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Abstract. Noncommutative geometry is a candidate for describing physics at the Planck
scale. Although there are various proposals to formulate gravity theories in the noncommutative
framework, not many exact solutions of noncommutative gravity theories are known. In this
talk we describe a possible noncommutative analogue of the BTZ black hole, which is consistent
with the geometric structure of the problem. The spacetime Poisson brackets that we obtain
indicate the possibility of the quantization of time. We briefly discuss the issues of symmetries
and particle statistics in such a spacetime.

1. Introduction

The description of physics at the Planck scale, where quantum aspects of gravity are expected to
be manifest, remains an outstanding challenge in theoretical physics. It is plausible that strong
quantum gravity effects associated with such high energy scales can affect the smooth structure
of the spacetime manifold. There have been various proposals to replace the continuum picture
of spacetime with a discrete atomistic structure at the Planck scale. In a related approach,
it has been argued that Heisenberg’s uncertainty principle together with Einstein’s theory of
general relativity leads to spacetime noncommutativity [1]. In this picture, the smooth manifold
structure of the spacetime is replaced with a noncommutative algebra at high energies, and the
associated dynamics is governed by a noncommutative generalization of gravity.

Most approaches to noncommutative gravity have involved deforming the commutative
Einstein equations [2]. These approaches range from simply replacing point-wise products by
Moyal star products in the Einstein-Hilbert action to the approach of Aschieri et al. [3] which
preserves the diffeomorphism invariance of general relativity. In our approach [4], we write
down Poisson brackets which are consistent with the geometry of some classical solution. In
particular, we focus on the Banados-Teitelboim-Zanelli (BTZ) solution of 2 + 1 gravity. The
noncommutative counterpart of the BTZ solution is then obtained by ‘quantization’, with the
deformation parameter being the noncommutativity parameter §. The Poisson brackets and
the resulting noncommutative algebra are not unique. In this regard, it may be desirable to
impose the restriction that the isometry of the classical solution survives quantization and is
implementable in any irreducible representation of the noncommutative algebra. In this talk we
focus on the deformations with such additional constraints and show that they lead to spacetime
noncommutativity where the time is quantized [5, 6].

© 2009 IOP Publishing Ltd 1
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Analysis of quantum field theory (QFT) on curved spacetime often reveals the features of the
underlying geometry. It is thus desirable to have a formulation of QFT for a spacetime arising
from noncommutative gravity. Here we take the preliminary steps for setting up QFT in such a
background and briefly indicate the relevant issues.

2. Commutative BTZ
In this Section we shall briefly review certain features of the commutative BTZ solution that
would be relevant for our analysis.

In terms of Schwarzschild-like coordinates (r,t,$) the invariant measure for the BTZ black
hole [7, 8] is expressed as

2 2 2 2\ —1 2
9 T J 9 T J 9 9 J
0<r<oo, —0<t<oo,0<¢p< 27,

where M and J are the mass and spin, respectively, and A = —1/£? is the cosmological
constant. For 0 < |J| < M/, there are two horizons, the outer and inner horizons, corresponding
respectively to r = r4 and r = r_, where

Me? J \?z

2

=141 (= .
t-Seh-Ga) 1 g
The two horizons coincide in the extremal case |J| = M£ > 0, while the inner one disappears
for J =0, M > 0. The metric is diagonal in the coordinates (x,x—, ), where

T4
X+ = Tt - TZF¢ 3 (3)
gs? — —(r? = r2)dx? + (r? —r2)dx2 N P22 dr? @
r2 —r2 (r2—r3)(r?—r2)’

which shows that x; is the time-like coordinate in the region I) r > ri, r is the time-like
coordinate in the region IT) r_ < r < ry, and x_ is the time-like coordinate in the region III)
0<r<r_.

It was shown that the manifold of the BTZ black hole solution is the quotient space of
the universal covering space of AdS? by some elements of the group of isometries of AdS3. The
connected component of the latter is SO(2,2). Say AdS? is spanned by coordinates (t1,t2, 1, 2)
parameterizing R?, satisfying

—t2 — 342t ad =17 . (5)

Alternatively, one can introduce 2 x 2 real unimodular matrices

1/ t1+x t2+$2>
= - detg =1 6

belonging to the defining representation of SL(2, R). The isometries correspond to the left and
right actions on g,
g — hrghg , hr,hgr € SL(2,R) . (7)

Since (hr,hr) and (—hr, —hg) give the same action, the connected component of the isometry
group for AdS? is SL(2, R) x SL(2,R)/Z = SO(2,2).
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The BTZ black-hole is obtained by discrete identification of points on the universal covering
space of AdS3. This insures periodicity in ¢, ¢ ~ ¢ + 2r. The condition is

g~ hrghr, (8)
where (hy,hg) are certain elements of SO(2,2). hy and hg can be expressed as diagonal
SL(2, R) matrices

- w(ry—r_)/L
hp, = (e !

