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Abstract 

An analytic form for the conductivity tensor in crossover between two quantum Hall plateaux 
is derived, which appears to be in good agreement with existing experimental data. The derivation 
relies on an assumed symmetry between quantum Hall states, a generalisation of the law of cor- 
responding states from rational filling factors to complex conductivity, which has a mathematical 
expression in terms of an action of the modular group on the upper-half complex conductivity 
plane. This symmetry implies universality in quantum Hall crossovers. The assumption that the 
/3-function for the complex conductivity is a complex analytic function, together with some ex- 
perimental constraints, results in an analytic expression for the crossover, as a function of the 
external magnetic field. (~) 1999 Elsevier Science B.V. All rights reserved. 
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I. Introduct ion 

The significance of  symmetry groups in the understanding of physics, particularly 

quantum physics,  has steadily increased ever since their importance was first realised. For 

example the representation theory of  the rotation group in three dimensions is immensely 

powerful in understanding the structure of  the periodic table of  the elements, even 

before any underlying dynamics  is studied, and the importance of  symmetry principles 

in elementary particle physics cannot be over emphasised. It has been suspected for 

some time now [ 1-4]  that a certain infinite discrete group, the modular  group F (  l ), 
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acting on the upper-half complex conductivity plane, o- = O'xy -~- itrxx, plays an important 
r61e in understanding the phase structure of quantum Hall (QH) states. In particular the 
fact that only odd denominator filling factors, v = p / q  where q is an odd integer, are 
observed as stable quantum Hall states (for which O'xx vanishes and O'xy = p / q )  can 
be interpreted as being due a symmetry between states under the action of a particular 
sub-group of the full modular group, often denoted b y / ' o ( 2 )  in the literature [2,5]. It 

is the purpose of this paper to explore some of the consequences of this observation for 
the crossover from one QH state to another. 

If one assumes that the renormalisation group (RG) flow in the tr plane, induced 
by changing the strength of the external magnetic field, commutes with the action of 

Fo(2) ,  one is led to conclude that fixed points o f / ' o ( 2 )  must be critical points of the 
RG flow, [2,5]. This leads to many predictions concerning the phase structure, including 

the selection rule for QH transitions Pl q2-P2ql  = ~ 1, between filling factors vl = P l /q l  

and v2 = Pl/q2 [6]. In Refs. [2,5,6] only the critical points and phase structure were 
discussed, nothing was said about the form of the crossover between QH sates beyond 
the observation that / 'o(2)  leads naturally to the semi-circle law of [7] and follows 

from the law of corresponding states in [8]. Some suggestions about the functional 
form of the crossover were made in [9]. 

In this work some assumptions will be made about the analytic structure of the /3- 

function for crossover between the QH state with v = 1 and the insulating phase with 
v = 0. Using this as a template one can then construct the/3-function for crossover for 

any allowed QH transition, by acting with the appropriate element o f / ' o ( 2 )  which maps 

v = 0 and v = 1 onto v = P l / q l  and v = P2/q2 respectively, with p2ql - -  P~q2 = 1. The 
validity of the assumptions can then be tested by comparing the resulting predictions 
with existing experiments, and the results are promising. 

The most important assumption, as described in Section 3, is that that the/3-function is 
a complex analytic function of tr. Together with symmetry under the action of F0 (2) this 

restricts the structure of the fl-function to a very special form and some further, rather 
mild, assumptions restrict it to an essentially unique function. Unfortunately there is as 
yet no microscopic justification for the assumption that the/3-function is analytic, rather 
the motivation comes form the apparently unrelated area of Yang-Mills gauge theory 
in four dimensions (for which the /3-function was investigated in [10,11], and much 
of the analysis presented here is based on the ideas in these references)--the rational 
here is that the modular group seems to be a common feature of both the quantum 
Hall effect and supersymmetric Yang-Mills theory so it may prove instructive to push 
the analogy as far as possible, even though a microscopic understanding is lacking 
at present. Ultimately experiment is the arbitrator and if pursuing this analogy gives 
predictions which disagree with the experimental results then it is clearly not a useful 
analogy. The functional form of the crossover resulting from the assumption of complex 
analyticity is shown in Fig. 3 for the transition from v = 1 to the insulating phase, 
and in Fig. 4 for the crossover between v = 2 and v = 1, at various temperatures (the 
conductivity is expressed in multiples of eZ/h) .  The similarities between the theoretical 
predictions shown in Figs. 3 and 4 here and the experimental results, shown in Figs. 1 



B.P. Dolan/Nuclear Physics B 554 [FS] (1999) 487-513 489 

t T  a: x o l 1 ii 

0.5 1 1.5 2 2.5 
O ' x y  

Fig. 1. RG flow in the complex conductivity plane for the quantum Hall effect. The thicker lines are cuts 
where the phase of f(o-) jumps form -Tr to rr. 

Fig. 2. The fundamental domain for 1"o(2) is the vertical strip of unit width above the semi-circle of unit 
diameter centred at o-= 1/2. 

and 2b of [ 12] are quite striking, so it seems that the ansatz of a holomorphic fl- 

function may indeed be useful. The lack of a microscopic justification is nevertheless an 

unsatisfactory feature of the analysis and, if the results presented here should prove to be 

useful in describing the quantum Hall effect, it is crucial that a microscopic justification 

be found- -work  on this is ongoing at the moment. 

For ease of reference we give here the analytic form of the function which is postulated 

to describe crossover between QH states ~, = Pl/ql and ~, = Pz/q2, which is the main 

result of this paper. Let A~, = p - ~'c, with z, = he/B the Landau level filling factor (h is 

the electron density and B the external magnetic field) and ~'c = he/Bc the filling factor 

at the critical value of the magnetic field, Bc. Define a := (P2 - Pl )  - (q2 - qt)~'c, and 

the linear function sr(A~ ,) := a{(ql  - q2)A/-' + a}.  Then 

o'(A1,) = Pzqz{K'(w) }2 + PJql{K(w)}2 + iK ' (w)K(w)  
[qZ{K(w)}2 + q~{K,(w)}2 ] , (1) 

where K ' ( w )  and K (w) are complete elliptic integrals of the second k ind- -wi th  modulus 

w a function of d~, given by 



490 B.P Dolan/Nuclear Physics B 554 [FS] (1999) 487-513 

P~x 

u : 0 - - *  1 

-0.04 -0.02 0 0,02 0.04 0.06 

Au 

Fig. 3. Crossover of longitudinal resistivity for the insulator-QH transition ~, : 0 ---* 1 at the four temperatures 
T = 42, 84, 106 and 145mK with A = 60 and/z = 0.50. To be compared with the experimental data in Fig. 2b 
of [ 12]. 

w 2 1 { l - - s i g n ( A P ) v / l - - e - ( Z ~ u / ¢ ( 4 ~ ) r ~ F }  (2)  = ~  

AS usual the complementary  modulus w ~ is defined by (w~) 2 -- I - w 2 and K~(w) = 

K(w~) .  T in Eq. (2)  denotes the temperature and be the critical exponent described 

in [ 13], which is experimental ly determined to be/1. = 0.45 4- 0.05 [ 12] (the definition 

is given in Section 2) .  A is a positive real constant, possibly depending on other 

experimental  parameters  such as the electron density and Bc. The arguments that lead 

to Eq. (2 )  are strictly only valid for small Ap, in principle there could be corrections of  

order (At. ' )  4 tO the exponent,  however the range of  3v  required for crossover is small, 

]A~,[ < 0.1, and Eqs. (1)  and (2)  appear to give a good fit to the experimental data 

as they s t and- - the  crossover that they describe is shown graphically in Figs. 3 and 4. 

