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Abstract 

A metric is introduced on the space of parameters (couplings) describing the large N limit 
of the O(N)  model in Euclidean space. The geometry associated with this metric is analysed 
in the particular case of the infinite volume limit in three dimensions and it is shown that 
the Ricci curvature diverges at the ultra-violet (Gaussian) fixed point but is finite and tends 
to constant negative curvature at the infra-red (Wilson-Fisher) fixed point. The renormalisation 
group flow is examined in terms of geodesics of the metric. The critical line of cross-over from 
the Wilson-Fisher fixed point to the Gaussian fixed point is shown to be a geodesic but all other 
renormalisation group trajectories, which are repulsed from the Gaussian fixed point in the ultra- 
violet, are not geodesics. The geodesic flow is interpreted in terms of a maximisation principle 
for the relative entropy. @ 1998 Elsevier Science B.V. 
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I. Introduction 

In this paper the idea of a geometry on the space of field theories will be investigated, 

in particular within the context of an exactly soluble model - the O ( N )  model in 

D-dimensions  in the limit of large N. A geometry on the space of theories was used 

to great effect by Zamolodchikov in the case D = 2 [ 1 ], where a metric was defined 

on the space of couplings of the theory which led to deep insights into the nature of 

1 Currently on leave of absence from Department of Mathematical Physics, St. Patrick's College, Maynooth, 
Ireland. 
E-mail: bdolan@thphys.may.ie 

0550-3213/98/$ - see frontmatter Q 1998 Elsevier Science B.V. All rights reserved. 
Pll S0550-3213 (98) 00457-X 



554 B.P Dolan/Nuclear Physics B 528 [FS] (1998) 553-576 

renormalisation flow and cross-over between fixed points (the c-theorem). This metric 

was essentially given by the two-point correlators of the primary fields of the theory, 
and has no unique generalisation to D > 2, where the concept of a primary field does 

not play such a central r61e. However, a related metric can be defined for D > 2, where 

the components are given by two-point correlators of the composite operators associated 

with the couplings [2]. The concept goes back much further in the statistical mechanics 

literature and can be traced to ideas of Fisher and Rao [3,4] - the Fisher information 

matrix and "relative entropy". In the context of ordinary statistics there is a book on the 

subject [5] and metrics on the space of thermodynamic states have been investigated in 

some detail by Ruppeiner and Weinhold [6,7]. A related metric in quantum mechanics 
has been proposed by Provost and Vallee [8]. Zamolodchikov appears to have been 
the first to use the idea in field theory, albeit only for two-dimensional field theories. 

Many attempts have been made to generalise Zamolodchikov's results to three and four 
dimensions [9], but these have mostly focused on attempts to prove a c-theorem in 
D > 2, rather than on the intrinsic geometry of the proposed metric. 

The geometry itself is also of intrinsic importance. A change in the way the theory 

is parameterised would correspond to a general co-ordinate transformation and non- 

linear transformations are perfectly acceptable, provided all quantities are expressed 

in a manifestly general co-ordinate co-variant manner. For example the transformation 

from bare to renormalised parameters, which is in general non-linear, can be interpreted 

as a general co-ordinate transformation [ 10]. In particular any quantity which is a 
scalar under general co-ordinate transformations is automatically independent of the 

renormalisation scheme. 

The geometry of the space of couplings was taken seriously in [2], where Gaussian 
models (free scalar field theories in a finite box) were investigated, and curvatures 

calculated. The concept of a connection on the infinite-dimensional space of theories, 

and its r61e in renormalisation group flow, was investigated in [ 11 ]. The metric studied 

in [2] was in a sense the infra-red limit of the Fourier transform of Zamolodchikov's 
metric (generalised to D > 2 where the concept of primary fields is not so well defined), 

and so does not contain as much information as that of Zamolodchikov, but it is still 

relevant to an analysis of the long distance behaviour of the theory. 
The relation between the geometry and the renormalisation flow was investigated 

in [ 12], where it was observed that the renormalisation flow on the two-dimensional 
space parameterised by the mass and the expectation value (~p) of a scalar field is 
geodesic for free fields, provided (q~) = 0 but not otherwise (except in D = 2, where 
all renormalisation trajectories are geodesic). This was however in the rather restricted 
cases of free field theories, where the renormalisation flow is just dictated by canonical 
dimensions, and the slightly less trivial case of the one-dimensional Ising model. 

The purpose of this paper is to pursue these investigations for an interacting non- 
trivial model which is exactly soluble - the O ( N )  model in the limit of N ~ c~. 
For D = 3, this model is non-trivial and has two fixed points - the Gaussian fixed 
point (free field theory) in the ultra-violet and the non-trivial Wilson-Fisher fixed point 
in the infra-red (which is equivalent to the spherical model [ 13] ). The Ricci scalar 



B.P. Dolan/Nuclear Physics B 528 [FS] (1998) 553-576 555 

diverges at the Gaussian fixed point but elsewhere the curvature is finite, tending to a 

negative constant in the infra-red. It is shown that, with the metric used here, the line of 

cross-over between the Gaussian and Wilson-Fisher fixed points is a geodesic and this 
is related to the concept of relative entropy in statistics. 

In Section 2 the choice of metric that is used will be described, motivated by consider- 

ations of  general co-ordinate invariance. Section 3 is devoted to the explicit determination 

of the metric and curvature for the O(N) model in D-dimensions, for large N. This 

involves the inclusion of 1IN corrections, as the metric proves to be degenerate to lowest 

order. Section 4 specialises to the infinite volume limit in D = 3, where it is shown that 
the Ricci scalar, R ~ +c~ at the Gaussian fixed point, and R ~ -67"r 2 when any of the 
three parameters of the model (constant external source, the mass of the scalar field or 
the four-point coupling, ,~) is large. In particular the infra-red fixed point corresponds to 

h --~ ~ .  It is also shown that the line of cross-over, from the infra-red to the ultra-violet 

fixed point is a geodesic, and Section 5 is devoted to an interpretation of this result in 

terms of relative entropy. Section 6 contains a summary and conclusions. 

