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ABSTRACT
The renormalisation group equation for N -point correlation functions can be interpreted
in a geometrical manner as an equation for Lie transport of amplitudes in the space of
couplings. The vector field generating the diffeomorphism has components given by the β-
functions of the theory. It is argued that this simple picture requires modification whenever
any one of the points at which the amplitude is evaluated becomes close to any other.
This modification requires the introduction of a connection on the space of couplings and
new terms appear in the renormalisation group equation involving co-variant derivatives
of the β-function and the curvature associated with the connection. It is shown how
the connection is related to the operator expansion co-efficients, but there remains an
arbitrariness in its definition.

* Work partly supported by an Alexander von Humboldt research stipendium.
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§1 Introduction

Geometry has always played a central role in the development of theoretical physics.
Recently a new possibility for the application of geometry to physics has emerged, that is
the use of geometrical concepts to understand the “space of theories”, [1] [2] [3] [4] [5] .
In this approach to relativistic quantum field theory or stastical mechanics the couplings
which parameterise a theory, e.g. masses, gauge couplings, Yukawa couplings etc., are
viewed as parameters on some space G and it is the geometry of this space which is
studied. It is in principle an infinite dimensional space as there are an infinite number of
operators that one can introduce into any given theory, but there are circumstances where
one might hope that studying a finite dimensional subspace may prove to be sufficient.
For example in a renormalisable field theory there are generically only a finite number of
operators that can be included in the bare action and the properties of all other operators
should be determined by these “basic” operators alone (for an interacting field theory these
must include composite operators). In such circumstances G is finite dimensional and can
be parameterised by the couplings ga associated with each basic operator.

One is then tempted to think of G as being a differentiable manifold, in which case ga

would be thought of as co-ordinates with a = 1, . . . , n, where n is the dimension of G - for
example it has been proposed that the space of couplings for the dynamics responsible for
the quantum Hall effect can usefully be identified with the Lobachevski plane, [6] . What
would be the geometrical properties of G in this approach in general? For example one
might seek a consistent definition of a metric on G, this would give a notion of the physical
“distance” between two theories. A reasonable criterion for a metric is that it should be
related to the two point functions of the theory, [5] [7] . A connection on G would also
be important to give a rule for transporting tensors around. We shall see that physical
amplitudes of the theory can be thought of as tensors on G. Co-variant differentiation
therefore would give a rule for comparing physical amplitudes for different theories (by
this is meant theories with the same field content but different values of the couplings).
Unfortunately there is as yet no clear physical definition of a connection, though some
suggestions have been made, [1] [2] [3] [4]. The connection is related to the operator
expansion co-efficients, and this relationship will be investigated in detail in section five.
A precise determination of the connection will not be attempted here, however, rather the
existence of a connection will simply be be assumed and some inferences will be drawn.

A more primitive form of differentiation also exists in differential geometry apart from
co-variant differentiation, that of Lie differentiation, but the definition of a Lie derivative
requires choosing a vector field - it is not intrinsic to the basic geometry of the underlying
manifold. It is more primitive in the sense that it does not require either a metric or
a connection for its definition and so does not rely on the geometry to the same extent
as the co-variant derivative. It has been shown, [8] [9] , that the renormalisation group
equation for N -point amplitudes can be thought of as an equation for Lie differentiation
of the amplitudes along the vector field defined by the β-functions of the theory. From
this perspective the anomalous dimensions are seen as arising from Lie differentiation of
the basis vectors for the tangent space. From a geometrical point of view the vanishing of
the anomalous dimension of the free energy is due to the fact that it is a scalar function
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on G, being the logarithm of the partition function, and is not a tensor.
However this interpretation of the renormalisation group equation as a Lie derivative

is only valid when the points in Euclidean space at which the N -point function is evaluated,
x1, . . . , xN , are well separated with respect to the renormalisation length κ−1.* It will be
shown in this paper that there are corrections to this interpretation when some of these
points get close together and that these corrections can be expressed by the introduction
of a connection. One of the main results presented here is a co-variant generalisation of
some formulae appearing in reference [10] for the way in which regularised N -point Green
functions mix with lower N -point functions under changes in the renormalisation scale κ.

We shall first state the results. Denote the basic operators, which may be composite,
by [Φa(p)] (these will be defined more precisely later) and the regularised Green functions
in momentum space by

GR(p, q)ab =< [Φa(p)Φb(q)] >

GR(p, q, r)abc =< [Φa(p)Φb(q)Φc(r)] >

GR(p, q, r, s)abcd =< [Φa(p)Φb(q)Φc(r)Φd(s)] > etc.,

(1)

(square brackets around an operator denote that it is regularised). Then, assuming
< [Φa(p)] >= 0 for simplicity, it will be shown that the renormalisation group equations
for three and four point functions are

[

(

κ
∂

κ g
+ Lβ

)

GR(p, q, r)

]

abc

= τab
dGR

dc(p+ q, r) + τbc
dGR

da(q + r, p) + τca
dGR

db(r + p, q)

+ · · ·
[

(

κ
∂

κ g
+ Lβ

)

GR(p, q, r, s)

]

abcd

=
[

τab
fGR

fcd(p+ q, r, s) + 5 terms
]

−
[(

▽
aτbc

f
)

GR
fd(p+ q + r, s) + 3 terms

]

+ · · ·
(2)

The notation Lβ denotes the Lie derivative e.g.,

LβG
R
ab

c
= βd∂dG

R
ab

c
+

(

∂aβ
d
)

GR
db

c
+
(

∂bβ
d
)

GR
ad

c
−

(

∂dβ
a
)

GR
ab

d
. (3)

The matrix ∂aβ
b is the matrix of anomalous dimensions which mixes the operators under

renormalisation. In equation (2) dots denote terms which are monomials of the momenta
to the power D, such terms are only significant when all N points of the N -point function
are so close to one another that they are unresolvable on the length scale κ−1.

The tensor τab
c appearing in the RG equations above is symmetric in a and b and

involves the second co-variant derivative of the β-functions,

τabc = ▽
b
▽

cβ
a −Ra

cbdβ
d, (4)

* For simplicity we shall take the underlying physical space in which the theory is
formulated to be D-dimensional Euclidean space, RD.
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with Ra
cbd the curvature associated with the connection. This tensor is central to the

treatment presented here as it governs the way in which N -point functions (which are
rank N co-variant tensors in the co-tangent space T ∗(G) at the point g) mix with tensors
of lower rank, it is a co-variant generalisation of ∂a∂bβ

c which appears in [10].
The connection can be related to the operator product expansion co-efficients. The

idea that a connection should be related to the OPE co-efficients has been expressed before,
[2] [3]. In particular the analysis of the OPE presented in section five is similar in spirit
to that of Sonoda [3], but it is implemented in a different way in that reference. The OPE
co-efficients have also been related to the second derivatives of the β-functions, at least
near a critical point, by Zamolodchikov, [11] . He defines quantities C̃a

bc which are related

to the OPE co-efficients Ca
bc(x) and shows that C̃a

bc = ∂b∂cβ
a.