Fig. 3 is obtained by plott ing the real and imaginary parts of  (1)  for the case pl  = 0, 

P2 = q~ = q2 = 1 and Fig. 4 for Pl = ql = q2 = I, P2 = 2, and these figures should be 

compared with the experimental  data in Figs. 1 and 2b of  Ref. [ 12]. For the special 

case of  the QH-insulator  transition with Pl = 0, and ql = q2 = P~ = I Eq. (1)  gives a 

resistivity, p = - 1/o-, whose longitudinal component  is 

K(w) 
Pxx( Az') - K ' ( w )  ' (3)  

from which follows the relation 

1 
Pxx( AP) = pxx(-A~' ) '  (4) 

for this transition, since w ( - - A u )  = w ' ( A p ) .  This relation is well supported experimen- 

tally [ 14]. It seems remarkable that making the simplest possible assumption at every 

stage leads to predictions which are so close to experiment and the bulk of this paper is 
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Fig. 4. Crossover of conductivity and resistivity for v : 1 --* 2 at the four temperatures T = 42, 70, 101 and 
137inK with A = 40 and/x = 0.50. To be compared with the experimental data in Fig. 1 of [ 12]. 

devoted to the derivation of  Eq. ( 1 ) .  Explicit ly,  the assumptions  which are used in the 

analysis  are 

( i )  The law o f  corresponding states o f  [8 ]  should be extended into the upper-half  

c o m p l e x  conduct ivi ty  plane, cr = O'xy + i~xx ( in  units o f  e2/h). This is related to 

rotational invariance in the bulk and is encoded mathematical ly  into a group action 

on o - - - spec i f i ca l ly  the group is / ' o ( 2 ) .  

( i i )  The  action o f  F 0 ( 2 )  commutes  with RG flow. This implies  universality of  QH 

transitions. 
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(iii) There are no extra critical points, other than those already indicated by the experi- 
~+i mental data and weak coupling expansions, i.e. o- = 0, 1, -7-, ic~ and their images 

under the action o f / ' 0 ( 2 ) .  
(iv) In the limit of  large O'xx (the weak coupling limit of field theoretical models) O'xy 

does not run and the/3-function for O'xx is independent of ~rxy, finite and negative. 

(v) The /3-functions for the RG flow that describes crossover between two QH 
plateaux, or between a QH state and the insulating phase, are complex analytic 

functions when described in terms of a real variable s that is a monotonic real 

analytic function of the external magnetic field. 
These assumptions alone actually lead to slightly more general form than Eq. (1),  but 
demanding that Hall plateaux are approached as fast as possible as the magnetic field is 

varied gives Eq. (1).  
In the next section the concept of universality and scaling in the QH effect is reviewed 

and Section 3 contains a discussion of the r61e o f / ' 0 ( 2 )  in QH phenomena. Section 4 
then introduces the assumption of analyticity into the discussion and it is shown how 
this places strong restrictions on the form of the /3-function. Section 5 continues with 
a discussion of the RG behaviour near the critical point in the crossover between Hall 
plateaux and it is shown that the/3-function is then essentially unique. In Section 6 the 

analytic form of the crossover is discussed and Eq. (1) is derived. Finally Section 7 
gives a summary and outlook. Appendix A contains a review of some properties of the 
modular group, Jacobi O-functions and complete elliptic integrals which are relevant to 

the discussion in the text but may be unfamiliar to a general audience. 

2. Scaling and universality in the quantum Hall effect 

The discussion of crossover relies heavily on the scaling analysis of [ I3],  building 
on ideas originally due to Khmel'nitskii [ 15]. This section is a review of the essential 
points necessary for the later analysis. In [ 13] it was suggested that there was a critical 
point in the crossover between two QH states o- --- v~ and o- = ~'2, near which the 
only relevant variables are the external magnetic field, B, and the temperature, T. The 
crossover is driven by varying B at fixed T, and not by varying T as in the more familiar 

temperature driven transitions (for a review of quantum phase transitions see [ 16] ). The 
critical external field will be denoted by Bc. Thus the correlation length diverges with 
critical exponent v(, ( ~ IB - B c l  - ~  (the subscript ( on the exponent is to avoid 
confusion with the Landau level filling factor, which is also traditionally denoted by ~, 
and appears frequently throughout the text). Since o- is dimensionless, in units of eZ/h,  

it must be a function of a dimensionless ratio, b = A B / T  ~, where AB = B - Bc and/.t is 
a critical exponent which appears to be universal in that it is the same for all transitions. 
The correlation length, ( ,  is related to b through a characteristic length, L. For low 
magnetic field strengths L can be taken to be the electron scattering length [ 15], which 
diverges as T ~ 0 for an infinite size system. The scaling form for the way in which 
electron scattering length depends on the temperature is [ 13] 
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L ( T )  0( T -p/2, (5) 

where p is the inelastic scattering length exponent. For high field strengths a more 
appropriate characteristic length scale is the magnetic length, v/h/eB. In any case L 
would be expected to be a function of  both T and B in general. 

Now the ratio l = L/ (  is dimensionless and requiring that the correlation length is 

related to the magnetic field by the usual scaling relation 

( ~ lAB} -~ ,  (6)  

one has I/~1 (x l 1/~. Experimentally/z = 0.45 ± 0.05 [ 12] and v~ = 2.3 ± 0.1. 

The analytic from of the crossover is then described by a function o-(b) and the fl- 
functions for the longitudinal and transverse conductivities o'xx and O'xy can be defined as 

do'xx do'xy ( 7 ) 
f l xx (00xx ' ° ' xY)= d [ ? '  f lxY(00xx '° 'xY)= dl? 

These can be combined into a single complex function /3 =/3xy + i/3xx so that 

d o  
¢1(00, o-) = - = .  ( 8 )  

db  

Very little is known about the functional form of (7) .  A flow diagram was suggested 

in [15] and used in [13] .  Asymptotic forms for 00xx and O'xy when O-xx is large have 
been calculated in [17] ,  based on an effective action which contains a topological term. 
The interaction strength is 1/O'xx, so that large 00xx is the weak coupling regime, and the 
topological term has coupling O-xy, the quantization of which explains the quantization 
of the Hall states. In a perturbative calculation, 00xy is constant and /3xx depends only 
on O'x~, but it is argued in [ 17] that non-perturbative instanton effects produce the more 
general form (7) .  The same is true for supersymmetric Yang-Mills gauge theories, as 
revealed by the work of Seiberg and Witten [ 18], on which Refs. [ 10,11] are based. 
Ref. [18] itself relied heavily on a conjecture that the modular group should be a 

symmetry for supersymmetric Yang-Mills theory [ 19]. A non-perturbative form for 
/3(0 °, 0-), based on / o ( 2 )  symmetry, was suggested in [9].  

In the article by Pruisken in [ 17] the /3-functions are calculated as derivatives with 
respect to I rather than b- - th is  is quite legitimate and just reflects the fact that there 
are different ways to define /3-functions. Another possibility is to use the Landau level 

filling factor v = he~B,  where h is the electron density. Clearly 

h e A B  h e A B  
Av  := v - v~ = ,-~ - - -  (9) 

B{.(Bc + AB)  (Bc )  2' 

where Vc = f ie~Be is the critical filling factor, and /3-functions could be defined using 
v := ~ e A v / T  '~ as 

do- 
13(00, o-) = - - .  ( 1 0 )  

dv 

In the following we shall try to be as general as possible and define 
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do" 
3 ( 0 - ,  &) : - - ,  

ds 

where s is a monotonic function of  b or v, to be determined. 

( l l)  

3. The modular  group and the quantum Hall effect 

This section reviews the essential ingredients of the action of the g r o u p / ' 0 ( 2 )  on the 

complex conductivity p lane--more  details can be found in Appendix A. The full modular 

group, F (  1 ), was studied for possible significance in the QH effect in [ 1 ], inspired by 

observations originally due to Cardy and Rabinovici [20] concerning the extension of  

Kramers-Wannier duality to a model with two parameters, one of  which was topological 

in nature. Sub-groups of  the modular group, resulting in a more restrictive symmetry, 

were analysed in Refs. [2 -5 ] ,  and in Refs. [2,5] attention was focused on the particular 

g r o u p / ' 0 ( 2 ) ,  which was further developed in Ref. [6] .  