There are two appendices, one containing some technical aspects of Legendre trans- 

forms, which are used in Section 3, and a second which gives the connection coefficients, 

also used in Section 3. 

2. The metric 

In this section a definition of a metric on the space of couplings will be given. The 

basic motivation follows that of Ref. [2]. Consider a field theory in D-dimensional 

Euclidean space with n couplings g", a = 1 . . . . .  n, corresponding to operators ~a(x) 
(in general composite). The definition of the reduced free energy (i.e. the free energy 

divided by the temperature) is 

W(g) = - l n Z ( g ) ,  where Z(g) = f (1) 

and S[~] is the action. This gives 

1 = fV e dW : (dS), (2) 

where dW = OaWdg a is a one-form and dS = OaSdg a can be thought of as an operator 
valued one-form. In particular, if the action S is linear in the couplings, then 

8aS = f d°x  ~a(X), (3) 

where ~a(X) is the composite operator associated with the coupling ga. Thus, if 
g,,O are bare couplings, then ~,~o(X) are bare operators. If  one then defines renor- 
malised couplings g~R, using some preferred scheme, then the renormalised operators are 
~aR (X) --~ ( Z -1 ) bOaR ~bO (X),  where the operator mixing matrix ( Z - l  ) bo ~R = Og b° / OgaR is 
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nothing other than a general co-ordinate transformation matrix for the co-variant vector 
with components ~aR(X). Thus the definition of #a(X) given in Eq. (3) is a general 

co-ordinate co-variant definition even when the action is non-linear in the couplings and 
is valid both for bare and renormalised couplings. Eqs. (2) and (3) are referred to as 
an "action principle" in [ 14]. 

The metric advocated by O'Connor and Stephens in [2] is determined by the in- 
finitesimal line element on the n-dimensional space parameterised by g~ defined by 

ds 2 = ( (dS  - dW) ® (dS - dW)) .  (4) 

In order to be able to pass to the infinite volume limit, it will be convenient to divide 
Eq. (4) by a factor V = f d ° x ,  the volume of space, and use densities. Let 

~ . ( x )  = ~ ( x )  - (~b~(x)) (5) 

and define 

= ( 6 )  Gab 

This is the metric which will be investigated here. Obviously Gab = Gba and under a 
general co-ordinate transformation ga ~ g~' (x) 

SO 

OaS ~ Oa, S = .°-e-zr_, OoS ag" (7) 

ag c 
O°,o,t'a Gca ( 8 ) Gab ~ Ga'b' -cgg a, Og 

has the correct transformation properties to be considered as a metric. 
Of course if bare couplings are used then the ~a(X) are divergent operators when 

the regulator is removed. One can either keep the regulator in place until the end of the 
calculation or transform to renormalised operators using a co-ordinate transformation 
- provided the formalism is manifestly co-variant it does not matter and the latter 
possibility allows a consistent analysis. However, the r.h.s, of Eq. (6) contains further 
divergences in general, either infra-red divergences due to the large x-behaviour or 
ultra-violet divergences due to the small x-behaviour. The usual procedure is to perform 
further subtractions, over and above any that may have already been used to obtain 
renormalised operators, so as to obtain a renormalised two-point function [15]. This 
will not be done here - rather Gab will be defined using a regulator, connections 
and curvatures will be calculated first and only then will the regulator be removed. 
There is a good geometrical reason for this strategy. As explained above multiplicative 
renormalisation can be interpreted as a co-ordinate transformation and so does not 
change the geometry - the components of the metric look different but the geometry (in 
particular the Ricci scalar) is not changed. Subtracting extra terms which are non-linear 
in the couplings from (6) would however change the geometry and so would change 
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the Ricci scalar. By avoiding such subtractions one can be confident that the resulting 

Ricci scalar is independent of the renormalisation scheme. 
As noted in [2], for free field theories, the curvature remains finite even though the 

components of the metric diverge when the regulator is removed. For the large N limit 
of the O ( N )  model in three dimensions, it will transpire that the curvature diverges at 
the Gaussian fixed point but not elsewhere. 

Eq. (6) can be written in a manner more convenient for computations. Let 

1 
w = --W (9) 

V 

be the reduced free energy density, so that W = f w dDx. Then Eq. (2) reads 

o,,w = l ( a o s ) ,  lO) 

Differentiating a second time gives 

1 {(OaObS} - (eaSO~S) + (OaS)(O~S)} l l)  O,,ab w = -9 

or  

/ ,  t 

= j ooo w. ,2) 

Despite appearances the right-hand side of (12) is co-variant under general co-ordinate 
transformations since, if ObS -+ Ob, S = ( OgC / Ogb' ) OcS and Ob W --~ Ob, w = ( OgC / Ogb' ) Oc W 
then 

0a'Ob'S= ogc OgaOcadS + O~gC ,OcS, ag,---r ag~---r 

ag___~ ~ a O2g c 
Oa'Ob'W = ag--ocadW q- - - O c W .  ( 1 3 )  ag~' agO' ago'age' 

So the inhomogeneous terms cancel when expectation values are taken, by virtue of 

Eq. (2).  The analysis of this section has been general co-ordinate co-variant up to this 
point. Eqs. (3),  (6) and (12) are valid even if renormalised couplings are used and 
the action is not linear in the couplings. If, however, one chooses parameters in which 
the action is linear (these would be the bare parameters of the theory), then Eq. (12) 
simplifies to 

Gab = --OaOb W. (14) 

The class of such co-ordinate systems is special, of course - only linear co-ordinate 
transformations are allowed. 2 Within this class, however, Eq. (14) says that the com- 

2 In some situations there is a natural complex structure on the space of parameters and a metric of the 
form (14) can be interpreted as a K~ihler metric. The class of allowed co-ordinate transformations which 
preserve the form of (14) can then be extended to include any complex analytic transformation. An example 
is the Seiberg-Witten metric on the parameter space of N = 2 super symmetric Yang-Mills theory in four 
dimensions 116]. 
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portents of the metric can be determined if the partition function, and so w, is known 

as a function of the regularised bare parameters. For translationally invariant systems, 
this is equivalent to a knowledge of the effective potential, or the free energy. Another 

useful class of co-ordinates is that obtained by the non-linear co-ordinate transformations 

associated with the Legendre transformed variables, these can simplify the metric even 

further and will prove useful in the sequel - this class, and the resulting form of the 
metric in terms of the effective potential, is examined in detail in Appendix A. 

