusps at 0 and 1, linked by a semicircle of unit diameter, and consists of a vertical
strip of unit width constructed above this semicircle. By assumption, all allowed quantum Hall
transitions are images of the transitioa=- 0 — v = 1 under some € I'y(2), and hence also
linked by a semicircle.

Each such semicircle has a special point, in addition to the endpoints, which is a fixed
i s left fixed byy* = ; j

Similarly the points obtained from* by the other elements dfo(2), o := y (c™), are left
fixed byyy*y~1. It can be shown that the imaginary part, (1)) < % orlm(o;) = oo, Vy.
The pointsy; can be interpreted as critical points for the transiti@) < y (1) if we further
assume that the action 8§(2) commutes with the renormalization group (RG) flow. For if
o, were not a RG fixed point, we could move to an infinitesimally close ppiat) # o
with a RG transformationp. Demandingy o ¢ (o) = ¢ o y (o) = ¢ (o) then implies that
¢(o)) is also left invariant byy. But the fixed points of"¢(2) are isolated, so there is no
other fixed point infinitesimally close ;. Henceg (o)) = o) ando; must be a RG fixed
point. The end points of the arches,sat= v with v = p/q rational, are also fixed points
of I'g(2). Forgq odd these are stable Hall states. Note, however, that a fixed point of the RG
need not necessarily be a fixed poinfig{2)—but there is no experimental evidence of such
extraneous fixed points of the RG.

Thus the fixed points ofy(2) must be fixed points of the RG, i.e. critical points. This

point of I'p(2) in the following sense. The poilat* =

0 b 1 2 2 2 3 2 4

Figure 1. The phase structure in the upper-half comptegdane. The solid curves represent phase
boundaries and the dotted curves allowed transitions. Points where dotted and solid curves cross
are critical points.
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Figure 2. A magnified view of the phase structure in the upper-half comglgiane.

leads to the topology of the flow diagram of [2], reproduced here in figures 1 and 2 where
solid curves represent phase boundaries and dashed curves represent quantum Hall transitions.
This implies the flow diagram proposed in [7], with its experimental support [8] and is also
compatible with the phase diagram derived in [4]. That= % is a critical point for the
lowest Landau level was argued in [9]. Phase boundaries and transitions are represented by
semicircles in the figures, but this is not forced on us bylth€) symmetry. They could
be distorted from this geometry, provided that all phase boundaries are copies of a distorted
‘fundamental’ phase boundary (running frénto 2 +ioco) under the action dfo(2). Similarly,
the dashed transition trajectories must all be copies of a distortion of the ‘fundamental’ arch
spanning 0 and 1. Note, however, that thed points are immovahleA useful aspect of
the semicircular arches used in the figures is that the intersection of any solid phase boundary
with a dashed transition is a fixed point B§(2), as are the end points of the arches (which
are rational numbers or points@t= r + ico for integral or half-integral). Any distortion
from semicircular geometry must leave the endpoints and intersections of phase boundaries
and transition trajectories pinned at the fixed pointEgR).

As in [4], the phase diagram generatedilyy2) determines which transitions are allowed
and which are not. Thus, for example,: £ — 0 is allowed whiles : § — 3 is not.
All allowed transitions are generated by acting on the arch passing thiwugh O and
o = 1 by some,y € I'p(2). This allows the derivation a selection rule for a transition
s1 = p1/q1 — s2 = p2/q2, Whereq; andg, are odd, and the pairg andg; (i = 1, 2) are
relatively prime (for brevity we shall not always distinguish below betweeabelling the
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guantum Hall phase, ang the filling factor, except where necessary for comparison with
[4]—on the real axis, whem,, = 0, they are the same). We shall see that a transition is
allowed if and only ifp1g2 — p2q1 = £1.

From the above assumptions we have (relabelling if necessary) y (0), v, = y(1).

Zac Z € I'y(2). Sincead — 2cb = 1,b andd are

mutually prime, by an elementary result of number theory, hence (taking plus signs without

loss of generalityp = p1, d = g1. Similarly (a + b)d — (2¢ +d)b = 1 implies thatz + b and
pP2—p1 P1>

92 —q1 q1

and the condition det = 1 then requireg.q1 — p1g2 = 1. The only possible exception to

this rule would be a transition from=n — v = m (n, m € Z), which could occur by going

firstfromo =ntoo =n+icoandtheninte = m fromo = m +ioco. In a real experiment

the maximum value ofo | would presumably be finite, due to impurities.

One can determine sequences of allowed transitions as follows. Suppese/qo,
with go odd, is an allowed state, withy and g relatively prime. Consider the sequence
v, = ';Zipg .= & forn, k,I € Z, wherel is even (so thag, is odd). Thenp,+1g, — ppgn+1 =
+1 & kgo — lpo = +1. Thus a transitiom,.; — v, is allowed providedkqgo — Ipo| = 1. In
this way we can, for example, generate the three sequences

1 2 3 4 5 6
§—>§7—>7—6>§—5>1—171—33—> '2

] —>SE—21—1—115—>7—>5—>3—>1 (1)
37777

plus higher sequences obtained by adding an integer to each term in these sequences. Such
sequences are called Farey sequences and their relevance to the quantum Hall effect was
examined in [10]. Note that a given experiment may jump from one sequence to another. Thus

3 2 5

is observed in [11].