The basic assumption is that the infinite discrete group / '0 (2)  has a natural action 

on the upper-half complex conductivity plane, parameterised by ~r = o"xy + i~rx~ in units 

of  e2/h,  which is a symmetry of  the partition function (a generalisation of  Kramers-  

Wannier duality) and commutes with the RG flow on the o--plane. The group F0(2)  

can be represented by 2 × 2 matrices of the from 

(o :) 
2C 

where a, b, c and d are integers with ad - 2bc = 1 (which requires a and d to be odd). 

For 

T = 2c d E / ' o (2)  

the action is y : o- ~ (ao -+  b ) / (2c0-  + d) .  Thus Y maps the QH state with filling 

factor v = p /q ,  which has Re(o-) = v and Im(o-) = 0, to v = (ap + b q ) / ( 2 c p  + dq) .  

Note that 2cp + dq is odd if q is, but this would not be true if the factor of  2 were 

omitted--this is one way of  seeing why it is the sub-group / '0 (2 )  that is relevant to the 

QH effect rather than the full modular group, for which the 2 would not be present. 

All / ' 0 (2)  transformations can be generated by repeated applications of  the two 
operators U : 0- ~ 0- + 1 and V : 0- ---, 0 - / (20 -+  1 ), the former being a generalisation 

of  the Landau level addition transformation rule of  [8] ,  from real filling factors to 
the upper-half complex conductivity plane, and the latter being a similar generalisation 

of  the flux attachment rule of  the same reference. This generalisation is natural, and 
is indeed forced on us if the law of  corresponding states is combined with rotational 
invariance in the bulk of  a two-dimensional sample. To see this observe that the law 
of  corresponding states is formulated in terms of  a discrete set of  transformations on 

quantum Hall states labelled by v, or O-xy, O'xy ~ 0-xy + 1 and Oxy ~ 0-xy/(2O'xy + 1). 
But O'xy is only one component of  a tensor, 
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O'xx Orxy I 
O'i. j : \ O'yx 0".~, v " 

Two-dimensional rotational invariance demands that O-xx = try,:, and O-xy = -o-yx, where 
the latter is a parity violating effect induced by the external field. It is incompatible with 

rotational invariance to have a transformation acting on one component of a tensor, Crx.y, 

but not on the other, trxx. This causes no problems on the Hall plateau, where o-xx : 0, 

but is inconsistent when O'xx 4= O. To see how to extend the law of corresgonding sates 

to non-zero O-xx, in is convenient use complex coordinates in two dimensions, 

z = x + i y ,  ~ = x - i y ,  

in terms of  which 

(O-xx  O-xv) ( 0 0 " x x + i O ' x ~ , ) ( O  i o )  o'ii = " ~ " = . (12) 
--O'xv Orxx O'xx -- iO'xy 0 --io r 

Thus, in complex co-ordinates, the tensor o'ij is described by o- = ox~. + iO'x~ (with 

o-x.,. ~> 0 and its complex conjugate. The extension of the law of corresponding states 

to this complex conductivity leads naturally to the group 10(2) .  It is noteworthy that 
the law of corresponding states [8] was introduced in the quantum Hall effect at 

almost exactly the same time as the g r o u p / ' o ( 2 )  [2] ,  though from completely different 

motivations--both sets of  authors appear to have been unaware of  each other's work. 
Because the group action is assumed to commute with the RG flow the critical 

exponents near a critical point o'c are identical with those of  y( trc) ,  in accord with 

the universality hypothesis of  [ 13]. A flow diagram compatible with / 'o (2)  is shown 

in Fig. l - - s u c h  diagrams were first produced in Refs. [2,5] and their similarity to the 

diagrams proposed in Refs. [ 13,15], without any use o f / ' o ( 2 )  but using more specific 

reasoning, is manifest. 

Under the action o f / o ( 2 )  the fl-function, ( 1 I) ,  necessarily transforms as 

d ( a o ' + b ~ _  l 
/3 (y(o- ) ,y(O-) )  = ~s k , ~ c ~ - - d  I ( 2 c o t + d )  23(° ' ' 0" ) '  (13) 

since ad - 2bc = 1. It is thus very tempting to assume that/3 is a complex analytic func- 
tion of  or on the upper-half complex plane as such functions, called modular functions of  

weight - 2 ,  have been extensively studied in the mathematical literature and have many 

remarkable properties [21] .  2 A justification of  this assumption from first principles, 

using a microscopic Hamiltonian with specific interactions, will not be attempted here. 

Rather the consequences of  the analyticity assumption will be examined and it will be 
shown that it gives rise to crossovers that are remarkably similar to the experimental 
data-- thus giving impetus to the more difficult problem of finding a microscopic expla- 
nation of  analyticity. The present motivation for this assumption really comes from the 

unexpected direction of  supersymmetric Yang-Mills theory, where the group F0(2)  also 
plays a fundamental r61e and the existence of holomorphic /3-functions gives rise to a 

2 More accurately a modular form is meromorphic in q = e i~r~r rather than cr itself. 
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beautifully rich structure. We shall adapt some of the ideas used in [ 10], in applying 
/ '0(2)  symmetry to the RG flow of supersymmetric Yang-Mills theory, based on the 
seminal work of Seiberg and Witten [ 18]. Analyticity means that (13) reads 

d { a0-+b  ~ _  1 
/3(3/(o')) = dss \ 2 c 0 - + d J  ( 2 c o ' +  d) z/3(0-)" (14) 

The requirement tha t / ' 0 (2 )  commutes with the RG flow means that, at a critical point 
o-c,/3(3/(0-c)) =/3(0-c) [6] (this is a generalisation to the non-abelian group/ '0 (2)  of 
a similar condition for the compatibility of the Z2 Kramers-Wannier type duality with 

RG flow, analysed in [22]) .  This can happen if/3(o-c) = 0, but also if/3(o-c) = oc. We 
shall see that the latter possibility is of interest for crossover in the QH effect. 

There is a theorem ((4.3.4) in [21])  that any function obeying (14) and satisfying 
certain reasonable meromorphicity properties must have a special form. Let 

f (0- )  - 0404 (15) 

where Oi, i = 1,2, 3 are Jacobi O-functions (see Appendix A for details). Then f (0- )  

is invariant under / '0(2)  (i.e. f(3/(0-) = f (o - ) )  and any function obeying (14) must 
be of the form 

P ( f )  
/3(0") = f ' Q ( f )  , (16) 

where P and Q are polynomials in f (0-) .  
In the next section, Eq. (16) will be taken as a starting point and plausible explicit 

analytic expressions for o-(s) will be derived, using some further simplifying assump- 

tions. 

4. Renormalisation group flow 

The postulated form of the fl-function, (16), can be restricted even more by making 
N 

some further assumptions. Let P ( f )  = cYti=~ ( f -  ai) be a polynomial of order N and 

Q ( f )  = l--[~=l ( f - b . i )  be a polynomial of order M, where c, ai and bj are constants, with 
no a i equal to any bj s o  that there are no common factors between the two polynomials. 
Then /3 vanishes for any o-i such that f (0 - i )  = ai and diverges for any 0-j such that 
f (o- j)  = &i, where f (o- )  is defined in (15). From the theory of modular forms [21] it 
is known that only the fundamental domain o f / ' 0 (2 )  (see Fig. 2 and Appendix A) need 
be considered as all other values of o- in the upper-half complex plane can be reached 
by acting on the fundamental domain by some element, 3/, o f / ' 0 ( 2 ) .  Any critical point 
of /3(0-) in the fundamental domain has an image in every copy of the fundamental 
domain under the action o f / ' 0 ( 2 ) .  It is a property of the theory of modular forms that 
f (0- )  takes all possible complex values at least once in the fundamental domain, and 
hence in all copies of the domain. 
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As explained in the previous section, the fixed points o f / ' 0 ( 2 )  must be critical points 

of the RG flow (o'c is a fixed point of  / ' 0 (2)  if there exists a non-trivial element 

y E / o ( 2 )  such that 3"(O-c) = o-c). The only fixed points o f / 0 ( 2 )  in the fundamental 
domain are 00c = 0, 1, ~ and the point at infinity, i ~ .  These four points, and all their 

n+i images under F0(2) ,  must be fixed points of the RG flow. That o-c = -T-, for integral 

n, is a critical point has substantial experimental and theoretical foundation [23,24].  Of  

course 00 = 1 is the Hall plateau with filling factor l, = 1 while o- = 0 is the insulating 

phase, both of  which are expected to be attractive fixed points. The point 00 = i ~  

would correspond to a super-conducting phase, but this is not accessible experimentally, 

although it is the point about which perturbation theory is performed in field theory 

calculations (see e.g. the article by Pruisken in [ 17 ] ). There is no experimental evidence 

for any new critical points beyond the insulating phase 00 = 0, the stable Hall plateaux 