When viewed in this light, some singularities in the metric can be given a more 
direct interpretation. For example, if one of the operators is ~2 in a scalar field theory, 

1 2 the statistical physics interpretation of the co-efficient of ~o ,  t = ( T -  Tc)/Tc, is that 

it is the deviation from the critical temperature, and the second derivative of the free 
energy with respect to t is the specific heat, hence one expects some components of the 

metric (14) to diverge at critical points and in general one might expect the curvature 

to diverge there also. In fact for the O(N) model at large N in three dimensions, the 
critical exponent for the specific heat, a = - 1  + o(1/N), is negative at the infra-red 

(Wilson-Fisher) fixed point, so the specific heat is actually finite at t = 0 and it is only 

the third derivative of the free energy with respect to t that diverges. Calculation of 

the Ricci scalar however, reveals that it is finite all along the critical line between the 

infra-red and the ultra-violet fixed point, diverging only at the ultra-violet (Gaussian) 

fixed point. The non-analyticity of the free energy along the critical line is still reflected 
in the Ricci scalar however, in that it displays a discontinuity across the critical line. 

3. The geometry of the O(N) model 

The model that will be investigated here is the O(N) model in D Euclidean dimen- 

sions, in the limit of N ~ cx~. This is an example of a non-trivial interacting field theory 
(for D < 4) which can be solved exactly. The model consists of a scalar field ~o in the 
vector representation of O(N), with components ~o i, i = 1 . . . . .  N. The action is (really 

total energy since the space is Euclidean) 

S =  dDx (V~o) 2 + j • q9 + 2¢P2 + ~.v ~dp , (15) 

where j is a constant external source and r and u are the bare mass and four-point 
coupling respectively. The aim of this section is to determine the metric, as defined in 
the previous section, and to investigate the resulting geometry in terms of the Levi-Civita 
connection and the curvature. The variables j ,  r and u are not particularly convenient 
for this purpose and it will prove expedient to transform to an alternative set, but first 
we outline the calculation of the partition function and the effective potential. 

The partition function is 

= f79~oe -s. (16) Z[j,r,u] 
d 
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The form of the scaling function for this model in the limit of large N was investigated 
in [ 17]. The analysis here will use the steepest descents method of [ 18], as implemented 
in [ 19]. First replace the ~0 4 term with an effective field 49 

exp[ 
/--V- 2.2 u(~2) ~] f v49exp{f d°x[N(49-V  ' - T j }  

{S.oxE<+: :' exp - V -i'2-49~'° ] } (17) 

where N" is an irrelevant constant, independent of u. Now 

Z + 1M2 2 - N 4 9 2 ] }  =A;iD4979¢exp{- f d°x[~(V~o)2+j.~o ~ ~ 
j2 

(18) 

where M2(49) = r+ d½Nu49 is an effective mass for the field ~o. After a shift in ~o, the 
~o integration is Gaussian, leading to an effective action for the field 49 

Z [j, r, u} = A/" i Do  e-Sc'r(¢') ' (19) 

where 

S {N l j2}NSdDxIn{-v2+M2(49) }. (20) Seff(49) = _ dDx 492 + 2 M2(49) "-I- ~- 

Note that Z now depends only j = IJl, as expected. So far the manipulations are exact, 
if formal. The method of steepest descents now allows one to evaluate the effective 
potential as a 1IN expansion. Expand 49(x) around a constant background, 

1 
49(x) = 490 + - ~ e ( x ) ,  (21) 

where 490 is chosen so that OSeff/049 (x)1O(x)=00 = 0. The function f dDx In{-- V 2 +M 2} 
will appear so frequently in the following, that it will be convenient to give it a name. 
In momentum space 

f dDP ln(p 2 + m2), (22) a ( m  2) := 

dG --i dDp 1 (23) 
(~(m2) := dm 2 = _ (2~)o  (p2 + m2) ' 

~(m2 ) .-  d2G f dOp 1 
(dm2)~ - (27r)D (p2 _4_ m 2 ) 2 '  (24) 
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where m2(00) = M2l¢=¢0 = r + ~/½NuO0. 

The function G(m 2) is not uniquely specified here, it depends on boundary conditions 

and geometry, for example the integral could correspond to infinite Euclidean space or 
a D-dimensional torus each giving different eigenvalues for the Laplacian. If space is 
continuous, G(m 2) must be rendered finite in some way e.g. by introducing a momentum 

cut-off. Alternatively, continuous space could be replaced by a finite lattice of points 
and the Laplacian becomes a matrix with f d ° p / ( 2 7 r )  ° -4 Tr. In the following we 
shall work with a generic G(m2), it being understood that different geometries for 
D-dimensional space lead to different functions, G(m2). 