The second main result of this paper is that certain OPE co-efficients satisfy the
following renormalisation group equation, in momentum space,

(

κ
∂

∂κ g
+ Lβ

)

CR
ab

c
(p) = τab

c + · · · , (5)

where CR
ab

c
(p) are regularised OPE co-efficients, in the sense that their integral over all p

(or equivalently over all space) is finite. This equation is a co-variant generalisation of a
result presented in [12] . It relates the OPE co-efficients to the connection via the tensor
τab

c.
The layout of the paper is as follows. In section two the renormalisation group equa-

tion, including the possibility of composite operators, will be discussed from a geometrical
point of view. It will be argued that, at least when all of the points are well separated, the
equation reduces to nothing more than the definition of the Lie derivative of tensors on G
with respect to the vector field given by the β-functions of the theory. In section three the
necessary changes required to regulate Green functions when two of the points get close
to one another are discussed and the technique of using position dependent couplings is
outlined. The resulting expressions are not co-variant under general co-ordinate transfor-
mations on G. Section four is devoted to the development of co-variant expressions and
a co-variant renormalisation group equation. It is shown how the renormalisation group
flow mixes up tensors of different rank. In section five the operator product expansion
co-efficients are discussed and a co-variant renormalisation group equation for them is de-
rived. It is argued that the connection is related to the OPE co-efficients. In section six the
results are summarised and some comments are made on possible future directions of de-
velopment. A derivation of the non-covariant expression for regularised N -point functions
with arbitrary N is given in an appendix, for massless theories in four dimensions. A sec-
ond appendix gives the co-variant renormalisation group equation for four point functions
with arbitrary momenta.
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§2 The Renormalisation Group Equation

The regularisation of quantum amplitudes involving composite operators is more sub-
tle than for those involving just elementary fields, at short distances new divergences
appear over and above those present in the standard treatments. In reference [10] a
technique was described for dimensional regularisation of amplitudes involving only those
composite operators associated with couplings appearing in the original Lagrangian of
the theory and this was extended in [12] to include more general composite operators.
For example if we consider the renormalised composite operator [φ4] in λφ4 theory in
four dimensions then the operator [φ4(x)][φ4(y)] is singular as x → y and requires a new
subtraction (here and subsequently square brackets around an operator or product of op-
erators means that it is regularised, thus [φ4(x)][φ4(y)] 6= [φ4(x)φ4(y)]). The technique
adopted in [10] involves defining ‘basic’ composite operators, one associated with every
coupling ga0 appearing in the bare Langrangian density L0(x). These basic operators are
given by Φa0

(x) = ∂a0
L0(x). For example in λφ4 in four dimensions for ga0 = λ0 one

has Φλ0
= 1

4!φ
4
0. In a renormalisable theory there are a finite number n of these opera-

tors, where n is the number of couplings a0 = 1, . . . , n. Φa0
are of course bare operators.

Renormalised operators can be defined by [Φa(x)] = Za
b0Φb0(x) where Za

b0 is a matrix of
renormalisation co-efficients which mixes operators. This matrix can be interpreted as a
co-ordinate transformation matrix

Za
b0 =

∂gb0

∂ga
(6)

in which ga are renormalised couplings and [Φa(x)] = ∂aL0(x). Thus the space of couplings
G is viewed as a n-dimensional differentiable manifold with ga and ga0 being different co-
ordinate systems on G. The bare couplings, ga0(ga, ǫ), are analytic functions of ga and of
the regularisation parameter ǫ, provided ǫ 6= 0 (ǫ = D − 4 in dimensional regularisation).
The matrix Za

b0 is a co-ordinate transformation matrix. Viewed from this geometric
perspective the quantities

Φ(x) = [Φa(x)]dg
a = Φa0

(x)dga0 (7)

are operator valued one-forms on the co-tangent space T ∗(G). This picture has also proven
useful in conformal field theories in two dimensions where the operators [Φa] are primary
fields, [11].

N -point Green functions are now rank N tensors on G. Provided all the points xi are
well separated,

G
(N)
a1···aN

(x1, . . . , xN ) =< [Φa1
(x1)] · · · [ΦaN

(xN )] > . (8)

Note that in general the tensor G
(N)
a1···aN

(x1, . . . , xN ) has no particular symmetry properties.
When all the xi are well separated the renormalisation group equation has a very simple

geometrical interpretation, it is simply the Lie derivative of G
(N)
a1···aN

with respect to the

vector field on T (G) given by the β-functions of the theory ~β = βa ∂
∂ga , [8] [9]. To see
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this we simply write the N -point functions with the basis dga for real valued one-forms
included

G(N) =< [Φa1
(x1)] · · · [ΦaN

(xN )] > dga1 · · ·dgaN

=< Φa01
(x1) · · ·Φa0N

(xN ) > dga01 · · ·dga0N .
(9)

The usual renormalisation group argument is now applied toG(N), it should be independent
of the renormalisation point κ. Thus

κ
d

dκ
G(N) =

(

κ
∂

∂κ g
+ Lβ

)

G(N) = 0. (10)

This immediately leads to

κ
∂

∂κ g
G

(N)
a1···aN

(x1, . . . , xN ) =

− βb∂bG
(N)
a1···aN

(x1, . . . , xN )−
N
∑

i=1

(

∂ai
βb

)

G
(N)
a1···ai−1bai+1···aN

(x1, . . . , xN),

(11)

where we have used

κ
d

dκ
dga = d

(

κ
dga

dκ

)

= dβa = ∂bβ
adgb. (12)

The matrix of anomalous dimensions, ∂bβ
a, is thus seen to come from Lie dragging of

the basis one-forms dga. Note that equation (11) is co-variant under general co-ordinate
transformations, even though the derivatives on the right hand side are not co-variant,
because the Lie derivative is co-variant by construction, [13] . There is no need to introduce
a connection to define Lie derivatives. However the interpretation of the matrix ∂aβ

b as
having physical significance is tied in to a special choice of co-ordinates. More generally
one would expect a co-variant generalisation of this matrix, ▽aβ

b, to have the physical
interpretation of a matrix of anomalous dimensions, [8].

This treatment of the RG equation, though conceptually simple, is not the whole
story. We must be careful to regularise [Φai

(xi)][Φaj
(xj)] whenever any two of the points

xi and xj start getting close to one another. The operator product expansion co-efficients
clearly play an important role here and this combination becomes a single renormalised
composite operator as xi → xj . Thus the regularised Green functions,

G
R(N)
a1···aN

(x1, · · ·xN ) =< [Φa1
(x1) · · ·ΦaN

(xN )] >, (13)

are linear combinations of all the lower, unregularised ones, G(M) for M ≤ N including
M = 0. This phenomenon manifests itself at the level of the renormalisaion group by the
fact that GR(N) gets mixed up with tensors of lower rank under RG flow. This mixing
was exhibited in [10], but the tensor expressions in that reference were not co-variant. For
example the mixing co-efficients involved the second derivative of the β-functions, ∂a∂bβ

c

which is clearly not a tensor and this can only be consistent if it is legitimate to put a
flat connection on T (G) and a co-ordinate system can be found in which the connection
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co-efficients vanish (e.g. if T (G) admits a flat metric, with ga Cartesian co-ordinates, and
the connection is the Levi-Civita connection). The remedy for this problem is pointed out
in [10], a connection on T (G) must be introduced. It is even indicated how this should
be done, but the authors do not do it because they do not know how to calculate the
connection, in general. However a connection must be introduced, whether it be flat or
not, in order to make the renormalisation group equation co-variant and the approach
adopted here will be to introduce one, without any prescription as to how it might be
calculated, and co-variant expressions will be derived.

To appreciate the necessity of the aforementioned regularisation consider the two point
functions, Gab(x1, x2), for a theory in flat Euclidean space, RD, where D = 4 − ǫ and a
and b are indices associated with dimensionless couplings. In dimensional regularisation
[Φa] are dimension 4− ǫ operators. The renormalised two point Green functions are of the
form,* [14]

GR
ab(x, y) = Gab(x, y) + κ−ǫAab δ(x− y), (14)

where Aab(g, ǫ) is a tensor on G, independent of x and y, but depending on ga and con-
taining poles in ǫ in general. is the four dimensional Laplacian in Euclidean space,

= ∂µ∂µ. The tensor Aab(g, ǫ) is chosen to cancel the singularities at x ≈ y in Gab(x, y),
so as to render

∫

dDxGR
ab(x, y) finite. These counterterms introduce corrections into the

RG equation which will be developed in section four. First we develope a technique for
determining regularised N -point functions for general N .