(all of  which are obtained from 00 -- 1 under the action of  / ' 0 (2 ) )  and the critical 
1 +i  point O-c = -~--, and its images under Fo(2) .  Experiment therefore indicates that there 

are no new critical points in the fundamental domain beyond those already mentioned 
at 0 ,  1, I+i _-7- and ioo. This means that the only allowed values of ct i and bj in P ( f )  

and Q ( f )  are f ( 0 )  f ( 1 ) ,  f (~+i  , --~-) and f ( i o o ) - - t h e i r  images under the action of  any 

3' C F0(2)  have the same values of  f since f is invariant by construction. In fact 

f ( 0 )  = f ( 1 )  = 0, f ( i o o )  = - o o  and f(_y_)l+i = ~x (see Appendix A).  Obviously one 

does not take any ct i o r  bj to be infinite, so one is led to the form 

f n ( f  _ l~, ,  
/ 3 = c  4" , (17) 

f, 

where m and n are integers. 

It can be proven, using standard properties of  Jacobi O-functions (see Eq. (A.9) )  
that 

f ,  = _i7.r(04 4 S + 0 4 ) f .  (18) 

Thus Eq. (17) can be re-expressed as 

I ~ 171 
/3(o')  = --ic f n - 1  ( f  _ ~ (19 )  

• r ( 0 4 + 0 4 )  

The integers n and m can be constrained by examining various limits. The stability 

of  the Hall plateau at o- = 1, where f ( 1 )  = 0, demands that /3 = 0 when f = 0. The 
points 00 = 1 and 00 = 0 are mapped onto each other under the action of F0(2) ,  so 

/3 also vanishes at o- = 0, where f ( 0 )  = 0 also. Since O~ ~ - 1 / o  °2, O 4 --+ 0 and 
f "~ - 1 6 e  -i~r/'~ as o- ---, 0, (A.11),  it is necessary that n - l >/0. 

If  the assumptions being made here have any validity at all, the limit 00 ~ ioo 
should have some affinity with the weak coupling limit of  the non-linear 00-model 

approach to the QH effect, advocated by Pruisken in [ 17]. Quantitative comparison of 

the form proposed here with Pruisken's asymptotic form is hampered by the fact that 
the functional form of l(b)  is not known in general--indeed the assumption that the 
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/3 function is analytic is presumably only true, if it is true at all, in a restricted class 
of  renormalisation schemes. In fact the form of  the 19-functions suggested here implies 
that they cannot be the same ,&functions of  Pruisken's analysis in [ 17] as the latter 
are definitely not holomorphic as O-x~ ---+ oo, as noted in [9] (see comments in the 

last paragraph of  Section 5).  Nevertheless it may be reasonable to extract some gross 
features from the weak coupling analysis. In particular we shall assume that for O-xx 
large: 

(i) /3 is finite; 

(ii) O-xy is a constant, i.e. flxy = 0; 

(iii) flxx ~ O. 

(20) 

It is to be expected that these three conditions are rather general, regardless of  whether 
or not holomorphicity holds. 

Now f + - o o  and O~ = 044 = 1 as o- ~ ioo, so (i) above requires that n + m -  1 <~ O. 
Since n ~> 1 we thus have m ~< 0. In perturbation theory condition (ii) comes from the 

assumption that instanton effects are negligible in the weak coupling limit and therefore 
O'xy, which is a topological parameter in the field theory model of  Pruisken [ 17], does 
not run in this limit. Using the asymptotic form (A.10) for large O'xx in Eq. (19) gives 

c (_e2r r ..... .~n+m-! 
/ 3 = ~  \ ~ J [ s i n { 2 r r ( n + m - 1 ) O ' x y } + i c o s { 2 r r ( n + m - 1 ) O - x y } ] .  

(21) 

Condition (ii) above then demands that n = - m +  1. Finally condition (iii) requires that 

c be real and negative. Without loss of  generality c = - l ,  by rescaling s if necessary, 
and one is finally led to the form 

I fn = i 1 (f,~n-I 
t9(--)-  f , ( f _ ¼ ) n _ ,  ~ ( 0 4 + 0 4 )  ~ _ ~ /  , (22) 

with n /> 1. The function (22) with n = 0 is actually the form relevant to N = 2 
super-symmetric Yang-Mills  theory. 

Eq. (22) can now be integrated exactly along any single trajectory. Writing it as 

ds df l ~ ( n -  1) (_l)n--l--rfr (23) 

do" do" fn  r 
r-O 

this integrates to 

s (o ' )  = - In 
' 

- r=0 r-n+l) (n-l)  ( - l ) r  
n--l--r 

( f r - . + l  __ f ~ - . + , )  , 

(24) 
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where f0 = f (o ' ( s  = 0 ) ) ,  which can be inverted to give ~r(s). For crossover between 
J with s( l+i  u : 0 and ~, = 1 we take f0 = g - T )  = 0. Using the limiting form (A.11) 

for f ( o ' )  as ~r ~ 0, f ~ - 1 6 e  -i~r/~, there is a quantitative difference between n = 1 

and n > 1 in the limit of  large s. In the former case, the sum is absent and only the 

logarithm survives, giving o- ~ iqr/s, while in the latter case the term in the sum with 

r = 0 dominates a n d s  ~ ( ,  J - -~ ) (~ )n - l e i~ '~n -~ / ' r  so o" ~ iTr(n-  l ) / l n s .  The case 

n = 1 therefore approaches the stable fixed points at o- = 0 and 1 for large s much faster 

than for n > 1. Although s has not yet been determined it is assumed to be a monotonic 

function of  AB so, whatever its functional form, n = 1 will give faster convergence to 

Hall plateaux than n > 1. Experimentally, the former possibility is to be preferred over 

the latter. 

To recapitulate, Eq. (22) is the most general form of the B-function compatible with 
the following criterion: 

(i) Stability of  Hall plateaux. 

(ii) Gross features of weak coupling in the asymptotic limit of  the field theoretical 

models. 

(iii) No new critical points of  the RG flow other than the insulating phase, Hall plateaux, 

critical points in the crossover between Hall plateaux and the weak coupling limit. 

(iv) Symmetry of  QH states under the action of  / 'o (2)  on the upper-half complex 

conductivity plane which commutes with the RG flow. 

(v) Complex analyticity of  the/3-functions. 

Finally the case n = 1 gives the fastest approach to the stable fixed points corresponding 

to Hall plateaux. The RG flow for the case n = 1 was considered in [ 11 ] within the 

context of  Yang-Mills gauge theory. It is reproduced in Fig. 1 here, which was obtained 

by observing that integrating (22) with n = 1 using an arbitrary integration constant 
gives 

S - S o = - l n ( f )  , (25) 

where fo  = f (so) .  Now s is a real parameter, therefore a r g ( f )  -- a rg( f0) ,  and the 

phase o1' the function f in Eq. (15) is constant along RG trajectories. Fig. 1 is simply 
a contour plot of the complex phase of f ( c r ) ,  and it reproduces the flows predicted in 

1+i is a repulsive fixed point. For most of the following Refs. [13,15].  Note that o-c = -~- 

the case n = I will be assumed, except where explicitly stated. 