The extremum condition now determines 00 via 

l j 2 N/~u N G m 2 fNu -N0o+  VT+ ( )VT=o, (25) 

where 3 M 2 ( O ( y ) ) / a O ( x )  = v / ½ N u 6 ( x -  y)  has been used. Eq. (25) determines 00 

as a function of j ,  r and u since m2(00) = r + L/½NuOo. Expanding Serf in Eq. (20) 
around 00, using (21) gives 

Serf NV2 a(m2)  - 0°2-  ~ + o ( e 2 ) ,  (26) 

where again V = f dOx is the volume of space. Thus the reduced free energy density 

1 
w = - - -  In Z (27) 

V 

is given (up to an irrelevant constant, independent of j, r and u) by 

w =  ~ G(m 2) Nm 2 0 + o ( 1 )  (28) 

with m 2 determined implicitly by Eq. (25). If we define A = ½Nu, J = j / v / 'N  and 

~ = w / N  then 

~ = I { G ( m 2 ) - j 2 / r n 2 - 0 0 2 } + o ( l )  (29) 

with 

00 = ~-~ + G(m 2) x/-~, (30) 

from (25),  and m 2 = r + v/-~00 . If the triple limit N -+ o~, j ~ o0, u -4 0% such that 
A and J are finite, is taken one finds 

= {G(m2) - J2/m2 - 002} -t- 0 "~ 

as the reduced free energy density for the model. 
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The effective potential, for constant J, is obtained from the Legendre transform with 
05 = 8~/8J = -J im  2 so that 05 = (¢p)/v'-N, 

P(05, r , A ) = ~  (05, r ,A)=fv -05J= {G(mZ)+m2052-~b~}+o (31) 

with 

1 e,o = 5{05 2 + (~(m2) }v/A. 

Eliminating ¢o using ~o = ( m2 - r ) / v ~  and re-arranging gives 

['(05, r , A ) = l { G ( m 2 ) - m 2 0 ( m 2 ) +  - - -  

m2=r + ~G(m2) q- ~A05 2 

m 4 r 2 } ( 1 )  
A A + o  

(32) 

(33) 

(34) 

which is the form of the effective action used in [ 19]. 
The metric will be difficult to calculate using the co-ordinates (05, r, A) because m 

is defined only implicitly through Eq. (34). It is easier to perform a second Legendre 
transform on the variable r to a new variable, 

1 f a/~ X := 5 dDx (~2) = -~r ' 

and define 

af" 
~(05,  x,  a)  = P - r - - .  (35) Or 

First note that (34) gives 

am2 4,,a- 1 
8r 1 - ~-G (36) 

thus X = (m e - r)/a or 

X = l{G(m2) + 052} (37) 

using (34). This gives 

A) = 2{G(m2) - m2(~(m 2) + AX 2} (38) ~(05,x, 

with m2(05, X) given implicitly by (37). Note that m 2 is independent of A when ex- 
pressed as a function of 05 and X and it is this observation that simplifies the calculation 
of the metric and curvature when the (05, X, A) co-ordinate system is used. 

Using (37) we find 
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Om 2 = 2 On2 X,,~ 2dp Orn2 ,k,a 
OX 16,a G '  0~b - ~ ' 0A = 0. (39) 

The metric can now be determined using the results of Appendix A for the Hessian of 
a Legendre transform, 

G a b = N ~  2~bo/G h. - 2 /G 0 + o(1) ,  (40) 

i.e. the metric is degenerate at this order, since the Hessian of ~ has a zero-mode in 
the A-direction. This degeneracy is lifted by including the o ( l / N )  corrections to ~ .  

In order to determine the order one corrections to (40) one must calculate the 
order one corrections to the partition function. Consider therefore Eqs. (19) and (20). 
Including the order 82 terms from (21) gives 

Serf = NV[ G( m2) - ¢2 _ j2 /m2 ] 

, /  / [  ,xy, 
+-~ dDx dDy e(x)  --,~ ( _  V~ + m2) (-- V~ + m2) 

AJ 2 "l ] 
y) 1 + (41) 

After a contour rotation [ 18], a Gaussian integral over e gives, up to an irrelevant 
constant independent of J, r and ,~, 

U {G(m2) _ j2/m 2 _ ~o2} + 21nde tF  + o (42) w~-~- 

where F is diagonal in momentum space, 

,,lJ 2 , , I f  dDq 1 1 
F ( p ) = l + ~ + ~ J ( 2 ¢ r ) D ( p Z + m  e ) { ( p _ q ) 2 + m  2} (43) 

and 

f dD p l n d e t F ( p )  = ( 2 ~ - ~  In F ( p )  --= L(J,r,A). (44) 

The comments made after Eqs. (22) - (24)  also apply here, the function L depends on 
the geometry of D-dimensional space. It is shown in Appendix A that the Legendre 
transform of any differentiable function of the form 

w(g) = wo(g) + L(g) + o - ~  (45) 

is 

P(~b)=/~o(~b)+  L ( g ( q6 ) ) + o -~i ' (46) 
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where ~b = dw/dg can be inverted to give g(~b) = go(~b) + (1/N)gt  (~b) + o( 1/N 2) and 
/"o(~b) = wo(go(~b)) - go(~b)~b. Thus the double Legendre transform of (42) is, using 
(37) and (38), 

{G(m2) -- + AX 2} 1 
_e(4,, x, a) = ~(4 , ,X,  A) = ~ m2(~(m 2 ) 

f ( 1 )  1 dOP l n F ( p ) + o  (47) 

with m2(~b, X) determined implicitly by 

1 {(~(m2 ) + q~2} (48) X = ~  

and 

Aq~ 2 A / dO q 1 1 
F(p)  = 1 + -m- 7 + -~ (27r)D (q2 + m 2) {(p _ q)2 + (m2)}" (49) 

o)() 
m2-- 2-~-~ 2~0 2 1 c?'2L 02L 0 -4-0 (50) 

Gab = N 2_43 - ~ + ~ ,~-~52 ~ -~ " 
?ilL 0 0 -a-~a 

Note that G~,b is positive definite since (~ < 0 and L" = 02L/OA 2 < O. 
The connection coefficients can now be evaluated in a straightforward but tedious 

manner (remembering that the matrix is curl free in the chosen co-ordinate system 
Gab,c = G,c,b, etc.) and they are enumerated in Appendix B. 