§3 Regularised N-point Functions

The technique developed in [10] for handling the counterterms described in the pre-
vious section will now be summarised, leaving out the connection on T ∗(G) until the next
section. Expressions for the regularised N -point function, in the absence of a connection,
can be derived by induction. The renormalised Green functions are obtained by introduc-
ing position dependent renormalised couplings, ga(x) so that [Φa(x)] =

δS0

δga(x)
, where S0 is

the action S0 =
∫

dDxL0(x) with xµ Cartesian co-ordinates on RD. Next a counterterm
proportional to the identity, which involves derivatives of ga(x), is subtracted from the
bare action,

S̃0(g, ǫ) = S0(g, ǫ)−
κ−ǫ

2

∫

RD

dDxAab ga gb. (15)

Defining the generating functional in the usual way,

W = − lnZ- where Z- =

∫

Dϕe−S̃0 , (16)

allows the regularised N -point functions to obtained by functional differentiation. Thus

GR
a1···aN

(x1, . . . , xN ) = (−1)N+1 δNW

δga1(x1) · · · δgaN (xN )
. (17)

* Henceforth the superscript (N) on N -point functions will be omitted since it is clear
from the index structure on G which value of N is under consideration.
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Now the two point functions (14) can be obtained from

GR
ab(x, y) =

δ2 lnZ-

δga(x)δgb(y) ∂µg = 0
=

〈 δS̃0

δga(x)

δS̃0

δgb(y)

〉

∂µg = 0
−
〈 δ2S̃0

δga(x)δgb(y)

〉

∂µg = 0
,

(18)
where it is assumed for simplicity that

< [φa(x)] > |∂µga=0 = 0. (19)

This assumption simplifies some of the equations. Non-zero expectation values are easily
accounted for by using (11) with N = 1 giving

κ
∂

∂κ g
Ga = −βb∂bGa − ∂aβ

bGb (20)

(one point Green functions, Ga, are of course independent of position because of transla-
tional invariance).

The new counter term in (15) gives rise to

δ2S̃0

δga(x)δgb(y) ∂µg = 0
=

(

δ

δga(x)
[φb(y)]

)

∂µg = 0

= δ(x− y)Kc
ab[φc(x)]

∂µg = 0
− κ−ǫAab δ(x− y),

(21)

where it is assumed that the bare basic operators are independent of the couplings,
δφb0

(y)

δga0
(x)

= 0. The quantities Kc
ab here are defined by

Kc
ab(g, ǫ) = ∂a∂bg

d0

(

∂gc

∂gd0

)

= ∂aZb
d0(Z−1)d0

c
, (22)

and contain poles in ǫ. Combining equations (18) and (21) now gives the regularised two
point functions (14).

In four dimensions there are other counterterms proportional to the identity that can
be added to S0 which are necessary for regularisation when N > 2. For simplicity we
shall assume that only couplings that are dimensionless in four dimensions appear in the
Lagrangian (no masses). Including masses introduces more terms but is straightforward
in principle.

By simple dimensional analysis only terms involving the appropriate number of deriva-
tives of the dimensionless couplings can contribute. The most general counterterm, invari-
ant under parity transformations, consists of the following combination (modulo integration
by parts),

S̃0(g, ǫ) = S0(g, ǫ)− I0(g, ǫ),

8



where

I0(g, ǫ) =

∫

RD

dDxI0

=
1

2

∫

RD

dDxAab ga gb +
1

2

∫

RD

dDxBabc∂µg
a∂µgb gc

+
1

4

∫

RD

dDxCabcd∂µg
a∂µgb∂νg

c∂νgd.

(23)

Babc(g, ǫ) and Cabcd(g, ǫ) are new quantities with no explicit x and y dependence, but
depending on ga(x) and containing poles in ǫ. As emphasised in [10] they are not tensors
because they do not transform co-variantly but this will be remedied later when a connec-
tion on T ∗(G) is included. Note the symmetries Babc = Bbac and Cabcd = Ccdab = Cbacd =
Cabdc.

The structure of this counterterm would be more complicated if there were masses
around, but these can be treated by similar techniques and (23) will be sufficient for the
purposes of illustration. I0 also depends on the number of dimensions D, for example in
two dimensions Babc and Cabcd do not appear and

I0 =
1

2
Aab∂µg

a∂µgb. (24)

The arguments here will be illustrated using (23). Thus, for example, the operator which
gives a finite 3-point function is,

δS̃0

δga(x)

δS̃0

δgb(y)

δS̃0

δgc(z)
−

δ2S̃0

δga(x)δgb(y)

δS̃0

δgc(z)
−

δ2S̃0

δga(x)δgc(z)

δS̃0

δgb(y)

−
δ2S̃0

δgb(y)δgc(z)

δS̃0

δga(x)
+

δ3S̃0

δga(x)δgb(y)δgc(z)
,

and it involves Babc as well as derivatives of Aab.
In momentum space the regularised two, three and four point functions can thus be

determined in terms of their unregularised counterparts and Babc and Cabcd by setting
∂µg

a = 0 in the appropriate finite operators. The two and three point functions are
derived in reference [10] and are, after Fourier transforming to momentum space,

GR
ab(p, q) = Gab(p, q) + κ−ǫAabp

2q2, with p+ q = 0 (25)

GR
abc(p, q,r) = Gabc(p, q, r)−Kd

abGdc(p+ q, r)−Kd
bcGda(q + r, p)−Kd

caGdb(r + p, q)

− κ−ǫ
(

p2q2Aab,c + q2r2Abc,a + r2p2Aca,b + r2p.qBabc + p2q.rBbca + q2r.pBcab

)

with p+q+r = 0. Using the same techniques the four point function can also be determined
to be

GR
abcd(p, q, r, s) =Gabcd(p, q, r, s)−

(

Ke
abGecd(p+ q, r, s) + 5 permutations

)

+
(

Ke
abK

f
cdGef (p+ q, r + s) + 2 permutations

)

+
(

Ke
abcGed(−s, s) + 3 permutations

)

+ κ−ǫ
(

r2s2Acd,ab + 5 permutations
)

+ κ−ǫ
(

p2(r.s)Bcda,b + 11 permutations
)

+ 2κ−ǫ
(

(p.q)(r.s)Cabcd + 2 permutations
)

,

(26)
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with p+ q + r + s = 0. In these expressions a comma denotes partial differentiation with
respect to the couplings ga and Ke

abc is defined as

Ka
bcd =

( ∂3gf0

∂gb∂gc∂gd
) ∂ga

∂gf0
= ∂dK

a
bc +Ke

bcK
a
ed. (27)

In equation (26) some terms involving exceptional momenta (e.g. p+ q = r + s = 0) have
been omitted for clarity. The reason such momenta cause extra terms to arise is that N -
point amplitudes (17) are not simple expectation values of the basic operators, for N ≥ 4.
For example the four point function in position space, Gabcd(x, y, z, t), involves products of
two point functions Gab(x, y)Gcd(z, t). However such terms are discarded when momenta
are non-exceptional because both the two point fucntions are separately translationally
invariant. Thus in momentumm space this reads Gab(p, q)Gcd(r, s)δ(p + q)δ(r + s) and
excluding exceptional momenta excludes such terms. This is also true of the expectation
values themselves, < [Φa(p)] >. Translational invariance demands that these vanish except
at p = 0, thus if they were to appear as factors in a N -point amplitude momentum
conservation would require exceptional momenta among the other N − 1 momenta. Hence
excluding exceptional momenta automatically excludes expectation values for the basic
operators. This simplifies some of the following formulae. In all of the ensuing expressions
it will be assumed that none of the momenta is exceptional.