- e7r(7'++7'_) /e
e—7r(1"+—r_)/£> ) hr = ( e—7r(r++r_)/€) : 9)
For 0 < |J| < M/, the universal covering space of AdS? is covered by three types of coordinate
patches which are bounded by the two horizons at r = r4 and r = r_. For all three coordinate
patches, g can be decomposed according to

0
e~ 2t (Xx+—x-) ) g9(r)

where ¢(©(r) is an SO(2) matrix which only depends on 7 and the coordinate patch. The
periodicity condition for ¢ easily follows from (8). The identification (8) breaks the SO(2,2)
group of isometries to a two-dimensional subgroup Gprz, consisting of only the diagonal matrices
in {hr} and {hr}. Gprz is the isometry group of the BTZ black hole, and from (10) is associated
with translations in x4 and x_, or equivalently ¢ and ¢, on r = constant surfaces.

(e%l(m—x-) (e%l(x++><—)

e—ﬁ(x++x)) ’ (10)

3. Noncommutative BTZ
In this Section we shall find the nontrivial Poisson brackets among the SL(2, R) matrix elements
which describe a BTZ black hole.

For generic spin, 0 < |J| < M{ (and M > 0), we shall search for Poisson brackets for the
matrix elements of g which are polynomial of lowest order. They should be consistent with the
quotienting (8), as well as with the unimodularity condition and, of course, with the Jacobi
identity. For convenience we write the SL(2, R) matrix as

_(a B By —
g—(,y 5), ad —pBy=1. (11)
Under the quotienting (8):
a ~ e 2nr4 /€ a
B~ 6—271'1"_/5
v o~ e 2mr_ /L
§ ~ e 2milts (12)

All quadratic combinations of matrix elements scale differently, except for ad and By, which are
invariant under (12). Lowest order polynomial expressions for the Poisson brackets of «, 3,7y
and ¢ which are preserved under (12) are quadratic and have the form:

{Oé, /B} = ClOé,B {Ol, ’Y} = oy {a’ 5} = fl(a(sa ﬁ’Y) (13)
{B,6} =c3Bé {70} =cavd  {B,7} = falad, By)

where c¢;_4 are constants and f; 2 are functions. They are constrained by

catce = c3tcy
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fi(ad, By) = (c1+c2)By
fa(ad, By) = (c2 —ca)ad, (14)

after demanding that detg is a Casimir of the algebra. From (14) there are three independent
constants ¢;_4. Further restrictions on the constants come from the Jacobi identity, which leads
to the following two possibilities:

A: co=g¢ and B: cg=—c.

Both cases define two-parameter families of Poisson brackets. Say we call co and c3 the two
independent parameters. The two cases are connected by an SO(2,2) transformation. Case A
goes to case B when

_(a P r_ (B —a) _ 50 ©0) _ -1
g_(’)’ 5>_)g_((5 _,Y>_ghR ’ hR _(1 )7 (15)
along with
c3 — Co , Cy — C3 . (16)

In terms of the embedding coordinates, this corresponds to (t1,t2,z1,22) — (t2, —t1,Z2, —21).

There are three types of coordinate patches in the generic case of M > 0 and 0 < |J| < MY,
and their boundaries are the two horizons. Denote them again by: I) r > r, II) r_ <r < 7y
and III) 0 < r < r_. The corresponding maps to SL(2, R) are given by (10), with

Dr>ry,
r2 _ ’1“2 r2 _ 7“2
99 = g0 r) = —— (¢ S +) , (17)

2 2 _ 2 2 _ 2
\/’I‘ Ty \/’I" r-

Imr_ <r<ry,

1 r2—r2 —[r2 —r2
9 (r) = gy (r) = —( ’ ) : (18)

2

Inno<r<r_,

r?2 —r2 —[r? —r2
00 ) = g (r) = ——— (V : ) . (19)

)
Using the maps (17-19), we can write the Poisson brackets for the various cases in terms of the
Schwarzschild-like coordinates (r, ¢, ¢). The results are the same in all three coordinate patches.
For the two-parameter families A one gets:

€3 C3 — C9
) = — 2-%2
{6,1} 2 r2 —r2
_ tri(est o) -1}
{re} = 2r r2 —r2
r_(c3+c) 12— 7“_2|_
- - 2
r) e L (20)

for the two-parameter families B one gets:

83 C3 — C2
t = - -
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lr (ca+c3) 2 —12
{Ta ¢} = - 2 2 2
T T‘+ - I _
Pry(co+c3) 12— 12
r,tt = — = 21
frt} T (21)

These Poisson brackets are invariant under the action of the isometry group Gprz of the BTZ
black hole. The first bracket agrees in both cases. The latter two brackets vanish at the outer
horizon r = r, for case A, and at the inner horizon r = r_ for case B. A central element of the
Poisson algebra can be constructed out of the Schwarzschild coordinates for both cases. It is

given by
2K +
Pi:(TQ_T:Qt)eXP{_ 2( }

c2 #c3, (22)

where the upper and lower signs correspond to case A and B, respectively,

o = c3+c2 : (23)
C3 — C2

and y+ were defined in (3). The pi = constant surfaces define symplectic leaves which are
topologically R? for generic values of the parameters (more specifically, co # +c3). We can
coordinatize them by x4 and x_. One then has a trivial Poisson algebra in the coordinates

(X-}-ax—ap:l:):

EQ
{X-HX—}: 5(03_02) ) {piax-f-}:{piax—} =0. (24)
The action of the Gprz transforms one symplectic leaf to another, except for the case co = —c3

in which we shall focus from now on.

In passing to the noncommutative theory, the operator associated with p1 is central in the
quantum algebra and proportional to the identity in any irreducible representation. Irreducible
representations then select pi = constant surfaces and the isometry group Gprz maps between
different irreducible representations, and thus cannot be implemented as inner transformations.
However, for the special case of co = —cs3, the parameter k vanishes (k = 0) and the irreducible
representation is preserved under the action of Ggrz. In this case, the radial coordinate is in the
center of the algebra, = constant defines R x S! symplectic leaves, and they are invariant under
the action of Gprz. The coordinates ¢ and ¢ parametrizing any such surface are canonically
conjugate:

63£3
{¢at} N ) {¢:|:7T} = {taT} =0. (25)
Ty —r2
The Poisson brackets can be interpreted in terms of a twist [9] in the decomposition of g given
in (10), where the twist is with respect to the first and third matrices. In passing to the
noncommutative theory, we need to define a deformation of the commutative algebra generated

by t,e and r. Call the corresponding quantum operators £, ¢ and 7, respectively. Their
commutation relations are

€%, 7] = 0 [7,4] = [7,¢?] =0, (26)

where from (25) the constant 6 is linearly related to ¢3/(rZ — r%). There are now two central
elements in the algebra: i) # and ii) e 2™*/?. From i), irreducible representations select the
R x S' symplectic leaves. The action of Ggry does not take you out of any particular irreducible
representation, and in this sense we can say that the isometry of the classical solution survives

quantization.
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With regard to the central element ii) e~ 2mit/ ? one can identify it with e’ in an irreducible

representation. The spectrum of £ is then discrete [5, 6]:

0
nH—X—,nEZ. (27)

2w
This implies that if the above description admits a Hamiltonian formulation, then the
corresponding time-independent Hamiltonian operator would be conserved only modulo 27/6.

4. QFT on noncommutative BTZ
In this Section we give a very brief outline of the issues involved in setting up a QFT in the
noncommutative BTZ spacetime.

In the commutative case, the steps involved in setting up a QFT include the mode expansion
of the field and imposing commutation relations between the creation and annihilation operators
depending on the field statistics and, finally, representing the operators of the theory in a suitable
Hilbert space. It is assumed that the symmetries of the theory should be implemented in such a
way that the statistics be superselected. Finally, the discrete spacetime symmetries should also
be properly implemented in the quantum theory.

In the case of a Moyal plane, which is endowed with a star product, one way to implement the
symmetries is by using the Drinfeld twist. In the presence of a finite noncommutative parameter,
the coproduct for any continuous symmetry, e.g. Poincare symmetry, must be twisted so that
it is compatible with the rule of star multiplication. This in turn implies that the flip operator,
which defines the statistics, should be twisted as well. As a result, the algebra of the creation
and annihilation operators differs from that in the commutative case. In addition, in the Moyal
case, parity cannot be implemented as an automorphism and hence is not a good symmetry.
These issues have been discussed extensively in the literature [10, 11, 12, 13].

In our formulation, the deformation of the BTZ black hole is described by a noncommutative
cylinder. As we have seen, the spectrum of the time operator is quantized in such a case. In
order to set up a consistent QFT for this noncommutative spacetime, the issues mentioned above
must be addressed properly, which is presently under investigation.
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