The components of the Ricci tensor are 

1 (m2(~ -- 2q~ 2) [L'" (m2(~ - 2q~ 2) ] 
R X x = R a a -  2U' { ,~ (m~-G- - -~ - - -  2m 2} [-L - V +  {,~(mZ~-2~b2) - 2 m  2} 

3 

and R% = o( 1 IN) otherwise. As a reminder, a dot denotes O/Om z while a prime denotes 
a/aa. 

The geometry is essentially such that all of the sectional curvature is in the X-,~ 
planes for constant ¢. The sectional curvature in the X-¢  and A-¢ planes is of order 
l /N,  (see, e.g., Ref. [20] p. 46). Thus, to this order, all of the geometry is encapsulated 
in the Ricci scalar, which is twice the Gaussian curvature of the surfaces of constant ¢,  

1 (m2(~-2q~ 2 ) [L m (m2G - 2~b 2 ) ( 1 )  

7~= - L "  {A(m~-~GS 2-4~ ~ ---2m 2} [~-77 + { a ( m / d _  24~2) _ 2 m  2} + o  . 

(52) 

The function F(p)  encodes the order one corrections to the metric. Expressing L(p)  
in Eq. (44) as a function of (~b, X, A) gives 
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with G and L given in Eqs. (24) and (44) and m 2 (~b, X) (the effective mass) defined 
implicitly in Eq. (37). 

Having obtained 7"4 we can of course use whatever co-ordinate system we wish, and 
it is convenient now to change from (~b, X, A) to (~b, m 2, h). It would have been very 
tedious to have used (q~,m2, h) from the start because they are related to (~b,X,h) 
non-linearly and so neither Eq. (14), nor its analogous form for Legendre transformed 
variables, is valid in the (~b,m2, A) system. The actual form of 7~(q~,m2, A) now 
depends on 

~(m2 ) = - f  dOp 1 
(2700 (p2 + m2)2 

and 

(53) 

f d°p [ M)2 ;t f  d°q 1 1 ] 
L= (2--~51n I + - - ~ - + ~  (2~r)O(q2+mZ)((p_q)2+m2) . (54) 

The geometry of D-dimensional space has not yet been specified - it could be infinite 
Euclidean space or a D-dimensional torus are even a lattice with a finite set of points, 
in which case V 2 is a matrix and f d°p/(2~r) ° ~ Trace. 

In the next section we shall examine the geometry for infinite three-dimensional 
Euclidean space, using a cut-off to regularise the integrals - this case is of special 
interest, because the model is known to exhibit two fixed points - one is the Gaussian 
fixed point leading to free field theory in the UV direction and the other is the Wilson- 
Fisher fixed point in the IR direction, which is equivalent to the spherical model in the 
N ~ oo limit [ 13 ]. 

4. The O(N) model  in three dimensions 

The geometry on the space of couplings described by Eq. (52) will now be examined 
for the case of D = 3, flat, Euclidean space. The integral in (53) is finite for D = 3 and 
gives 

A 1 /  p2dp 1 { 1  ( A )  a } 
G(m2) = -2--~2 (p2 + m2)2 - 4¢r2 tan-1 - - A 2  + m2 . (55) 

0 

For simplicity the asymptotic form 

1 
lim (~(rn z) = -  (56) 

A - - , ~  81rm 
will be used below, but it should be borne in mind that the final expression is only valid 
for m/A << 1. The q-integral in Eq. (54) is also finite and gives 

A 

'/ { ... ___."' ,(.)}:. p2apln 1 + - - ~  + k--~ tan- , (57) 

0 
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where a cut-off, A, has been introduced because the p-integral diverges. It is particularly 
easy to take derivatives of L with respect to 3,, the nth derivative being 

A n 
L(n)=(-1)n-l(n-1)!f2q.r 2 p2dp [ ¢2p + 1 tan-1 ( 2 - ~ m ) m 2  , (58) 

0 P q- ~ if- ~ tan-1 (2-~m) 

(note that O/03,]4,x = 0/03,1~,m2 since am2/a3,l~,x = o from Eq. (39)). 
Using (56) in (52) gives the Ricci scalar as 

TO= 
( 1"1"1"~ q_ ~j~2) [ t (3)  q_ ( 1"1"1"~ q- ~b2) 

+ a(1/N) , 
L(2) {3,( l~-~r +~b2) +m2} L L--[~ {3,( 1-~g~r +~ b2) +m2} 

(59) 

and L ~3) are defined in (58). If the limit A ---} oo is taken, L (n) ~ A 3 =~ where L (2) 
7"4 ~ 1/A 3 ----r 0, but this is really throwing away important geometric information. Better 
is to observe that 7g has dimensions of mass -3, ~b 2 and 3, both have dimensions of mass 
in 3D so, following Zinn-Justin [ 18], define dimensionless parameters 

,~ _ 3, q~2 _ 167r~ b2 m and ~ = A37~. (60) 
16erA' A ' rh= 

The last equation here is equivalent to a conformal rescaling by A -3 which renders the 
metric dimensionless. Now define 

L (n) ( - 1 ) n - l ( n -  1)!(167r) n 
Z (n) := ( 16¢r)n A3_ n - 27r2 

1 

x f z Z d z  [ ~z+2gn2tan_l(z/2Fn) in 
#12z +AO~z +2A~Ztan- l (Z/2~)  ' 

0 

in terms of which the rescaled Ricci scalar is 

(61) 

1 (,~ + &2) [L~3) (,~+&2) ] 
+a(1/N),  (62) 

which is finite even when A ---+ oo, provided q~, ~ and A are kept finite and are not all 
zero. The Ricci scalar is shown in Figs. 1-4, where it is graphed as a function of 
and q~2 for four values of A, A = 0.1, A = 0.2, ~ = 0.3 and ~ = 5.0. In order to produce 
these graphs, the integrals in (61) were performed numerically. 