The structure of the terms involving the unregularised Green functions on the right
hand side of equations (25) and (26) is independent of the dimension D in which we are
working and is not affected by the introduction of masses. In other dimensions, or in
theories with masses, only the A,B and C terms differ. e.g. in two dimensions only the A
term is there (with p.q instead of p2q2) since there are no B or C terms in two dimensions.
Also extra terms independent of the G(M)’s appear when there are masses.

The various terms in equation (26) can be given the following physical interpretation.
The integral of the left hand side with respect to any of its arguments is finite and the
terms on the right hand side involving three point functions are necessary in order to cancel
singularities in the integral of the unregularised Gabcd that occur whenever one of the three
independent momenta gets large. This happens if two of the four points get close in space so
that the unregularised Green function becomes effectively a three point function multiplied
by divergent operator product expansion co-efficients. The divergent part is extracted as a
δ-function in position space and the three point functions appearing on the right hand side
of (26) cancel this divergence in momentum space. These three point functions only depend
on two of the momenta because of overall momentum conservation, e.g. Gecd(p+ q, r, s) =
Gecd(−r − s, r, s) and independence of the third momentum corresponds to δ-function
singularities in position space. TheKa

bc are thus related to the operator product expansion
co-efficients in a manner which will be analysed more fully later. Similarly the terms on
the right hand side involving two point functions cancel singularities in double integrals of
Gabcd that arise when two of the momenta get large. Lastly the terms involving momenta
to the fourth power cancel the singularities that occur when all the four points in position
space collapse to a single point in a triple integral - the momentum structure of these
terms indicates that they correspond to fourth derivatives of δ-functions and are thus
more singular than the other terms.
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The regularised N -point functions can be obtained from this technique by induction
and are given in an appendix. The expressions given here are however not co-variant under
co-ordinate transformations on G.

§4 A Co-variant Renormalisation Group Equation

The regularised N -point functions in the previous section have been derived assuming
the connection vanishes. Everything can now be made co-variant by introducing a connec-
tion as described in [10]. The basic idea is the following. For position dependent couplings
the matrix Mµ

a = ∂µg
a gives a map between T ∗(G) and T ∗(RD),

Mµ
a : T ∗(G) → T ∗(RD)

ωa 7→ ωµ := Mµ
aωa,

(28)

where ωa is a one-form on T ∗(G) and ωµ a one-form on T ∗(RD). Introduce a connection
Γa

bc on T (G). Then for any vector V a ∈ T (G) a co-variant derivative ▽µ mapping T (G) →
T (G)⊗ T ∗(RD) can be defined by

▽
µV

a := ∂µV
a +Aµ

a
bV

b where Aµ
a
b = Mµ

cΓa
cb. (29)

In this expression ∂µV
a is to be interpreted as ∂µg

b∂bV
a. Thus ▽µV

a = Mµ
b▽

bV
a. Now

the Laplacian in flat Euclidean space acting on couplings is modified to read

ga → ▽2
ga = ▽

µ∂
µga = ∂µ∂

µga + Γa
cb∂µg

b∂µgc. (30)

The idea here is that the co-ordinates ga are not vectors, they are n functions on G, and
∂µga are n vectors on T (RD). The co-varaint derivative is now used in the definition of
I0 in (23) to replace ∂µg

a. Thus (23) now reads

I0 =
1

2
Aab

▽2
ga▽

2
gb +

1

2
Babc∂µg

a∂µgb▽
2
gc +

1

4
Cabcd∂µg

a∂µgb∂νg
c∂νgd , (31)

where all three of Aab, Babc and Cabcd are now tensors. The A,B and C in (31) are not the
same as those in (23) - they differ by terms involving the connection. From now on these
symbols will refer exclusively to the co-variant forms in equation (31). Note that only the
symmetric part of the connection, Γa

cb = Γa
bc, is relevant and so it is sufficient for our

needs to take the connection to be symmetric.
One defines a curvature tensor in the usual way,

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb + Γa

ecΓ
e
db − Γa

edΓ
e
cb. (32)

It would be wrong to call Ra
bcd a Riemann tensor as there is no definition of a metric on

T (G) here and hence no Riemannian structure, only a connection.
There is probably a natural definition of a connection for any given theory, e.g. the

Knizhnik-Zamolodchikov connection for certain conformal theories (for which Ra
bcd = 0
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despite global holonomy), [1], but the question of a general definition will not be addressed
here. Rather it will just be assumed that one exists and no prescription will be given for
calculating it, though it will be argued in the next section that it must be related to the
operator product expansion co-efficients. Connections on the space of couplings in other
theories are also discussed in, [1] [2] [3] [4].

The calculation of N -point functions proceeds in principle as before, though the in-
troduction of the connection causes some extra complications. Consider the covariant
analogue of (21)

(

δ

δga(x)
[φb(y)]− Γc

ab[φc(x)]δ(x− y)

)

∂µg = 0

= δ(x− y)
(

Kc
ab − Γc

ab

)

[φa(x)]
∂µg = 0

− κ−ǫAab δ(x− y).
(33)

The difference Kc
ab − Γc

ab is a tensor symmetric in a and b which will be denoted by
T c

ab. Of course T c
ab may contain poles in ǫ since Kc

ab does, although Γc
ab is assumed

independent of ǫ and finite.
The regularised two point functions are the same as in equation (25) but the three

point function is now

GR
abc(p, q,r) = Gabc(p, q, r)− T d

abGdc(p+ q, r)− T d
bcGda(q + r, p)− T d

caGdb(r + p, q)

− κ−ǫ
(

p2q2Aab;c + q2r2Abc;a + r2p2Aca;b + r2p.qBabc + p2q.rBbca + q2r.pBcab

)

,
(34)

where a semi-colon denotes co-variant differentiation, Aca;b = ▽
bAca.

For the four point function (26), however, the situation is much more complicated.
The order in which the second derivatives on Aab is taken is important. For simplicity, we
shall restrict ourselves to the symmetric point in momentum space,

pi.pj =
µ2

3
(4δij − 1) . (35)

The co-variant result is

GR
abcd(p, q, r, s) =Gabcd(p, q, r, s)−

[

T e
abGecd(p+ q, r, s) + 5 permutations

]

+
[

T e
abT

f
cdGef (p+ q, r + s) + 2 permutations

]

+

[

(

T e
bc;a + T f

bcT
e
af

)

Ged(−s, s) +

{

b ↔ d
q ↔ s

}

+

{

c ↔ d
r ↔ s

}]

+
(

T e
cd;b + T f

cdT
e
bf

)

Gea(−p, p)

+ κ−ǫµ4
[1

3

(

(Rf
cba +Rf

bca)Afd + (b ↔ d) + (c ↔ d)
)

+
1

3
(Rf

cdb +Rf
dcb)Afa +

1

2

(

Acd;a;b + 11 permutations
)

−
1

3

(

Bcdb;a + 11 permutations
)

+
2

9

(

Cabcd + 2 permutations
)

]

.

(36)
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Note that the indices a and b now occur on a different footing to c and d. The expression
is not so symmetric as (26) because co-variant derivatives do not commute.