1+i 5. The  crit ical  po int  at  O'c = ~-  

The element 
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of  / ' o ( 2 )  leaves the point o¥ = !~2 fixed and so o-¢ must be a critical point of  the 

RG flow, by the arguments of  Section 3. O'c therefore corresponds to the critical point 

in the crossover from o- = 0 to o- = 1. Numerical  calculations, based on models for 

the microscopic physics,  support this conclusion [24] .  It is shown in Appendix A that 

l+i Since n ) l it is immediately apparent from 04 = - O  4 and f =  ¼ at o - =  O'c = -T-" 

(22)  that/3(O-c) diverges. This is a critical point that is characterised not by a vanishing 

/3-function but by a singular one. However, the situation is not as bad as it might seem 

at first sight. For o- close to the critical point, o- = O-c + e with e small, 

1 /4)}8e2 "4- o(t34) (26) 1 {r( 
f (O'c + e) - 4 64-rr 4 

SO 

f'l,T, {V(1/4)} 8 
- 327r 4 e + o (e3 ) ,  (27)  

see (A.14)  ( F ( l / 4 )  here is the usual Gamma function).  So the mildest form of  

singularity is 

de 8rr 4 
- -  ~ ( 2 8 )  
as {r(1/4)}%' 

for n = 1. This integrates to e 2 ~ 167r4s/{F(1/4) }8, where the zero of  s has been chosen 

so that o-(s = 0) = o¥. Thus e is either purely real or purely imaginary, depending on 

whether s > 0 or s < 0. Any other value is repulsed from O-c, as it is an unstable fixed 

point. 

For e real the choice n = l thus leads to the form e oc x/s, Re(/3) ec l / x / ~  and 

Ira(/3) ~ 0, with o-(s)  itself finite at s = 0. Only the slope of  O-xy is singular at the 

critical point. In fact a glance at the experimental  data for crossover between any two 

QH states with O-xy = v~ and Oxy = /-p2 makes it clear that one expects the slope of  

Crx:.(B) to be large (and indeed infinite as the temperature T ~ 0, where one expects a 

step funct ion) .  Thus this singularity is not necessarily a disaster. For finite temperatures, 

the infinite slope can be avoided by a suitable choice of  s (AB)  or, equivalently, s (Av) .  

Recall that s (AB)  is taken to be a monotonic function of  the external magnetic field 

B and one is free to choose the zero of  s so that s(AB = 0) = 0, or s (Av  = O) = O. 
We assume that s (Av)  is a real analytic function of  Av at Av = 0, otherwise the 

definition of  the/3-funct ion in (11)  hardly makes sense. 3 Experimental ly [ 12] O-xx and 

O-xy are perfectly well behaved functions of  Av near Av = 0, they look analytic with 

do'x.,./d(Av) > 0 and finite, and do-xx/d(Av) = 0. If we therefore assume a Taylor 

expansion 

1 
O-x,.(Av) = ~ + CAr + . . . .  (29) 

31 thank Denjoe O'Connor for discussions on this point. 
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with C a positive constant, we see that zav oc e oc x/~, i.e. s e ( (z lv )  2. This gives rise to 

a singularity in do-xy/ds at s = 0, even though do 'xy /d (Av)  is perfectly finite for finite 
_ 1+i temperature. This is the source of the pole in the B-function at o'c - -7-" 

For general n ~> 1 a similar analysis shows that d e / d s  ( x  l /E 2n-1 near the critical 
point, giving • o( s l/(2n) and Re(/3) oc s -((2n-1)/2n). Analyticity of  s ( A v )  at the critical 

point then requires s ~ (Av) 2". From now on only n = 1 will be considered as it appears 

likely to be the most relevant in order to achieve the most rapid approach to the fixed 

points on the real axis. 

It may be worthwhile re-iterating this point, as it is at first sight surprising that 

criticality is associated with an infinite /3-function, when one normally associates a 
vanishing /3-function with a critical point. There is no unique definition of  the /3- 

function--there are many ways of  defining it, all of which are physically equivalent of 

course. Thus/3L := L d o ' / d L  is not the same a s / 3 ~  := do-~dAy (L  here is the same as 

in Section 2). Indeed/3,~ is non-zero at the critical point (and finite for T >  0) whereas 

/3L vanishes there, and ( l / A v ) d o - / d z l v  diverges at the critical point, where Av = 0. It 

is ( l / z l v ) d o - / d a v  which is obtained from the analytic /3-function proposed here. /3t~ 

and/3.j,, give perfectly good descriptions of the physics--but  they will not be complex 

analytic, in general. Note that it is/3L which is accessed by the field theoretical analysis 
in [17].  

6. Analyt ic  form of  the crossover  

In this section we consider the explicit analytic form of the function o ' ( s ) ,  for 

n = 1, in crossing over from o- = 0 to o" = 1 along the semi-circular arch of unit 

~+i All QH transitions, between o" = vl Pl/qJ and diameter passing through o- = -5-" = 

cr = v2 = P2/q2 with P2ql - P l q 2  = 1, can be obtained by mapping this semi-circle 
onto the semi-circle bridging Vl and p2, with diameter 1/qlq2 passing through, y(o- , )  = 

(Plql + P2qz + i ) / (q~  + q2). We have, from (25),  

f ( ,r ) = .foe -~'-s°) .  (30) 

Choosing the zero of  s, so, so that s = 0 corresponds to the point y(~r,) ,  where 

f( ' I ,((r , .))  = f0 = 1/4 results in 

0404 1 ~. 3___4 
08 - f ( o - )  = ~ e - .  (31 )  

Thus the semi-circular arches giving crossover between any two QH states are charac- 
terised by a r g ( f )  = 0. The explicit functional form of o-(s) can now be determined in 
terms of  complete elliptic functions of  the second kind, 

7r/2 

K ( k )  = ~ 1  -"--2 s In2~o '  ( 3 2 )  
0 
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using standard formulae [25] (see Appendix A) ,  

where the modulus, k, is related to o- by e irr~r = e -rrU/K, with Kt(k)  = K ( U )  and 

(U)  2 = 1 - k 2 the complementary modulus. Thus 

iK ~ 
o" = 2& + - - ,  (34) 

K 

for integral ~ (for convenience the relevant formulae are reproduced in Appendix A) .  

The integer r~ can be set to zero, since the other possibilities follow from repeated 

application of  the symmetry o- --+ o - +  1 o f / ' o ( 2 ) .  Using the relations (33) in (31) 

gives s in terms of  k, 

l e - s  _ O4043 4 _ (kt) 2 k 2 ( ) 
4 O28 k 4 ~ = 2es 1 ± ~  . (35) 

For 0 ~< s < cxD the plus sign gives 2 ~< k 2 < oo and the negative sign gives 1 < k 2 ~< 

2 - - the  two branches combined give the range 1 < k 2 < c~, and so - o e  < (kP) 2 < 0 (it 

has already been shown--see  the discussion after Eq. (28 ) - - tha t  s < 0 corresponds to 

passing through O-c in the purely imaginary direction, which is not relevant to crossover). 

Since K ( k )  is complex in this range it is convenient to manipulate Eq. (34),  using some 

identities between elliptic integrals given in Appendix A, in order to expose the real and 
imaginary parts of  (34) explicitly. First note that w 2 := l / k  2 has the range 0 < w z < 1, 

so Eq. (A.19) allows one to write 

K( k) = w {K(w)  + iK' (w) } ,  (36) 

with K ( w )  and K~(w) real. Next define a real variable u via U = iu, with 0 < u < c~, 
w2=  1/(1 + u  2) and (w' )  2 = 1 - w  2 = u 2 / ( 1  + u 2 ) .  Then Eq. (A.20) with k replaced 

by w ~, gives 

K' (k )  = K(iu)  = wK ' (w) .  (37) 

Using Eqs. (36) and (37) in (34),  with ~ = 0, results in 

K ' ( w ) { K ' ( w )  + iK(w)  } 
o-(s) = [{K(w)}2  + {K,(w)}2 ] , (38) 

which gives an explicit analytic form for o-(s) in which the real and imaginary parts 
are manifest, since 

1 / l q : v / 1 - e  -s  
w -- - = V (39) k 2 

from (35) ,  lies in the range 0 < w < 1. 
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In order to show that the above equation does indeed describe crossover between 

or = 0 and cr = 1 we shall analyse various limits of  (38) .  For s = 0 both branches 

, ,+i l / x / 2 )  K ' ( 1 / v ~ )  thus s = 0  is indeed the give w 2 2 and so o-(0) = since K( = 

critical point. As w --+ 0 (s  ---+ c~ on the upper branch),  the asymptotic forms of  the 

complete  elliptic integrals (Eqs. (A.17)  and (A .18 ) )  can be used to write 

7";" 77" 
K ( w )  = ~- + o (w  2) = ~- + o ( e - " ) ,  (40)  

K ' ( w )  = l n  + o ( w 2 1 n w ) = - ~ + l n S + o ( s e - S ) ,  (41) 

SO 

(s  + 6In 2 ) ( s  + 61n2 + iTr) 
o" = + o(se  -~) ~ 1. (42)  

{~2 + (s  + 61n2)  2} 

As w --+ 1 (s  --+ c~ on the lower branch) ,  the r61es of w and w ~ are interchanged and 

1r{Tr + i(s  + 61n 2)}  
cr = + o( se -s )  --~ O. (43) 

{7"r 2 + (s  + 61n2)  2} 

Thus the two branches combined,  with 0 < w < 1, do indeed interpolate between o- = 0 
_ l+ i  and o- = 1 with w = 1 / v ~  giving the critical point at o'c - --~-. 