The Ricci scalar is infinite at A = ~ = q~2 = 0, corresponding to the Gaussian fixed 
point, but is finite elsewhere. If either of the two variables, qS, or ~. becomes large, then 
7% tends to a negative constant. 

7~,~_ = - 6 ¢ r 2 + o ( 1 ) .  (63) 

The limit for large ~ can be obtained from (52), (53) and (54) directly, by taking this 
limit before performing the integrals, avoiding the constraint ~ << 1. One finds again 
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Fig. 1. Ricci scalar for ~ = 0.1. 

Fig. 2. Ricci scalar for ] = 0.2. 

Fig. 3. Ricci scalar for ~ = 0.3. 

Fig. 4. Ricci scalar for ]. = 5.0. 



i~07 

80 

60 

R 

40 

20 

-2 

40 

-60 

B.P. Dolan/Nuclear Physics B 528 [FS] (1998) 553-576 

\ 
,\ 

567 

Fig. 5. Ricci scalar along the critical line q~ = 0, t-n = 0. 

7 ~ 1 , ~  = - 6 ~  "2 + o ( 1 ) ,  (64) 

which is the same value as one gets by naively putting r~ ~ oc in Eq. (62). 
Of particular interest is the curvature along the critical line. Setting ~ = 0 first and 

then letting rh ~ 0 gives 

~]~ =°,r~° = ( ~ ) { l + 6 7 r l + 4 ( T r l ) 2 - 4 ¢ r A ( l + T r A ) 2 1 n ( 1 } S ~ ) }  

{ 1 + 27ra - 2zrA(1 + 7r~) In (1 + 3-X) 

-6 r r  i ---~ c~ 

2/~ 2 ~ 0  
(65) 

which is shown in Fig. 5. There is actually a discontinuity in 7~ across this line, if we 
keep r~ = 0, which is the critical line in the 4, - A plane. For ~ 4= 0 and #t = 0, 7~ = 0 
V ~, but for q~ = 0 and r~ ---, 0, ~ 4: 0, (except at one value of A ,~ 0.2). This behaviour 
is shown in Fig. 6, where 7~ is graphed as a function of ~ for r~ = 0 and a generic 
value of A. The discontinuity in ~ is due to the non-analyticity of the specific heat at 
the critical point. As explained in the introduction, the metric is defined in terms of 
second derivatives of the free energy and the Riemann tensor involves third derivatives 
of the reduced free energy with respect to any one parameter (e.g. temperature), hence 
one naively expects the Ricci scalar to diverge at a critical point. This does not happen 
here, except at the Gaussian fixed point a = 0, because the specific heat exponent 

= - 1  + o ( 1 / N )  is negative for the O(N)  model in three dimensions - the Ricci 
scalar is finite, but discontinuous, i.e. its derivative diverges at the critical line. 

Let us examine the critical line, ~ = 0, more closely for a fixed value of I.  In three 
dimensions (~(m 2) diverges, so introducing a cut-off, Eq. (23) yields 
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Fig. 6. Ricci scalar for t-n = 0 and a fixed value of a. 

(~(m2) = _ m  A 
47r 27r 2 (66) 

so m = -47r{G(m 2) - G ( 0 ) } .  Eq. (34) can now be solved to give m(r, dp, a), or in 

terms of dimensionless quantities 

V/ 2 rh= ~ 2 + T  + t - a '  (67) 

where t = (r + AG(O)/2) /A 2 is the reduced temperature. The addition of AG(0) /2  to 

the bare parameter, r, is the usual mass shift. The critical temperature t = 0, gives th = 0 
for ~ = 0 (vanishing external field) but for t < 0, ~h = 0 for ~ = 4lt l /a,  which is the 

critical line. Along a line specified by ~ 4~ 0, rh = 0 and a fixed value of ~, the specific 
heat is finite [ 17] - the line along which it diverges lies in the unstable region and is 

known as the pseudo-spinodal line, this only coincides with the critical line, ~ = 0, for 

q~:-0. 
Finally, let us consider renormalisation group flow. Following Zinn-Justin [ 18 ], define 

fl-functions for the three parameters q~, t, a by 

f l ~ = A d ~  - ~b,  flt=Adt-=-2t'dA fla=AdA=-~'dA (68) 

These are simply the canonical dimensions since (q~, t, A) are bare parameters, which 

are finite for finite cut-off A. In terms of the variables q~, X and a, let X = X/A be 

dimensionless and then 

fl~ = _ 1 ~ ,  fl~ = _ ~ ,  fla = _ ~ .  (69 )  

These represent a vector flow on the space of parameters and we shall now investigate 

the dynamics of this vector flow, in particular we can ask: how is this flow related to 

geodesics of  the metric (50) ? 
For any curve q~(A), X(A),  ~(A) parameterised by A, the geodesic equation is 

d2x Iz dx p dx ~ 
dA 2 + I'~°~-d--A d ~  - cx~' (70) 
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where c ( x )  is a function which allows for the possibility that A might not be an affine 

parameter [21]. Using the connection coefficients in Appendix C, one finds that the 

condition that both the order N and the order one contributions satisfy Eq. (70), with 
~,  X and A all order one, is very restrictive and the only solution is X = (~ = 0, though 

can be non-zero, provided c is a function of A alone, given by 

~L (3) 
c ( ] )  = 1 + 2L(2----3-. (71) 

This leads to the somewhat surprising result that the line of crossover from the Wilson- 

Fisher fixed point to the Gaussian fixed point is a geodesic, but none of the other RG 

trajectories is. The physical significance of this result will be examined in the next 

section. 