The renormalisation group equation for regularised N -point functions will now be
derived, for N = 2, 3, 4. The simple result (11), for the case when the points x1, . . . , xN

are well separated, is modified by the mixing with the lower M -point functions (M ≤ N).
The derivation involves β-functions for the counterterms (23),

κ
d

dκ
I0 =

(

κ
∂

∂κ g
+ βa∂a

)

I0

= −
1

2
χab

▽2
ga▽

2
gb −

1

2
χabc∂µg

a∂µgb▽
2
gc −

1

4
χabcd∂µg

a∂µgb∂νg
c∂νgd,

(37)

where χab, χabc and χabcd are finite functions of the renormalised couplings g, independent
of ǫ. Using the expression (31) for I0 leads to the following equations for the χ’s in terms
of Aab, Babc and Cabcd,

χab =ǫAab −
(

LβA
)

ab

χabc =ǫBabc −
(

LβB
)

abc
− 2

(

▽
a
▽

bβ
d −Rd

baeβ
e
)

Adc

χabcd =ǫDabcd −
(

LβD
)

abcd
−Babe

(

▽
c
▽

dβ
e −Rf

dceβ
e
)

−Bcde

(

▽
a
▽

bβ
e −Re

bafβ
f
)

.
(38)

Again the symbol Lβ here denotes Lie differentiation with respect to the vector field β.
The combination ▽

a
▽

bβ
c −Rc

bafβ
f will occur so frequently in the sequel that it will be

convenient to define τab
c = ▽

a
▽

bβ
c − Rc

bafβ
f . τab

c is a tensor symmetric in the indices
a and b.

The RG equation for N -point functions now follows by application of the operator

κ
d

dκ
= κ

∂

∂κ g
+ Lβ (39)

to the regularised N -point functions. A considerable simplification is introduced by noting
that κ d

dκ acting on unregularised Green functions gives zero, κ d
dκG

(N) = 0 (equation (11)).
Another useful identity in the derivation is

(

LβT
)a

bc
= −τbc

a. (40)

Note that this expression is finite although T a
bc itself is not. Equation (40) is the co-varaint

generalisation of equation (2.22) in reference [10].
For two and three point functions the renormalisation group equation is obtained by

applying κ d
dκ to equation (34) and using (38). The result is

[

(

κ
∂

κ g
+ Lβ

)

GR(p, q)

]

ab

= −κ−ǫ(p.q)χab

[

(

κ
∂

κ g
+ Lβ

)

GR(p, q, r)

]

abc

=
[

τab
dGR

dc(p+ q, r) + 2 permutations
]

+ κ−ǫ
(

p2q2▽cχab + r2p.qχabc + 2 permutations
)

.

(41)
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The RG equation for four point functions be obtained from (36) in a similar fashion. The
result for general momenta is however rather long and for simplicity it is again given only
at the symmetric point,

[

(

κ
∂

κ g
+ Lβ

)

GR(p, q, r, s)

]

abcd

=
[

τab
fGR

fcd(p+ q, r, s) + 5 terms
]

−

[

(

▽
aτbc

f
)

GR
fd(−s, s) +

{

b ↔ d
q ↔ s

}

+

{

c ↔ d
r ↔ s

}]

−
(

▽
bτcd

f
)

GR
fa(−p, p)

− κ−ǫµ4
[1

2

(

▽
a
▽

bχcd + 11 terms
)

+
1

3

(

{(

Re
bca +Re

cba

)

χed + (b ↔ d) + (c ↔ d)
}

+
(

Re
cdb +Re

dcb

)

χea

)

−
1

3

(

▽
aχbcd + 11 permutations

)

+
2

9

(

χabcd + 2 permutations
)

]

(42)

Again the general form of the terms involving the GR’s will be the same for any theory, only
the structure of the µ4 terms will be different in different theories. The general expression,
away from the symmetric point is given in appendix two.

§5 Operator Product Expansion Co-efficients

The fact that, for a given N , the renormalisation group flow induces mixing with
Green functions of lower order is intimately related to the operator product expansion
(OPE). The connection between the OPE co-efficients and Ka

bc was mentioned previously
and this will now be made more explicit. In particular the RG equation obeyed by the
OPE co-efficients will be shown to involve the tensor τab

c.
In general the OPE involves an infinite number of operators and the basis [Φa(x)]

should be extended to include higher dimension operators,

[Φa(x)][Φb(y)] = Cab
A(x− y)

[

OA

(x+ y

2

)]

, (43)

where [OA(x)] are a complete set of operators, in general an infinite set, but certainly
containing all of the [Φa(x)] as a subset. Cab

A(x− y) are the OPE expansion co-efficients,
which of course are singular as x → y. If the (mass) dimensions of the operators [Φa], [Φb]
and [OA(x)] are da, db and dA respectively (including anomalous dimensions) then dimen-
sional counting gives the short distance behaviour for the OPE co-efficients as

Cab
A(x− y) ≈ |x− y|dA−da−db . (44)

Thus the most singular behaviour, for given a and b, is for operators on the right hand side
with the smallest values of dA. Using naive dimensions the operators of lowest dimension
are precisely those that appear in the original bare Lagrangian, and the same conclusion
will hold for the full dimensions provided none of the anomalous dimensions is too large.
A large anomalous dimension would probably be indicative of having chosen unphysical
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degrees of freedom in the original Lagrangian. Thus, for example, in scalar λϕ4 theory in
four dimensions the operators ϕp

0 for p = 1, 2, 3, 4 are allowed to appear in the Lagrangian
but higher powers of p would give a non-renormalisable theory and are excluded. The
most singular terms in the OPE expansion are therefore given by

[Φa(x)][Φb(y)] = Cab
c(x− y)

[

Φc

(x+ y

2

)]

+ less singular terms. (45)

The less singular terms can be investigated by using the non-linear source source renor-
malisation techniques of reference [12]. It is clear that Cab

c(x− y) are tensors on G.
Consider the unregularised N -point functions in position space Ga1···aN

(x1, . . . , xN )
when only two of the points get close but all of the others remain well separated, e.g.
x1 ≈ x2. Close here means that |x1 − x2| ≈ κ−1 where κ is the renormalisation point.
From the above discussion we have

Ga1···aN
(x1, . . . , xN ) = Ca1a2

d(x1 − x2)Gda3···aN

(x1 + x2

2
, x3, . . . , xN

)

+ less singular
terms

.

(46)
The purpose of the counterterms is to tame the singularity as x1 ≈ x2. Referring to the
regularised three point functions, (34), in position space,

GR
abc(x, y, z) =

Gabc(x, y, z)− δ(x− y)T d
abGdc(x, z)− δ(y − z)T d

bcGda(y, x)− δ(z − x)T d
caGdb(z, y)

+ · · ·
(47)

it is clear that we want the combination
∫

dDx1Ca1a2

d(x1 − x2)− T d
a1a2

to be finite. To
this end we shall define a new tensor

CR
a1a2

c
(x) = Ca1a2

d(x)− δ(x)T d
a1a2

, (48)

whose integral over all space is finite. Thus
∫

dDxCR
a1a2

d
(x) is finite, whereas

∫

dDxCa1a2

d(x)
is not.