To compare this analytic expression for o-(s)  with the available experimental data, we 

must still address the question of  how the variable s is depends on the external magnetic 

field, or equivalently on v = (he /TU)Au.  One piece of information that has not yet 

been brought into play, and can be used to constrain the form of s, is the par t ic le-hole  

transformation rule of  [8] .  This implies a symmetry under ~, ~ 1 - u, or Au --+ --Au, 

which suggests that s should be an even function of Au.4 This is compatible with the 

mathematical  analysis in the previous section, where it was shown that the apparent 

regularity in the experimental  data of O-xy at the critical point implies that s ~ t ,2, at 

least for Au small. As a first try, therefore, we shall take s = (AA1,/T~') 2, for some 

real positive constant A. It may be significant that the experimental value of the critical 

exponent in (6 ) ,  ~,( ~ 2.02, is so close to two. If  it were precisely two, then s would 

be proport ional  to the inverse correlation length, s cx l / g  e. It would also be quite natural 

i f / z  were exactly one half, giving s ~ l IT .  The experimental data, however, seem to 

indicate a somewhat lower value fo r /x  (and correspondingly a higher value for u~). 

Using s = (AAI, /TU) 2 and the four values for the temperature quoted for Fig. 2b 

in [ 12], T --- 42, 84, 106 and 145 inK, with the best fit experimental value of # = 

0.45 ± 0.05, the functions 

{ X ' ( w ) }  2 

o-~, (s)  = [ (K , (w)}2  + {K(w)}2]  ' 

K ' ( w ) K ( w )  
o-xx(s) = [ { K , ( w ) }  2 + { K ( w ) } 2 ] ,  (44)  

4 We shall see later that this is strictly true only for in teger  transit ions.  
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can be plotted, with 

i l - s ign(Av)V/1 - e-(Aav/Tu)2 
w = 2 ' (45) 

for the transition v : 0 --~ 1, and the result for Px, and pxy are shown in Fig. 3, where 

the choices A = 60, /z = 0.50 have been made, since these seem to give a good visual 

fit to the experimental data in Fig. 2b of  [ 12]. A better fit to the data is obtained if 

Pxx is rescaled by a constant, so as to raise the critical value of  Pxx above the predicted 

value of  uni ty-- the  experimental curve in [ 12] gives a value greater than one whereas 

/ o ( 2 )  symmetry predicts exactly one. If  the assumptions made here are correct, this 

is presumably due to the experimental difficulties involved in determining pxx (see for 

example the comments in Cage's article in [ 17]) .  Note that a prediction here is that, 

for this transition, Pxy = 1 well into the insulating phase- -a  fact that is well borne out 
by experiment. Similarly, with the four values T = 42, 70, 101 and 137 mK used in 

Fig. 1 of  [ 12] the functions 

{ K t ( w ) )  2 
(rxy(S) = 1 + 

[ { K t ( w )  ) 2 + { K ( w )  }2] ' 

K ' ( w ) K ( w ) }  (46) 
Crxx(S ) = [{K,(w)}2  + {K(w)}2]  ' 

for the transition v : 1 --~ 2, are plotted in Fig. 4, together with the corresponding 

resistivities. Fig. 4 was produced with the choice A = 40, Iz = 0.50, again with a view 

to a good visual fit to the experimental data in Fig. 1 of  Ref. [ 12], and again the fit for 

pxv is noticeably better than that for Pxx. 
It is stressed that there are only two parameters which can be varied in the analytic 

expressions to produce Figs. 3 and 4, the scaling exponent /z and the constant A-- /~ 

is assumed to be universal and is taken from experiments, which then leaves only one 
parameter, A, which can be varied in order to fit the experimental data. In general A 

is not expected to be universal--it  would depend on various parameters such as the 

electron and impurity density. In particular it depends on the critical magnetic field and 

so is different for each transition. 
It should also be borne in mind that the form (45) for w ( A v )  could have higher 

corrections in A~,, it is only for Av near zero that we can trust s oc ( A v / T g )  2. However, 

assuming that s is an even function of  Au, as the particle-hole transformation mentioned 
earlier suggests, one expects the corrections to be of  order (Ap) 4. In the experimental 
data from Ref. [ 12], the range of  Av required for crossover is < 0.1 so corrections to 
the leading (Au)2 term can be expected to be less than 1%, unless something conspires 

to produce large coefficients. 
The particle-hole transformation extends to complex o- as o- --~ ! - 0", as is evident 

from Fig. 2, (this is not an element of  F0(2) ,  but rather an outer auto-morphism of 

that group). Thus it is to be expected that the longitudinal conductivity, Im{o-(Au)},  
is an even function of  au, at least for integral transitions. This property is manifest in 
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Eqs. (44) and (46) since, as is easily proven from (45),  w ( - A u )  = w ' ( A v )  where 
(w ' )  2 = 1 - w 2. 

This behaviour of  w ( A u )  under Av ---, --Au has an interesting consequence for 
the resistivity, p = - 1 / o - ,  derived from Eq. (44).  The longitudinal resistivity for the 

transition u : 0 ---* 1 is 

K ( w )  
Pxx - - - .  (47) 

K ' ( w )  

Thus we have 

1 

P x x ( -  Av ) - Pxx( AV~' (48) 

for v : 0 ---, l ,which is well supported experimentally [14,26,27]. In particular in 

Ref. [26] the authors fit the form Pxx(Au) = e -a~/~(v) to the data, where ~(T) is a 

function of  T. They find that ~(T)  = T ~' is incompatible with the data for any /, and 

suggest instead that a linear form, ~(T) = &T + / )  with & and /) non-zero constants, 

gives a better fit and this is interpreted as a violation of  the scaling hypothesis. It would 

be very interesting to check whether or not the alternative form (47) is compatible with 

the experimental data because, if it is, then the experiments in [ 14,26,27] would provide 

confirmation of  scaling and not a violation of  it. 
Taking (38) as a template, the assumption o f / ' o ( 2 )  symmetry (which implies uni- 

versality) allows any transition to be modeled. The crossover u : Pl /q l  ---' P2/q~_ is 

obtained from the template transition u : 0 --~ 1 by the action of  

( P2 - P, P, ) 
Y = q2 ql ql 

as (see Appendix A) 

(P2 - p l ) t r  + pl 
o- --~ , ( 4 9 )  

(q2 - ql )o- + ql 

Using (38) this gives 

p 2 q 2 { K ' ( w ) }  2 + p l q l { K ( w ) }  2 + i K ' ( w ) K ( w )  
or(Av) = [ {q2K(w)  }2 + q2{K, (w)  }2] (50) 

The form of w as a function of  Av changes as well, because Au for the transition 

v : p l /q l  --+ P2/q2 is not the same as Au for the template transition v : 0 --+ 1, in 

general. Denoting the filling factor for the template transition by v01 (which is the 

argument of  the function s (Auo l ) ) ,  we expect vm to be obtained from v using 

7 - 2 = (  01 - P ,  ) 
- ( q 2 - q l )  P 2 - P l  

SO 

ql u -- Pl u m =  (51 ) 
(ql - q2)v + (P2 - Pl)  ' 
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and thus 

APol = 
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Ap Ap 

te{(q, -- q2)Ap  + oe) := ( ( A t , ) '  (52)  

where a := (P2 - P l )  - (q2 - q l ) U c  and sr(A~ ,) := a { ( q l  - q 2 ) A P  + or}. Au and Au01 

are equal for integer transitions of  the form p ---, p + 1 (where P2 = P + 1, Pl = P 

and ql = q2 = l )  but not otherwise. Note that ce --+ - a ,  ql ~ ql and q2 ~ q2 under 

u --~ 1 - u, hence Au01 --~ -AP01 and the discussion of  the par t ic le-hole  transformation 

rule, in the paragraph after Eq. (43) ,  should now be modified to say that s could have 

corrections of  order (Au01)4. 