5. Relative entropy 

In this section a physical interpretation of the geodesic flow, unveiled in the previous 

section, is given. The metric used in the previous analysis is related to the concept 

of relative entropy in statistical mechanics (for a consideration of relative entropy in 

field theory, see Ref. [22] ). For a discrete probability distribution Pi (g ) ,  i = 1 . . . . .  r, 

depending on some set of parameters ga, a = 1 . . . . .  n, the relative entropy of ga relative 

to ga' is defined to be [23] 

r 

S R ( g ,  g ' )  = -- Z p i ( g )  In {Pi (g )  / P i ( g ' )  } .  
i=1 

(72) 

P i ( g )  ---+ - -  

SO 

e-Silo,g] 

Z ( g )  
(73) 

S R ( g , g ' )  = ( S ( g )  )g - ( S ( g ' )  )g + W ( g ' )  - W ( g ) ,  (74) 

where W ( g )  = - I n  Z ( g ) ,  and all expectation values use the measure appropriate to g 

as in Eq. (73),  not g~. 
Dividing by the volume of D-dimensional space, so as to work with specific quantities, 

one defines the relative entropy per unit volume to be 

1 S S R ( g , g ' )  = - - ~ { (  (g  ))~ -- ( S ( g ) ) g }  + w ( g ' )  - w ( g ) .  (75) 

If  ga' = ga + ~g~,, with 8g a small, we have 

For a continuous probability distribution, the discrete sum becomes a functional integral 

with 
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S(g')  = S(g)  -~- ~ga c~aS(g ) -4- ~ga~gbOaObS(g ) -~- . . . .  

w(g') = w(g) + 8gaaaw(g) q- 16g~gbaaObW(g) +...  (76) 

and the terms linear in t~g cancel in (75), since aaW = ~(aaS), giving 

l ( l (OaObS)--OaObW}6gaSgb + o(6g)3. (77) --SR(g,g+ 6g) = 

Thus the metric defined in (12) is completely equivalent to the infinitesimal relative en- 

tropy, and the distance between two points ga and gB along a curve g(~-), parameterised 

by r, is given by 

TB TB 

d= f --V/-f~Rdt= f ~/Gabgagbdr, (78) 

TA TA 

where ga = dg"/dr. Note that SR(g, g~) v~ SR(g', g) for finite g~ -- g so SR itself cannot 

be interpreted as a distance function. 
The conclusions of the previous section can now be rephrased by saying that, in the 

large N limit of the O(N) model in three dimensions, the line of crossover between 

the Wilson-Fisher fixed point and the Gaussian fixed point is a line of extremal relative 

entropy. At least for the segment of the line along which ~ < 0, i.e. 

~o ~ 0.2 < ~ < c~, (79) 

where ]o is the value of ] at which 7~ = 0 (Fig. 5), one can be confident that the 

relative entropy is maximised, since there can be no conjugate points for 7~ < 0 [24]. 

6. Conclusions 

The concept of a geometry on the space of couplings, and its relation to the vector 

flow of the renormalisation group equation, has been investigated in the particular case 

of the O(N) model in the limit of N ~ c~. The space of couplings in this case is three 

dimensional and can be parameterised by the vacuum expectation of the field, a mass 
and the ~p4 coupling. The metric adopted, 

Gab = / d D x (~)a(X)~b(O) ), (80) 

is the matrix given by taking the zero momentum limit of two-point correlators of the 
composite operators associated with the couplings, which ought to capture the infra-red 
behaviour of the theory, but would not be expected to give useful information in the 
ultra-violet. This is borne out when the curvature is calculated and in D = 3, in the 
infinite volume limit, the Ricci scalar is found to diverge at the Gaussian (ultra-violet) 
fixed point, but is finite (and negative) at the Wilson-Fisher (infra-red) fixed point. This 
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statement is independent of the co-ordinate system used - it does not matter whether one 

uses bare or renormalised couplings. This is not true of the components of the metric - 

divergences in the metric could be due to either genuine singularities of the geometry 
or could be merely co-ordinate artifacts due, for example, to a parameterisation using 

bare couplings. 
In particular, the Ricci scalar is a smooth monotonically increasing function along the 

RG trajectory between the Wilson-Fisher and the Gaussian fixed points, although it is 

not differentiable in one of the directions transverse to the line of cross-over - reflecting 

the fundamental non-analyticity of the free energy at the critical line. 

It was also noted in Section 4 that this cross-over line is a geodesic in the geometry 
described here but none of the other RG trajectories, which miss the Gaussian fixed 

point, is a geodesic. This property is equivalent to the statement that the relative entropy 

is maximised along this curve. The geodesic nature of some renormalisation group 

trajectories in simpler models was noted in [ 12], and would seem to hint at a possible 

variational formalism for the RG, but this requires further study. 
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Appendix A. Legendre transforms 

Consider a differentiable function w(g)  of n variables ga, a = 1 . . . . .  n, and the 
corresponding Hessian 

02w 
G.b - Og~Og b ------wab. (A.1) 

If one changes variables to (gd)  = (~bl, g2 . . . . .  gn), where 

Ow 
= (A.2) d~l (g)  Og l 

is the Legendre transform variable of gl, then the corresponding co-ordinate transfor- 
mation matrix is 



572 B.P Dolan/Nuclear Physics B 528 [FS] (1998) 553-576 

o' a ~ ' =  . 0 

ee'  o o i 

(A.3) 

and the inverse matrix is 

( ~_L_ _ . , 2  . . .  _-_.~) 
61 wi i ~.1 i 

Og t' 1 . . .  0 

ag,,' o o . . .  1 

(A.4) 

Treating G,~t, as a tensor (which requires endowing the original co-ordinate system, 
ga  with a very special status as explained in the introduction) one finds 

= = ("o' o ... o 

G, , . , ,  [ k e g ' . /  J , , ,  \ ~ J  l,. - " " " 

\ 0 - P 2 .  . . .  - P . .  

( A . 5 )  

where F(~bl, g2 . . . . .  gn) = { w(g) - ~blg t } [~,,=,~./as, is the Legendre transform of w, 

021 =̀  I 32/`. 
= - and Pab - - -  P'~ a( 4~, ) 2 w,, agaagZ, 

with a ,  b = 2 . . . .  n.  

