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Derivation of the semicircle law from the law of corresponding states
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We show that, for the transition between any two quantum Hall states, the semicircle law and the existence
of a duality symmetry follow solely from the consistency of the law of corresponding states with the two-
dimensional scaling flow. This puts these two effects on a sound theoretical footing, implying that both should
hold exactly at zero temperature, independently of the details of the microscopic electron dynamics. This
derivation also shows how the experimental evidence favors taking the two-dimensional flow seriously for the
whole transition, and not just near the critical points.

Quantum Hall systems are remarkable for the high accuease are discussed in Ref. 3—in particular this is expected to
racy with which many of their properties are known. Al- hold at zero temperature. Taking repeated powers,of,
though an explanation based on general princigEuge and their inverses generates an infinite order discrete group,
invariance has been given by Laughtfinfor the precise which we shall denote by, which is well known to math-
quantization of the Hall conductivity on the integer Hall pla- ematiciangsee, e.g., Ref. 4 where it is denoted By(2)].
teaus, to our knowledge, a similar understanding of the roThe complete group, including also the transformatin
bustness of the other Hall features does not yet exist. OUknich is an outer automorphism &f, was first proposed as

goal in this paper is to derive some of these as general CONalevant to the quantum Hall effect by tken and Ross.
sequences of the symmetries of the low-energy limit of these Th . : .

! . . . ) e symmetrykC is most succinctly expressed by writin
systems, independently of the microscopic details. In particu; y o y €xp y 9

lar, we show how to do this for two remarkable experimen-the conductivity tensor as a single complex variabe,
tally observed effects: the semicircle law and the duality : . ) .
pr— Llp,, in the plateaufinsulator transition, which we here ~ /0= ~PxyT1pxJ. Since the Ohmic resistanag, must
argue follow purely as consequences of a symmetry that hd¥® Positive, the physical region consists only of the upper-
been proposed to hold for quantum Hall systems. The utiliy)@lf o plane. A general element &f can then be represented
of relating these effects to a symmetry is that it makes thei@s ¥(0) =(ac+b)/(co+d) with integer coefficients, such
theoretical interpretation much cleaner. These effects shouldpatc is even ancad—bc=1. Note thatC maps the upper
be expected to occur for any systems that fall into the dohalf-complex conductivity plane into itself.
main of validity of the symmetry in question. The whole upper-half conductivity plane can be obtained
The current understanding of the transport properties ofrom the vertical strip above the semicircle of unit diameter
guantum Hall systems is based on a very successful effectiv@anning 0 and 1 by repeated action /6f This strip is
field theory consisting of composite fermich§he symme- termed thefundamental domaiin the mathematical litera-
try that we shall use in what follows was argued to be ature.
property of the effective theory, under certain circumstances, The law of corresponding states can now be seen to imply
in a seminal paper by Kivelson, Lee, and Zhdnghese that any quantum Hall state can be obtained from any other
authors argue that the effective theory satisfies a law of corstate by the action of some elementtaf Thus, for example,
responding states, which consist of the following corresponstarting fromo=1 we obtain the integer series=n from
dences between conductivities, in the long-wavelength limitL"~!, the Laughlin seriesr=1/(2m+1) from F™, and the

=0y Tioy (with the resistivities therefore given by=

Landau-level addition transformatiomh ), Jain serieso=p/(2pm+1) from F™LP~1 It has already
been pointed otif that K gives a selection rule for quantum
oxy(vt1)—oyy(v)+1 ol vt 1) on(v); Hall transitions—a transition between two Hall plateaus with
flux attachment transformatiorFy, oy=Pp1/d; and oy,=p,/q, is allowed only if |p;q,