Now recall the definition of the tensors T a
bc,

T a
bc = Ka

bc − Γa
bc, (49)

where Ka
bc is given in terms of the renormalisation matrix Za0

b in equation (22). Equation
(49) can be inverted to give an expression for Γa

bc in terms of computable quantities and
CR

bc
a
,

Γa
bc = Ka

bc +

∫

dDx
(

CR
bc

a
(x)− Cbc

a(x)
)

. (50)

This equation is similar to the definition of a connection used by Sonoda, [3], except that
the K-terms are not present in that work since it assumed there that the basic operators
are independent of the couplings. This has the consequence that the regularised OPE
co-efficients defined in [3] are not tensors, instead they transform inhomogeneously under
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general co-ordinate transformations. The K-terms in (50) are present because the renor-
malised basis operators do depend on the couplings, in general. Note that equation (50)
does not determine the connection but merely expresses it in terms of the undetermined
finite tensor

∫

dDxCR
bc

a
(x).

More generally one could define a position dependent connection by smearing out the
δ-functions δ(x)Ka

bc → Ka
bc(x) and defining

Γa
bc(x) = Ka

bc(x) + CR
bc

a
(x)− Cbc

a(x). (51)

Such a position dependent connection appears in the version of the RG equation presented
in [1].

Returning to equation (51), combining (46), (47) and (48) now leads to a regularised
version of (46),

GR
a1···aN

(x1, . . . , xN ) = CR
a1a2

d
(x1 − x2)Gda3···aN

(x1 + x2

2
, x3, . . . , xN

)

+ · · · (52)

where the dots denote terms that are negligible provided that none of the xi is close to
x1 or x2 for i ≥ 3. We now follow the standard argument that the OPE co-efficients also
satisfy a RG equation. To this end consider the action of κ d

dκ
= κ ∂

∂κ
+ Lβ on (52) when

N = 4,

(

κ
∂

∂κ g
+ Lβ

)

GR
abcd(x, y, z, t) =

[

(

κ
∂

∂κ g
+ Lβ

)

CR
ab

e
(x− y)

]

Gecd

(x+ y

2
, z, t

)

+ · · · (53)

where equation (11) with N = 3 has been used. In momentum space this reads

(

κ
∂

∂κ g
+ Lβ

)

GR
abcd(p, q, r, s) =

[

(

κ
∂

∂κ g
+ Lβ

)

CR
ab

e
(p− q

2

)]

GR
ecd(p+ q, r, s) + · · · (54)

where we have replaced the three point function on the right hand side with its regularised
counterpart - the difference only affects the omitted terms. Now it is clear from (42) that
the renormalisation group equation for x ≈ y and all other points well seperated takes the
form

(

κ
∂

∂κ g
+ Lβ

)

GR
abcd(p, q, r, s) = τab

eGR
ecd(p+ q, r, s) + · · · . (55)

Thus we deduce that, for large momenta,

(

κ
∂

∂κ g
+ Lβ

)

CR
ab

c
(p) = τab

c + · · · , (56)

where the dots refer to terms that fall off with momentum, the term exhibited on the right
hand side is the most significant at small distances. A similar equation for the singular
OPE co-efficients Cab

c is presented in reference [12], but with vanishing connection so τab
c

reduces to ∂a∂bβ
c.
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The second derivative of the β function also appears in the treatment of the OPE by
Zamolodchikov [11], where a Taylor expansion of the β-functions near a conformal theory
is performed and it is shown that the OPE co-efficients are essentially the quadratic terms
in this expansion. For a conformal field theory Zamolodchikov shows that

Cab
c(x− y) = C̃c

ab

1

|x− y|da+db−dc
. (57)

da, db and dc here are the dimensions (including anomalous dimensions) of the operators
concerned and C̃c

ab are independent of |x− y|. Zamolodchikov argues that the basis oper-
ators can be chosen so that

C̃c
ab = ∂a∂bβ

c. (58)

His argument assumes that a metric exists and that the connection is Levi-Civita.
Riemann normal co-rdinates, compatible with (57), can then be chosen so that the con-
nection vanishes and (58) ensues. Clearly this arguement cannot always be applied. Even
if co-ordinates can be chosen so that the connection vanishes, it is not true that derivatives
of the connection vanish, unless the space is flat, and these are important when more than
one derivative is taken. It would seem that the correct tensor to use is τab

c rather than
∂a∂bβ

c unless one has reasons to believe that the curvature vanishes. It may be that a flat
connection is reasonable for fixed points (i.e. the curvature vanishes at fixed points) but
this is not yet clear and, even if this subsequently proves to be the case, it seems unlikely
to be true away from fixed points.

An important point of physics in the analysis presented in this section is that the
definition of the regularised OPE co-efficients (48) requires integrating over all of space
and for large separations the less singular terms in equation (45) may become important. In
other words the assumption that the operators [Φa] give the most important contributions
in the general OPE (43) might not hold for large separations and other operators might
become significant for describing the physical degrees of freedom of the theory at larger
scales. Such a phenomenon occurs in QCD, for example, where quarks and gluons are
believed to be the physical degrees of freedom at short distances whereas mesons and
hadrons are more appropriate for larger scales. If one tries to integrate gluonic degrees of
freedom over all space one is hit by the infra-red problem. In perturbation theory, at least,
this would present insurmountable problems. One must therefore include an infra-red cut-
off, for example integrating over only a finite volume, and hope that the volume can be
made large enough that finite volume effects are not important, but that [Φa] still give the
most important contribution to the OPE within the whole volunme. Such a procedure, if
valid, allows the determination of at least the short distance behaviour of the theory using
the techniques here, but it must be borne in mind that it may not always give sensible
answers.

§6 Conclusions

In conclusion it has been argued that N -point amplitudes, G(N), should be thought of
as tensors on the space of couplings, G, and the renormalisation group equation mixes up
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tensors of different rank, G(N) being related to linear combinations of G(M) with M ≤ N .
The crucial quantity that determines this mixing is a tensor given by the second co-variant
derivative of the β-functions of the theory,

τabc = ▽
b
▽

cβ
a −Ra

cbdβ
d. (4)

The RG equations for two, three and four point functions for a massless theory in four
dimensions are given in equations (41) and (42). When all the points are well separated in
space it reduces to the definition of a Lie derivative with respect to the vector field given
by the β-functions of the theory, equation (11). However when any of the points start
to get close to one another, relative to the renormalisation length κ−1, there are extra
contributions. The form of the terms involving the tensors χ (defined in equation (38))
is specific to massless theories in four dimensions and result from a subtraction which
is necessary in the circumstance when all the spatial points in the Green function are
degenerate. The other terms on the right hand side of (41) and (42) are present in any
theory and the M -point functions with M < N reflect singularities that arise when some
of the points start getting close to one another. It should be observed that the mixing
between tensors of different rank is linear. This is only true for the Green functions of the
theory (excluding exceptional momenta). Were one to consider the composite operator
analogues of the proper vertices, Γ(N), then the resulting mixing is non-linear even when
exceptional momenta are excluded, see reference [12].

No prescription as to how the connection might be calculated in general has been
given, it is merely assumed that one must exist, but it has been argued that it should be
related to the operator product expansion co-efficients, through equation (51),

Γa
bc = Ka

bc +

∫

dDx
(

CR
bc

a
(x)− Cbc

a(x)
)

, (51)

where Ka
bc = ∂a∂bg

d0

(

∂gc

∂gd0

)

, equation (22). In this expression CR
bc

a
(x) is a regularised

OPE co-efficient whose integral over all space is finite. If one could calculate Γa
bc then one

would immediately know
∫

dDxCR
bc

a
(x) and vice versa. This will not be attempted here

but is clearly an interesting programme with much scope for development.