In deriving this result it is important to remember that, for a = 2 . . . . .  n 

a.~ ~, =a-~aw , +--.ag ~aw -~ogl -¢bt -~Og~ = o_~ ~, 
(A.6) 

where gl(cbl,g2 . . . . .  g~) is determined by inverting the function ~bl(g I . . . . .  g~) = 
Ow(g) /Og I. Similarly 

c92[" 02w ~ c92w ag I = wlawth 
a : a ~  ~, - ,;-~-T: + e-E~8' T~  ,,, w~b w,, (A.7) 

since ag I/ag ~ = - wl~/Wll from (A.4). 
Alternatively, since the complete Legendre transform, ~(~b), where ~bt = Ow/ag I. 

cb2 = 8P/dg2~, = aw/ag2[~,, etc., has the property that the matrix 

a 2 ~ ( 4  ~) _ ,/,,b ( A . 8 )  
& b . a 4 ' b  

is the inverse of 82w/agaag b, one has 

d s 2 = Gahdg" dg h = q:ah d~ad~h. (A.9) 
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The same argument can now be applied to the Legendre transform of qt(¢)  in one 
variable, ~ ( ¢ 1  . . . . .  05n_l, gn) = ~ ( ¢ )  _¢ .gn ,  to deduce that, in the co-ordinate system 
¢~= (¢1 . . . . .  ¢._~, gn), 

- - ~ - ~ 1 1  • • • - - ~ - ~ l , n - - I  0 

Gab = ~ 
----,~ 1,n--I • • • --,-~n--l,n-1 0 

0 0 
• • • ~ n n  

(A.IO) 

and this is the form of the metric used in the text, with n = 3 and ¢i = ¢, ¢~ = X, 
g3 = ¢ ~  = A .  

Finally, a proof will be given of Eq. (46) in the text. For simplicity we consider a 
function w(g) of only one argument, but the results apply equally well to a function of 
more than one variable. Let 

w(g)=wo(g)  3-~--~L(g) +o ~ , (A.11) 

where wo and L are independent functions of g, and N is some large parameter. The 
Legendre transform variable is 

¢ ( g ) = -~g-g + ~--~ -~g + o ~ - ~  (A.12) 

and 

1 (l) 
P ( ¢ ) = w o ( g ) + ~  (g) - ¢ . g + o  - ~  . (A.13) 

Inverting Eq. (A.12), one obtains 

(1) 
g ( ¢ ) = g o ( ¢ )  + I g l ( ¢ ) + o  ~-~ , (A.14) 

where go(C) and gl (¢)  are functions of ¢. Therefore, Taylor expanding wo(g) and 
L(g), 

1 Owo go wo(g) = wo(go) + -~gl " ---~-g 

L(g) = L ( g o ) + o ( l )  

leads to 

P ( ¢ )  = wo(go) + l g l  0wo 

Og go + IV 

since 

+ 0  

(A.15) 

o 1 y~  ( g o ) -  + + 

=wo(go(¢)) + ~----~L(go(¢))-¢'go(¢) + o (  1 ) ~-~ (A.16) 
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~-- og ~o+° -~ • 

Hence 

1 L ( 1 )  P(~b) =/~o (~b) 4- ~-/~ (go(q~)) 4- o 

=/~o(~b) 4- L ( g ( fb ) ) 4 - 0  , 

where 

Fo( qb ) = wo(go)  - q~ "go, 

which is Eq. (46). 

(A.17) 

Appendix B. Connect ion coefficients for the O(N) model 

The metric is given in Eq. (50) in the (~b,X, A) co-ordinate system, 

Gab = 4- ~ Lg~x L x x  o , 
0 0 -Laa 

where yij  is the 2 x 2 matrix 

Tij  = N 2_4?_ G 
G h 2 --~6 

and L6~b = a2L/Odp 2, etc. The functions G and L are given in Eqs. (53) and (54) and 
the effective mass m2(~b, X) is defined implicitly in Eq. (37). The inverse metric is 

with 

) Ga b I 0 
= ---~a4-2 o ( 1 / N )  

(2  
• . 1 A 0 0 + o  

T'J - N det y --O--2~b m 2 _ ~ ~ • 

The evaluation of the connection coefficients is simplified by the observation that, in 
the co-ordinate system used here, the metric is curl free, 

Gab,c = Gcb,a = Gca,b :--- Gabc, 

thus 

1 ad 
F ~ c = - ~ G  Gdbc. 

Explicitly one finds 
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2m2G ( 1 )  

de ty( (~)  3 + o  ~ , 

2~b ( m 2 ~ + ( ~ )  + 0 (  1 ) 
d e t y ( G )  3 N ' 

575 

F ~ 4 ' -  d e t y - ( ~ ) 3 1 { m Z ( C a ) 2 + d p 2 ( 2 m 2 " G + 4 ( 7 ) } + ° ( 1 )  

r ~ -  d ~ ) ~  

{ 1 a ( ~ )  2 - 2 ~  + 2 a , / , 2 ~  + o 
Fx~/, - d e t y ( ~ ) 3  

~b { 4 G  - 3~.(G)2 - 2A&2G} + o ( 1 )  
F~4 , - d e t y ( ~ ) 3  

- m 2 - q -  o , 
FXa 2 det 3' 

(1) (1) r~,=o ~ ,  r~,=o ~ ,  

V~x= N +o(1), F~c_Lxoa (1) 
L~-S ~ + o -~ ,, 

( ~ )  cx*~+°( 1 ) 
L ~ a  + o ' F~a = 2Laa N ' F ~  = 2Laa 

r~, = ~ L,--7 
( 1 )  Laaa ( 1 )  r L = o  ~ r~, - +o 

' 2Laa N ' 

where Laa = a2L/Oaoa,  etc. Using these expressions, the components of the Ricci tensor 
in Eq. (51) can be verified. 
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