—p20i/=1. However, it implies much more if we examine

v v ) the consequences for thefunctions of the theory.
Pxy| 5,51 “Pxy(V) T2 prx 20+1 = P V); Strong predictions can be made when the symmigtig
) . combined with the scaling theory of disordeas applied to
particle-hole transformation?) quantum Hall systems.® According to the scaling theory,

conductancestso, in two dimensions, also the conductivilies
are the macroscopic measures of microscopic disorder, and
wherev denotes the filling factor and we use units in which so are the important variables whose RG flow describes the
e’/h=1. system’s long-wavelength evolution. For quantum Hall sys-
The arrows become equalities when the correspondendems this implies a two-dimensional description of the flow,
becomes a symmetry, and the conditions for this to be thsince botho,, and o, can play a role. The flow in this

ny(l_ V)‘_)l_o-xy( V) op(l=v)eoow(v);
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two-dimensional plane has various fixed points, and in genHowever, there is no experimental evidence for any other
eral which combination otr,, or o,y is RG relevant will  critical points in the quantum Hall effect, and so it would not
depend on the fixed point that is under consideratifior ~ seem unreasonable to assume there is none. None of the
instance, although bothr,, and oy, are irrelevant(in the  following conclusions requires this assumption unless ex-
infrared at the fixed points corresponding to the Hall pla- plicitly stated.

teaus, both are relevant at the repulsive fixed points, such as Most of the above observations have already appeared in
the one at Gy, 0,,) =(0,3) in the flow diagram in Ref. 7. the literature but we now go on to describe the two main

Both are clearly important when discussing the crossovefeSults of this paper, which have not been derived from gen-
between different fixed poinsThe basic assumption made €@l principles before.
by such a scaling theory, and which we also make, is that the
long-wavelength RG flow of the system flows much more
slowly along this two-dimensional surface, than is the flow We now show that particle-hole symmetry, together with
to this surface through the many-dimensional space parani invariance, implies the semicircle law. The proof of this
etrized by the many irrelevant microscopic degrees of freeargument hinges on the existence of a unique and well-
dom. The scaling theory literature has proven the utility ofknown function,f(o), which has the following two crucial
this hypothesis. properties’ (1) It provides a one-to-one map from the fun-
In this language the law of corresponding states becomesamental domain to the complex platiecluding the point
the requirement thd€ (andP) should commute with the RG  at infinity); (2) it is invariant under the action of the symme-
flow.!°712 The flow is described by a single complgk try groupk, f(y(o))=f(o). Define aB function forf,
function:

1. The semicircle law

d B(ff_) df df do dle( _) @
— y === ———= — 0-’0- .
B(o,0)= _d‘tT = By O Oy) + 1 Bl T Oy, (1) dt do dt do

. . .. We can conclude thaB(f,f_) is invariant with respect to
and a simple calculation reveals that the flow commutes with- o o ¢ is already invariantk invariance imposes no

the symmetry i e
y y further restrictions on the functioB(f,f).
dy(o) Blo ) Now impose partitie-hole symmetB. To determine the

= , (20 consequences fd@(f,f) due toP we use the following ex-
dt  (co+d)?

o plicit expressiofifor f in terms of Jacobi functions(a very
where the propertgd—bc=1 has been used. clear description of these classical functions is given in Ref.

We now describe some consequences that follow for théd:
flow of any 8 function that satisfies Eq2) (and subject to a 4os " anoeg
global requirement concerning flow topology, as explained Ho) = — Vv, 1 I (1-9™ ) @)
below) regardless of its detailed form. Previous analyses ﬁg 2560%0=1 (1+q2n)16 '
have made further assumptions about the functional form of _
B,1113-8put we shall avoid any such assumptions here anavhereq=e'". Since the action of particle-hole symmetry
simply follow the implications of particle-hole symmetry.  on q is P:q——g, it is clear from the definition of that

It is an immediate consequence of E2) that theg func-  p.¢— f(_a) :W_ Thus particle-hole symmetry implies

tion must'vamsh_ atany po_mnt* (called a f|xe.d pointthat is thatB(f,f) must be invariant under the interchangef aid
taken to itself—i.e.,y(o,)=o,—by the action of a group —

element for whichco, +d is neither zero nor infinitd??  f. So this implies that
The only such fixed points within the fundamental domain _