P __ b [’2 __ atb
Thus™ = Zand22 = 724 wherey =

2c¢ +d are mutually prime, hence+b = p,and 2 +d = g,. Thusy = (

Each transition contains a critical point given pyo*). Thus ify = (2&6 Z) the

critical point is at
. 2ac+2bc+ad+2bd+i  (pigi+ pago) +i
o, = =
v 2d2 + Acd + 4c? (f +45)

when the transition goes from = y(0) = b/d = pi/q1tov, = y(1) = Z"C:Z = p2/q2.
The parameters gf can be related to physical parameters as follows. Following [5%, bt
the effective charge of the quasi-holes of a Hall state- 7, 6 the statistical parameter (i.e.
the phase of the two quasi-particle wavefunction changeshyhen the positions of the two
particles are exchanged) amde the Hall state, with magic filling factor = s. Then the
critical conductivity for a transition from = v to s’ = v — 5?/6 is given by equation (26) of
[5] (in dimensionless units)

2 2

— )7 — p—
Uxx——1+92 Oxy = 01+92. 3)

Equating these with the critical values in equation (2), there are two possibilities, depending
on whethew = y (1) or y(0):

(I) a+b pz 0 = d ql ]72 _ ; _ i

T 2c+d q2 2c+d  q (2c +d)? q%

. b p1 (2c+d) q2 1 1

(ll) V= —=— 0 =— = —— T)2=—2=—2 (5)
¢ p2 d Qn d q1

)

(4)
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Table 1. Some examples of allowed transitions. The magrisnaps the points = 0 ando = 1
to the transition indicated in the leftmost column. Some representative experimental support (not
exhaustive) is also indicated. The last two columns assume the semicircle it resistivity).

Transition Critical Critical
v — vy y conductivity resitivity o atgMax p atpMax
1 n (2n+1)+i n+D)+i @ (2n+D)+i (2n+1)+i ()

n+l—n (0 1) s 22420+l 2 2n(n+1)

1 1 0 @u+D+i (© “(d) 1+4i -
z1 — 0 <2n 1) 2enZron+D) @n+1+i oD 2n+1) +ioo

n__, ntl 1 n (4n2+6n+3)+i (4n2+6n+3)+i (An2+6n+1)+i (dn?+6n+D)+i ©
n+1 +3 2 u+1 2(4n2+8n+5) 202+2n+1 2(2n+1)(2n+3) 2n(n+1)
3+2 _ 3n+5 3 &n+2 (24n2+581+4D+ (24n?+581+41)+i (24n2+581+29)+i @an?+581+29+ )
4n+3 In+7 4 dn+3 2(16n2+40n+29) 1812+421+29 2(4n+3)(4n+7) 2(3n+2)(3n+5)

@ These points all lie on the semicirgte= i — €7, 0 < 6 < 7. Forn = 1 see [21].
® Assumes: # 0.

© These points all lie on the semicirade= 2(: —€%),0< 0 < &

@ Forn = 0 see [22] and [23], fon = 1 see [22] and [24], fon = 2 see [25].

® Assumes: # 0. Forn =1,...,5andn = -3, ..., —7 see [14].

® Forn = 0 see [14].

In both cases we reproduce the result, that +1/g, [12] and [13]. Note in passing
that the transition from bosonic to fermionic conductivities given by equation (14) of [4]
is implemented by the action of an element@fl) which is not inI'4(2). Thuse = y(c®)
wheres® = o® +io? is the complex conductivity of the bosonic Chern—Simons action
n% —0Os

—6 1
Chern-Simons analysis of [4] and the group theory analysis of [2].

We make a final comment about the ‘semicircle’ law of [14-16]. By assumption, each
quantum Hall transition can be obtained from the one between 0 and 1, passing through
o* = % by the action of some element B§(2). Sincel'((2) maps semicircles built on
the real axis into other such semicircles we can deduce the ‘semicircle law’ of [14-16] by
making one extra assumption—that the ‘fundamental’ arch between 0 and 1 is a semicircle.
This implies thatall other transitions are semicircles and allows predictions to be made of
the maximum values af,, andp,, in any allowed transitiony; — v, as well as the values
of o,, and p,, at which they occur. Thus the maximum valueogf is ato\™ = 52,
whereo,, = 1+”2 (wherev; > vy). In general, this does not coincide with the critical value
oy =y(0"), except for the integer transitions (table 1).

The maximum value op,, is found by constructing the semicircle throuélhand V—lz
(provided neither vanishes). Thyge* = %(V—lz — U—ll), wherep,, = %(V—lz + v—ll). Some
representative examples are shown in table 1.

To summarize, assuming (as in [3]) that the phase and flow diagram for the upper-half
complex conductivity plane can be generated from an actidrpy @) which commutes with
the RG, one deduces: (i) that all critical points are giveny/lty*), whereo* = 1"' , With
y € I'o(2); (ii) the phase diagram of [4, 2, 8]; (iii) the laws of corresponding states [4,5]; and
(iv) the selection rulépig, — p2qa| = 1, dictating which transitions are allowed and which
are forbidden. Lastly, the semicircle law of [14—16] is compatible with, but not implied by,
o(2).

It should be noted that the full modular group doesprovide the correct phase structure,
since it would imply further critical points at the images®of= i ando = %ﬁ under

andy = 1 . The above discussion gives the explicit connection between the
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y € I'(1), which are not observed experimentally. The appearand& @) is due to the
extension of Kramers—Wannier duality, — 1/0,, to the whole complex plane. It was
argued in [17] that this extension leads naturallyfitd) acting on the upper-half complex
plane, for a coupled clock model. This was applied to the quantum Hall effect in [18, 19].
It appears to have been noted first in [2] that the subgity{@) has the special property of
preserving the parity of the denominator for rationat p/g. The subgroup'(2), consisting

of all elements off"(1) which are congruent to the identity, mod 2, was also considered in
[2] and has been further investigated in [20]. Note, however, that there is no elenig®) of
which leavess* = % fixed, indeed there is no element Bf2) which leavesany o with

oo > Im(o) > 0 fixed.

Itis a pleasure to thank Jan Pawlowski for discussions about the RG flow of the quantum Hall
effect.
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