Further questions concerning the nature of the connection present themselves. Would
it be metric compatible, if one were to give a physically reasonable definition of a Rieman-
nian metric on G? For example the Zamolodchikov metric constructed from the two point
functions of the theory

gab = Gab(x, y, ) |x−y|=κ−1 (59)

might be a candidate. It is expected to be positive definite for unitary theories. It is not
clear if the Levi-Civita connection associated with this definition of a metric would provide
useful physical information for a theory, or perhaps it would have to be supplemented by
more structure. As mentioned earlier, the connection is symmetric so if it is not Levi-Civita
then it cannot be metric compatible - the extra structure is not simply a torsion tensor, it
would be given by the regularised OPE co-efficients,

∫

dDxCR
bc

a
(x).
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Lastly it should be emphasised that everything that has been presented here is in
terms of the local geometry, the global structure of G has not beem addressed at all, but
clearly it would be very interesting to be able to ascertain something about it.

It is a pleasure to thank Denjoe O’Connor for stimulating discussions on the renormal-
isation group, and also Prof. N. Dragon for his hospitality at the Institut für Theoretische
Physik, Hanover where this investigation was begun.

Appendix 1

For completeness we include the non-covariant expression for the regularised N -point
Green functions in terms of their unregularised counterparts, for a massless theory in four
dimensions. Unregularised in this context does not mean bare - it is always assumed
that renormalised operators [Φa(x)] are used in all Green functions - rather it means
regularisation in the sense of regularisation of the infinities that occur when two or more
points get close together in the Green function.

The regularised Green functions are obtained by functionally differentiating the gen-
erating functional,

e−W [ga] =

∫

Dϕe−S̃0(ϕ,g
a). (16)

Thus

GR
a1···aN

(x1, . . . , xN ) = (−1)N+1 δNW

δga1(x1) · · · δgaN (xN )
. (17)

The regularised N -point function can be obtained by induction. We first write down the
formula for the N -point function in momentum space. It reads

GR
a1···aN

(p1, . . . , pN )|∂µg=0 =

[N/2]
∑

s=0

∑

partitions

(−1)

s!

N+s+r0

Km1
π1

· · ·Kms
πs

×Gπ0m1···ms

(

pπ0(1), . . . , pπ0(r0),Σ
r1
k=1pπ1(k), . . . ,Σ

rs
k=1pπs(k)

)

+ (−1)N
κ−ǫ

2(N − 2)!

∑

permutations

∂
(N−2)
{a3···aN

Aa1a2
p2a1

p2a2}

+ (−1)N
κ−ǫ

2(N − 3)!

∑

permutations

∂
(N−3)
{a4···aN

Ba1a2a3

(

pa1
.pa2

)

p2a3}

+ (−1)N
κ−ǫ

(2!)2(N − 4)!

∑

permutations

∂
(N−4)
{a5···aN

Ca1a2a3a4

(

pa1
.pa2

)(

pa3
.pa4}

)

,

(60)
where the sum over partitions involves splitting a1, . . . , aN up into s+1 sets, π0, . . . , πs each
with rj elements aπj(1), . . . , aπj(rj) such that

∑s
j=0rj = N , 0 ≤ r0 ≤ N and 2 ≤ rj ≤ N

for 1 ≤ j ≤ s. Thus πj = {aπj(1), . . . , aπj(rj)} is some subset of a1, . . . , aN consisting of rj
elements. The number of sets lies between 0 and [N/2] where [N/2] is the integral part of
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N/2. In any given partition each subset occurs only once, regardless of the ordering of its
elements. For example, for N = 4, s has three possible values, 0, 1 or 2, and the partitions
are

s = 0 : π0 = {a1, a2, a3, a4}

s = 1 :



























π0 = {a1, a2} π1 = {a3, a4}, π0 = {a1, a3} π1 = {a2, a4},
π0 = {a1, a4} π1 = {a2, a3}, π0 = {a2, a3} π1 = {a1, a4},
π0 = {a2, a4} π1 = {a1, a3}, π0 = {a3, a4} π1 = {a1, a2},
π0 = {a1} π1 = {a2, a3, a4}, π0 = {a2} π1 = {a1, a3, a4},
π0 = {a3} π1 = {a1, a2, a4}, π0 = {a4} π1 = {a1, a2, a3},
π0 = ∅ π1 = {a1, a2, a3, a4}

s = 2 :







π0 = ∅ π1 = {a1, a2} π1 = {a3, a4}, π0 = ∅ π1 = {a1, a3} π2 = {a2, a4},
π0 = ∅ π1 = {a1, a4} π2 = {a2, a3}, π0 = ∅ π1 = {a2, a3} π2 = {a1, a4},
π0 = ∅ π1 = {a2, a4} π2 = {a1, a3}, π0 = ∅ π1 = {a3, a4} π2 = {a1, a2}.

(61)
The co-efficients K

mj
πj = K

mj
aπj (1)···aπj (rj )

in equation (60) are defined analogously to

(22),

Km
aπj(1)

···aπj (rj)
=

(

∂aπj(1)
· · ·∂aπj(rj )

gd0
)

(

∂gm

∂gd0

)

. (62)

Terms involving exceptional momenta are omitted from the above expression. It is straight-
forward to show that equation (60) reproduces the regularised two, three and four point
functions in the text (equations (25) and (26)), provided Ga(p) =< Φa(p) >= 0.

It will be more useful to work in position space in order to construct an inductive
proof. Equation (60) translates as

GR
a1···aN

(x1, . . . , xN)|∂µg=0 =

[N/2]
∑

s=0

∑

partitions

(−1)

s!

N+s+r0

Km1
π1

· · ·Kms
πs

×G
(r0+s)
π0m1···ms

(xπ0(1), . . . , xπ0(r0), xπ1(1), . . . , xπs(1))

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj(m)

+
(−1)Nκ−ǫ

2(N − 2)!

[

∂
(N−2)
a3···aN

Aa1a2
δ′′xa1

,xaN
δ′′xa2

,xaN

N−1
∏

j=3

δxaj
,xaN

+ permutations
]

+
(−1)Nκ−ǫ

2(N − 3)!

[

∂
(N−3)
a4···aN

Ba1a2a3

(

δ′xa1
,xaN

.δ′xa2
,xaN

)

δ′′xa3
,xaN

N−1
∏

j=4

δxaj
,xaN

+ permutations
]

+
(−1)Nκ−ǫ

(2!)2(N − 4)!

[

∂
(N−4)
a5···aN

Ca1a2a3a4

(

δ′xa1
,xaN

.δ′xa2
,xaN

)(

δ′xa3
,xaN

.δ′xa4
,xaN

)

N−1
∏

j=5

δxaj
,xaN

+ permutations
]

,

(63)
where the δ-function notation used here is a shorthand for δxi,xj

= δ(xi − xj) and a
prime denotes differentiation with respect to the first argument of the δ-function. Thus
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δ′′xi,xj
= xi

δ(xi − xj) and δ′xi,xj
.δ′xi,xk

= ∂µ
xi
δ(xi − xj)∂xiµδ(xi − xk). The number of

arguments in the unregularised Green functions on the right hand side has been shown
explicity as a superscript in order to try to make the formulae easier to interpret - thus
G(r0+s) is a (r0+s)-point function. The fact that exceptional momenta are being excluded
is interpreted in position space as meaning that terms which factorise into products of
amplitudes which are separately translationally invariant are omitted from (63).