B(y(a),y(a))=

are the one awr, =3(1+i)—which is taken to itself by g_ = ﬂ_——_ =
Y(o)=(o—1)/(20—1)—as well aso=0—with y(o)= gt - BLD, Gp=B(.DH=B{.D). ®
—ol/(20—1)—and o=1—with y(o)=(30c—2)/(20

—1). B must therefore vanish at these three polassum- Now suppose we start our RG flow from a valuecofor

ing it is finite). The consistency ok with the flow thereby whichf is real. Equation(5) states thaB is real when evalu-
predicts universal values for the conductivity at the criticalated at this point, and hencH/dt must be real. Repeating
points, a possibility that was argued within a more generathis argument point by point along the flow line we see that
context in Ref. 17. particle-hole symmetry implie cannot develop an imagi-

The symmetnyiC also requires th@ function to vanish— nary part if it does not start with one. We conclude that
and to have precisely the same critical exponents—at all ofurves on which f is real are integral curves of any
the images of the basic fixed points under the actioCof renormalization-group flow that commutes with bdthand
There is indeed experimental evidence for this equivalenc®.
of the critical exponents at different quantum Hall transitions The curves along whichis real are easily found, and for
(known as superuniversaljty®°a result that had been also the fundamental domain consist of the curves defining the
argued microscopically (neglecting electron boundaries, plus the vertical line=3 +iw, w=3. fis real
self-interactions?° along the vertical lines=n/2+iw (with n integra) because

It is notan inescapable consequencelothat there be no it is an even function of}, andq is real or pure imaginary
critical points other than those that are fixed pointskbf = when evaluated along these vertical lines. To see thsat
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Oxx ' ' ' ' ' ' ' ' In this way we obtain a robust derivation of the semicircle
0.9l i law, which states that the conductivities move along such
semicircles in the conductivity plane during transitions be-
tween Hall plateaugSince the relatiop= — 1/c maps, for
0.7L i example, semicircles having one endeat 0 into vertical
lines in thep plane, the corresponding statement in the re-
sistivity plane is that for transitions from Hall fluids to the
Hall insulator, the flow is along lines of constamt,.) Al-
though the semicircle law was proposed in Ref. 22 on the
basis of a particular microscopic model, we see here that it
holds more generally than does its original derivation. Any
model compatible with the symmetry of the law of corre-
sponding states must reproduce it. Experimentally, the law is
also well supported®

2. Duality

A second experimentally striking result that follows quite

FIG. 1. Crossover flow of the conductivities as predicted fromgenerally from the Symm_e”y version of t_he law of corre-
the law of corresponding states. ;pondmg state; is the existence of a duaht_y symmetry_ relat-
ing the conductivities of the flow on either side of the critical

oint as one flows betweemytwo allowed Hall plateaus, or
etween Hall plateaus and the Hall insulator.

Since all flows are related by a symmetry to the basic
semicircle running between 0 and 1, we derive the duality
symmetry for this semicircle in detail. A convenient param-
V(= Lo)=\—io9,(0), I3(—1llo)= \/_ia"&g(a')& ) etrization of the semicircle from 0 to 1 is

6

also real on the semicircular arch spanning 0 and 1 requir
the following classical facts about th® functions(see, e.g.,
Ref. 21, p. 47%

o

3a(— o) = —T0 (o). ) 272

: . with 0<w<e. The key observation is that this curve is
The factors ofy—io here cancel when we take ratios 10 refiected into itself about the vertical limo =% by P—as