Thus for a general crossover the argument w appearing in (50)  is given by 

~/ 1 - s ign(A~)V/1 - e -[a'a'/(('a~')T~'12 
w = 2 (53) 

Eq. (50) ,  with the definition (53) ,  is the main result of  this paper. In principle there 

could be corrections of  order (/I/. ') 4 tO the exponent in Eq. (53) ,  but in practice it 

appears to give good agreement  with experiment as it stands, since the range of  A~, 

required for crossover is small. The special case (38) is reproduced by setting Pl --- 0 

and p2 = q~ = q2 = 1. 

The longitudinal resistivity actually takes the form given in (47)  for all of  the 

transitions p : 0 --+ l / q ,  as can be shown using (50) with Pl = 0, P2 = ql = 1 and 

q2 = q. Thus "rho-duali ty" (48)  should be valid for these transitions, but only these. 

Eq. (48) ,  with Az, replaced with AP01 from (52 ) ,  was tested experimentally in [14] 

tbr the case u : 0 --, 1/3 (for which Pl = 0, P2 = ql = 1 and q2 = 3) and appears to 

give support  for (52) ,  even for values of  Ap as large as 0.1, while putting sr(d~ ,) equal 

to a constant does not give such good a fit to the data, the discrepancy being a 10% 

correction. It therefore seems that (53)  is valid even for Av as large as 0.1, at least 

for the temperature range explored in [ 14], with the corrections being of  order ( A p )  4 

giving a 1% error which is within the limits of  experimental accuracy. 

7. Conclusions 

In this paper an explicit  form of  the crossover between two QH plateaux has been 

derived, the final result being given in (50)  and (53) .  The resulting crossovers are 

plotted in Figs. 3 and 4 for the cases pj  = 0, P2 = ql = q2 = 1 and P2 = 2, pl  = qJ = 

qe = 1, corresponding to ~, : 0 ---, I and p : 1 ---, 2 respectively. The results agrees 

remarkably well with the experimental  data in [ 12], at least qualitatively. It would be 

of  interest to check the results quantitatively, using experimental numbers rather than 

just  the graphical  data which are available in the literature. 

The assumptions are: 

( i )  The law of  corresponding states of  [8] should be extended into the upper-half  

complex conductivity plane, o- = O'xy + iO-xx (in units of  e 2 / h ) ,  as required by 
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rotational invariance in the bulk,. This is encoded mathematically into a group 

action on o---specifically the group is F0(2).  
(ii) The action of / 'o(2)  commutes with RG flow. This implies universality of QH 

transitions. 
(iii) There are no extra critical points, other than those already indicated by the experi- 

1+i mental data and weak coupling expansions, i.e. ~r = 0, 1, -T-, ioo and their images 
under the action of F0(2),  and that the RG flow be compatible with the experi- 
mental data and the robust features of the weak coupling expansion enumerated in 

(20). 
(iv) The /3-functions for the RG flow that describes crossover between two QH 

plateaux, or between a QH state and the insulating phase, are complex analytic 

functions when described in terms of a real variable s that is a monotonic real 
analytic function of the external magnetic field. 

Assumptions (i) and (ii) above have already received a great deal of attention 
[2,5,6,8]. Despite many successes it is still not yet clear whether universality in QH 
transitions is a good hypothesis, but time will tell and for the moment it seems promising 

to investigate the consequences of these assumptions. Assumption (iii) does not seem 
to require comment, given (i) and (ii). The new ingredient here is (iv) which necessi- 

tates analysis and justification. The only justification given here is that this assumption 
produces an expression which appears to be in remarkable agreement with experimental 

data on QH crossover. Given this apparent success, it is important to achieve an un- 
derstanding of how this form could emerge from the underlying physics. There is no 

obvious reason from the field theory models considered so far, e.g. Pruisken's non-linear 
o--model with a topological term [ 17] or Chern-Simons effective actions [28], why an 
analytic /3-function should give good results. It should probably be borne in mind when 
trying to analyse the hypothesis of complex analyticity using field theoretic techniques 
that the notion of complex analyticity would be expected to depend on the renormal- 
isation scheme chosen for any calculations--it could not be expected to be true in an 
arbitrary scheme. It may be significant for analyticity that if the exponent t,~ in (6) were 

exactly two, then the RG parameter s would be inversely proportional to the correlation 
length. 

Finding a microscopic justification promises to be an involved project, but in view of 
the tantalising similarity between the analytic results presented here and the experimental 
data it may be one well worth pursuing. 

8. Note added in proof  

After the completion of this manuscript two further papers analysing possible forms 
for the/3-function, compatible with / 'o(2)  symmetry, appeared [29,30]  
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Appendix A 

This appendix contains a summary of the properties of the modular group, its sub- 
group F0(2) ,  the Jacobi z%functions and complete integrals of the second kind, which 
are needed in the text. 

The modular group, F (1 ) ,  can be represented by the set of all 2 × 2 matrices with 
integer entries and determinant one. Thus g E F (1 )  can be written as 

g =  ( c  a b )  w i t h a d - b c = l .  (A.I )  

F (  1 ) is therefore isomorphic to Sl(2,  Z),  which in turn is isomorphic to Sp(2, Z ) - - t h e  
group of symplectic 2 × 2 matrices with integer entries. Elements of F (1 )  have a natural 
action on the upper-half complex plane, parameterised here by o- E C with Im(o-) > 0, 
given by 

a o - + b  
g(o-) - co- + d" (A.2) 

It is easy to check, using ad - bc = l, that Im(g(o-) )  > 0 if Im(o-) > 0. The group 
F (  1 ) is an infinite discrete group and it is generated by two elements, U : o- --+ o- ÷ 1 
with 

gu = 1 

and V : o- ~ - 1 / o -  with 

gv = _ 1 ' 

any element can be represented by some combination of products of such matrices 
(though not necessarily uniquely). The group F ( 1 )  is a discrete version of the group of 
2 x 2 matrices with real entries and determinant one--the special linear group, Sl(2,1R), 

which has a similar action on the upper-half complex plane, (A.2). With this action 
S/(2,1t~) maps semi-circles centred on the real line onto other semi-circles with the 
same property and obviously the discrete sub-group F(1 )  must share this feature. 

Clearly F ( 1 )  maps rational numbers on the real line o- = p / q  to other rational 
numbers o-=  (ap + d q ) / ( c p  + dq).  A general element of F (1 )  does not necessarily 
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preserve the parity (even or odd) of  the denominator under such action, cp + dq can 

be either even or odd regardless of  the parity of  q, and so F ( 1 )  itself can hardly be a 

symmetry group between QH states, o- = v = p/q,  for which q must be odd. However, 
the sub-group of  F ( 1 )  whose bottom left entry is even does preserve the parity of 

the denominator, and the possible significance of  this property for the QH effect was 

first noticed by Liitken and Ross in [2] .  This sub-group is often denoted by / '0 (2)  

in the mathematical literature (though Ref. [21] denotes it by F u ( 2 ) )  and it can be 

represented by matrices of the form 

( a  b ) w i t h a d - 2 b c = l ,  (A.3) 
Y = 2c 

with a, b, c and d integers. / ' o (2)  is generated by two elements U : 0- ~ o- + 1 with 

(; ') 
gu = 1 

and X : cr ---+ t r / ( 2 o - +  1 ) with 

These give a generalisation [6] to the whole upper-half complex plane of the Landau 

level addition transformation and the flux attachment rule respectively of Kivelson, 

Lee and Zhang [8] ,  which were originally defined for rational filling factors only, 

corresponding to QH states. 