form f and sof (- 1/o)=— 93(0) 13‘_‘2‘(0)/19?1(0)- Now o—  well as byy=(o—1)/(20—1)e K. In terms of the param-
—1/o sends the vertical line=1+iw, 0<w<, ontothe  eterw this becomesv— 1w, and since the semicircle trans-
semicircle spanning 1 and 0. Siné§(a=2,3,4) are all real  formed to thep plane isp=—1+iw, this is recognizable as
on said vertical lindsee, e.g., Ref. 31f must be real on said  the p,,— 1/p,, duality that has been obsen?&dn the tran-
semicircle, the latter is then perforce an integral curve of theition to the Hall insulator from the=1 integer Hall state.
renormalization-group flow. The extension to other transitions follows from the action
The complete set of integral curves is then obtained byt k. For v:p,/q,— P>/, With p,q;— p19,=1, where the
mapping the above curves around the complex plane usingansition is along the curvep=[—(g,p,+w2q;p;)
IC, and this is how Fig. 1 is generated. Points where trajec;LiW]/(p§+W2p'i‘), the duality is again given by— 1iw.
tories cross are fixed points of the renormalization-groupas specialized to transitions to the Hall insulator from the
flow, and the fixed point av, =(1+i)/2 is evident. The | aughlin sequences:1/(2n+1)—0, the flow is the vertical

direction of the flow lines is uniquely determined if we as- |ine = — (2n+1)+iw in the resistivity plane and so the
sume that there are no other fixed points, the Hall plateauaua”ty w—1M again implies the inversiom,,

are attractive fixed points of the ﬂow, and. that the flow 51t the critical point.
comes downwards vertically from=ic. The line segment In conclusion, we wish to emphasize two points. First, the
o=—3+iw, 3<w<o is mapped ontar=3+iw, O<w  assumption that the law of corresponding states holds as a
<3 by F—the latter line must therefore flowpwardsto-  symmetry at low temperatures leads to an infinite order dis-
wards (1+i)/2 if the former flows downwards towards crete symmetry group for the quantum Hall effect—calted
(—1+1i)/2. Assuming that 0 and 1 are attractive fixed pointshere. This group acts on the upper-half complex conductivity
then determines the flow direction as indicated by the arrowslane. If this is to be a symmetry its action must commute
in Fig. 1. Notice we are inevitably led to the existence of thewith the renormalization-group flow of the system and fixed
semicircles linking 0 to 1/2 in Fig. 1. points of the group action must be fixed points of the flow.
It is a general property that takes semicircles centered Three kinds of fixed points are predicted in this way: attrac-
on the real axis to other semicircles also centered on the retive fixed points witha,,=0 (which are images under the
axis (including the degenerate case of infinitely large semi-group of the basic ones at=0 or 1 and all have odd de-
circles, which are vertical lines parallel to the imaginary nominatoj describing the quantum Hall fluids and the Hall
axis). It follows that the flow between any two Hall plateaus insulator; repulsive fixed points witkr,,=0 (which are im-
must be along a semicircle, centered on the real axis, whichges ofoc=1/2 and all have even denomingtoand saddle
is the image of the basic semicircle connecting 0 and 1.  points[which are images under the group of the basic one at

1 1/1-w?+2iw
1+w? '

— Llpyx
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o=3(1+1)] describing the critical points in the transitions from the longitudinal resistancdghis issue is discussed, for
between the various quantum Hall states. By organizing thexample, on p. 52 in Cage’s paper in Ref)-28he relation-
critical points of the system via énfinite orde) discrete  ship between these two quantities is plagued with geometri-
symmetry, the grouf furnishes a fascinating generalization cal ambiguities, unlike the transverse resistivity. Since a
of the Kramers-WannieZ , duality of the Ising model. The Hall-insulator transition 1/(§+1)—0 in thes plane corre-
symmetry also inescapably predicts the general existence §P0nds to a vertical linp=—(2q+1)+iw, w>0, in the
a duality symmetry for all Hall transitions, which reduces to "esistivity plane, rescaling the imaginary partmtioes not
the observeg, . 1/p, duality for Laughlin-sequence/Hall- affect the .sem|C|rcIe law in thg plane for thesga transitions.
insulator transitions. However itdoesmove the critical point. One interpretation

Particle-hole symmetry places further restrictions on tthf the e_xpenme_)r?rf IS t_hat the experimentally determmed
B function and dictates that the form of the RG flow betweenong'.tUd'nal. resistivity Is not the same as the true micro-
Hall plateaus, and between the plateaus and the Hall insul copic Iongltgdlna_l resistivity, but a constant multiple ofat
tor, be described by semicircle law. actor of 1.7 in this particular experiment
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