This action o f / ' 0 ( 2 )  on the upper-half o--plane results in an inhomogeneous tiling of 

the plane-- the  whole plane can be generated by the action o f / ' 0 ( 2 )  on a "fundamental 

domain", which can be taken to be a connected domain [21].  The definition of  the 

fundamental domain is not unique, but a convenient choice is a vertical strip of unit 

radius extending infinitely far in the imaginary direction, but with its lower edge bounded 

by a semi-circular arch of  unit diameter connecting the points o- = 0 and or = 1 (see 

Fig. 2). The properties of  any function are uniquely determined by knowledge of  the 

function on the fundamental domain alone. 

Since Fo(2)  is a sub-group of the full modular group it maps semi-circles centred 
on the real line onto other semi-circles with the same property. In particular the above 

1 spanning 0- = 0 and tr = 1 is mapped by mentioned semi-circular arch of  radius 5_ 

y =  
2c d 

into an arch of  radius l / [ 2d ( 2c + d ) ] ,  spanning 0- = b / d and 0- = ( a + b ) / ( 2c + d ) . 
If b/d  = Pl/q~ and (a + b ) / ( 2 c  + d) = p2/q2, with ql and q2 odd, are two QH states 

between which a transition is allowed we have a = Pl - P2, b = Pl, 2c = q2 - ql and 
d = ql so 

( P2 -- PI Pl ) 
Y = q2 ql ql " 
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Now the condition de tT = 1 ¢==> P2ql - P l q 2  = 1 which gives a selection rule for 
QH transitions [6].  In this way all allowed QH transitions can be generated from a 
"fundamental" transition describing crossover between the insulating state, with o- = 0, 
and the QH state with filling factor unity, with o- = 1, u : 0 --+ 1, by the action of 
some element of  F0 (2) .  This immediately implies the hypothesis of  universality of  QH 

transitions [ 13]. 
The fixed points of  F0(2)  play an important r61e in crossover phenomena. The point 

l+i is left invariant by the element O-c = -7- 

(,,) 
Yc = 2 - 1  ' 

and there exist elements o f / ' 0 ( 2 )  which leave any image, y ( o ¥ ) ,  of  O-c fixed, namely 
y y c y - l { y ( O - c ) }  = y(o 'c ) .  Under the assumption that the action o f / ' 0 ( 2 )  on the o-- 

plane commutes  with the RG flow, O'c and all its images must be fixed points of  the RG 

flow [2,5,6].  
The Jacobi functions O4unctions used in the text are defined by 

O<3 0(3 

0 2 =  2 ~ q 'n+''2 : 2q 4'- 1-I (1 - q2n) (1 + q2,~)2, 
I1=0 n =  l 

( x )  o o  

03= ~ q n 2 = l - I ( l - - q 2 n ) ( l + q 2 n - l ) 2 ,  
gt=~ OO n=l 

(X) (3O 

04----- Z (--1)nqn2= I ' I(  l --qZn)(l-  q2n-l)2 '  (A.4) 

n = - - o o  t/=l 

where q := e i#'~ (the conventions are those of  [25],  except that ~" there is replaced by 
o- here).  

The O-functions satisfy the relation 

O43 = 022 "q- O 4  ( A . 5 )  

and have the following transformations under U : o- --+ o- + 1 and V : o- --+ - 1/o-: 

=e702(o') 0 2 (  ; ) :  0"2(0"+ 1) i~ , __ V / ~  04 (0.) 

O3(O'q- 1)=O4(O'), O3 ( - - 1 )  =X/7/~O3(o'), 

O4(O" q- l ) = O3 (O'), O4 (-- 1 )  = V/7/-~ O2 (O - ) (A.6) 

(a demonstration of  these transformation properties can be found in [25] ) .  
It is not difficult to verify, using the above relations, that the function 

O304 | (2 ~--q4n-~-..-218 (A.7) 
f ( o ' )  - 028 - 256q2 ,,=1 (1 +q2n)  '6 
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is invariant under the above transformations U and X, and hence invariant under all of  

Co(2).  
The Jacobi O-functions satisfy the following differential equations (see Ref. [21] ,  p, 

231, Eq. (7 .2 ,17)) :  

2.~.f / / I 3 O4 i'n" 04 , O~ O 3 _ i'n" O4 01 O 4 izr _ 4 
- _ - - ~  4 ,  - -~03 ,  ( A . 8 )  

03 O4 4 O2 O~ ~ 

where ' = d/dcr.  Using these to differentiate (A.7) one finds 

af  - iTr(O 4 + 0 4 ) f .  (A.9) 
do- 

In the text the following asymptotic forms of the O-functions are required, which are 

easily verified from the definitions (A.4) :  

e -  2zri~r 

- - -  ---~ - ,~o . (i) ~ r . 4 i o c :  O 2 ~ 2 e ~ - 4 0 ,  O 3 . 4  1, 04 .4 1, f ~  256 

(A.lO) 

From these one can deduce, using (A.6) ,  

( i i )  o r . 4 0 '  O 2 ~  , 0 3 ~  , 

f ~ - 1 6 e  -i'~/'* .4  0. 

O 4 , ~ 2  e ~ . 4 0 ,  

(A.11) 

l+i is also needed in the text. The following properties The behaviour of f near o'c = -T- 
can be proven using the relation between O-functions and elliptic integrals given below 

(A.16) ,  

o4(~c) = _o4(o-c) = i _ ~ }  , ( A . 1 2 )  ~ 3  { F (  I 4 

(where F(¼)  ~ 3.626 is the usual Gamma function) from which we can conclude, 

using (A.5) ,  that 

---- 1 O4(crc) = 204(O-c) ~ f(o-c)  a" (A.13) 

1+i With the help of (A.9) above, a Taylor expansion for .f(~r) around o'c = -y- can now 

be developed, using (A.8) ,  (A.12) and (A.13),  

f(o-,.  + e)  = 1 - 2i7r 04(o-,.) 

1 = 4  . . ,  } 
= 4 + z O-(o-c)O-(crc)  + " "  

4 64~ 4 ~ * " "" " 
(A.14) 

The Jacobi O-functions are related to complete elliptic integrals of the second kind, 
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~r/2 

d~p (A.15) 
K ( k )  = V/1 _ k2sin2~ 

0 

by the following formula (see Ref. [25] p. 479):  

where the modulus k is related to o- by e - ' rx ' /x  = e i ~  and K~(k) = K ( U ) ,  with 
(U)  2 := 1 - k 2 the complementary modulus. 

The elliptic integral K ( k )  has the following expansions (see Ref. [ 31 ], Eqs. (8.113.1 ) 

and (8 .113.3)) :  

~ k 2 + . . . )  , [kl<< 1, 

1{(4) } 
+ ~  In ~S - 1 (k ' )  2 +  . . . .  Ik ' l<< 1. (A.17) 

K ( k )  = 5 1 + 

(4) 
K ( k )  = In 

Thus 

(4) ,{ } 
K ' ( k ) = l n  + ~  In - 1 k 2 +  . . . .  

In addition the following relations are needed in the text: 

K ( k )  = k { K ( k )  + i K ' ( k ) } ,  

K -~ =k'K(k), 

Ikl << I. (A.18) 

(A.19) 

(A.20) 

(see Ref. [31] ,  Eqs. (8.128.1) and (8.128.3): beware of  the misprint in Eq. (8.128.3) 
of  the fourth edition). 

Finally, using (8.129. l )  of  [31] ,  

(,) ,{ K ~ : ~ - - ~  F (A.21) 

z+i corresponds to and (A.19) with (A.16) reproduces Eq. (A.12) above, since o- = -T" 

k=v~. 
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