Proceeding inductively, we relax the condition ∂µg
a = 0 in the regularised Green

functions and functionally differentiate (63) with respect to gaN+1(xN+1) and then check
that the resulting expression agrees with (63) with N replaced by N + 1. The regularised
N + 1-point function is thus given by

−
δGR

a1···aN
(x1, . . . , xN )

δgaN+1(xN+1) ∂µg = 0
. (64)

Consider, therefore, a generic term from the right hand side of (63),

Fs[g
a(x)] := (−1)N+s+r0Km1

π1
· · ·Kms

πs
G

(r0+s)
π0m1···ms

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj(m)
, (65)

where the argument of G has been omitted for brevity, thus

G
(r0+s)
π0m1···ms

= G
(r0+s)
aπ0(1)···aπ0(r0)m1···ms

(xπ0(1), . . . , xπ0(r0), xπ1(1), . . . , xπs(1)). (66)

The index structure on G is sufficient to deduce its arguments.
Functionally differentiating Fs and subsequently setting the couplings to be indepen-

dent of position gives

δFs

δgaN+1(xN+1) ∂µg
ai = 0

= (−1)N+s+r0

s
∑

j=1

Km1
π1

· · ·Kmj−1
πj−1

[

∂aN+1
Kmj

πj

]

Kmj+1
πj+1

· · ·Kms
πs

×G
(r0+s)
π0m1···ms

δxN+1,xπj(1)

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj (m)

+ (−1)N+s+r0Km1
π1

· · ·Kms
πs

[

δaN+1
G(r0+s)

π0m1...ms

]

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj(m)

(67)
where δaN+1

:= δ
δgaN+1(xN+1)

. From the definition (62) we have

∂bK
m
a1···aj

= Km
ba1···aj

−Kc
a1···aj

Km
cb. (68)

We also observe that, from equation (16),

δaN+1
G(r0+s)

π0m1...ms
= −G

(r0+s+1)
π0aN+1m1···ms

+

r0
∑

k=1

Kc
aπ0(k)aN+1

G
(r0+s)
aπ0(1)···aπ0(k−1)caπ0(k+1)···aπ0(r0)m1···ms

δxN+1,xπ0(k)

+

s
∑

k=1

Kc
mkaN+1

G
(r0+s)
aπ0(1)···aπ0(r0)m1···mk−1cmk+1···ms

δxN+1,xπk(1)

(69)
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(in general there are other terms on the right hand side here involving Aab, from equation
(21), but these only contribute to the final result if there are exceptional momenta and they
will be omitted from this analysis). The (r0 + s+ 1)-point function in (69) is a shorthand
notation for

G
(r0+s+1)
π0aN+1m1···ms

= G
(r0+s+1)
aπ0(1)···aπ0(r0)aN+1m1···ms

(xπ0(1), . . . , xπ0(r0), xN+1, xπ1(1), . . . , xπs(1)).

Thus both the terms on the right hand side of equation (67) involve

Km1
π1

· · ·Kms
πs

s
∑

k=1

Kc
mkaN+1

G
(r0+s)
π0m1···mk−1cmk+1ms

, (70)

but with opposite sign so that they cancel.

Equation (69) can now be re-arranged as

δFs

δgaN+1(xN+1) ∂µg
ai = 0

= (−1)N+1+s+r0Km1
π1

· · ·Kms
πs

G
(r0+s+1)
π0aN+1m1···ms

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj(m)

+ (−1)N+s+r0

s
∑

j=1

Km1
π1

· · ·Kmj−1
πj−1

Kmj
πjaN+1

Kmj+1
πj+1

· · ·Kms
πs

G
(r0+s)
π0m1···ms

× δxN+1,xπj(1)

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj (m)

+ (−1)N+s+r0Km1
π1

· · ·Kms
πs

r0
∑

k=1

Kms+1
aπ0(k)aN+1

G
(r0+s)
aπ0(1)···aπ0(k−1)ms+1aπ0(k+1)···aπ0(r0)m1···ms

× δxN+1,xπ0(k)

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj(m)

(71)
where the summation variable c has been replaced in a suggestive manner by ms+1.

We now note that the indices on G(r0+s) can be permuted, provided that one also
understands the arguments to be permuted as well, thus

G
(r0+s)
aπ0(1)···aπ0(k−1)ms+1aπ0(k+1)···aπ0(r0)m1···ms

= G
(r0+s)
aπ0(1)···aπ0(k−1)ms+1aπ0(k+1)···aπ0(r0)m1···ms

(xπ0(1), .., xπ0(k−1), xN+1, xπ0(k+1), .., xπ0(r0), xπ1(1), .., xπs(1))

= G
(r0+s)
aπ0(1)···aπ0(k−1)aπ0(k+1)···aπ0(r0)m1···msms+1(xπ0(1), .., xπ0(k−1), xπ0(k+1), .., xπ0(r0), xπ1(1), .., xπs(1), xN+1)

= G
(r0+s)
aπ0(1)···aπ0(k−1)aπ0(k+1)···aπ0(r0)m1···msms+1 .

(72)

22



Thus, introducing an overall minus sign, we arrive at

−
δFs

δgaN+1(xN+1) ∂µg
ai = 0

= (−1)N+1+s+r0+1Km1
π1

· · ·Kms
πs

G
(r0+s+1)
π0aN+1m1···ms

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj (m)

+ (−1)N+1+s+r0

s
∑

j=1

Km1
π1

· · ·Kmj−1
πj−1

Kmj
πjaN+1

Kmj+1
πj+1

· · ·Kms
πs

G
(r0+s)
π0m1···ms

× δxN+1,xπj(1)

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj (m)

+ (−1)N+1+s+1+r0+1Km1
π1

· · ·Kms
πs

r0
∑

k=1

Kms+1
aπ0(k)aN+1

G
(r0+s)
aπ0(1)···aπ0(k−1)aπ0(k+1)···aπ0(r0)m1···msms+1

× δxN+1,xπ0(k)

s
∏

j=1

rj
∏

m=2

δxπj (1),xπj(m)
.

(73)

Using this in equation (63) and (64) and re-arranging the summations one sees the
desired structure emerging, but there are more terms to be taken into account. These come
from extra contributions to the regularised Green functions (63) when ∂µg

b 6= 0. One only
need consider the terms linear in ∂µg

b 6= 0, as higher order contributions vanish when the
condition ∂µg

b = 0 is imposed after one functional differentiation. These extra terms have
the effect of symmetrising the result between all N +1 indices, and the full expression (63)
is recovered with N replaced by N + 1. The A,B and C terms can be verified without
diffuclty.

The form of equation (60) is basically the same in dimensions other than four and/or
when masses are included - all that changes are the terms involving A,B and C.

Appendix 2

In this appendix we give the full expression for the co-variant renormalisation group
equation for regularised four point functions, not just at the symmetric point. The deriva-
tion is a straightforward, but tedious, application of the techniques described in the text.
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The result, in momentum space, is

[

(

κ
∂

κ g
+ Lβ

)

GR(p, q, r, s)

]

abcd

=
[

τab
fGR

fcd(p+ q, r, s) + 5 terms
]

−

[

(

▽
aτbc

f
)

GR
fd(−s, s) +

{

b ↔ d
q ↔ s

}

+

{

c ↔ d
r ↔ s

}]

−
(

▽
bτcd

f
)

GR
fa(−p, p)

−
κ−ǫ

2

(

p2q2▽a
▽

bχcd + 11 terms
)

−
κ−ǫ

2

[

(

s2(q2 + p2 + 4q.p)Re
bca + s2(r2 + p2 + 4r.p)Re

cba

)

χed +

{

b ↔ d
p ↔ s

}

+

{

c ↔ d
r ↔ s

}]

−
κ−ǫ

2

(

p2(q2 + r2 + 4q.r)Re
cdb + p2(q2 + s2 + 4q.s)Re

dcb

)

χea

− κ−ǫ
[

(q.r)s2▽aχbcd + 11 permutations
]

− κ−ǫ
[

2(p.q)(r.s)χabcd + 2 permutations
]

.
(74)

Once again the structure of the χ-terms is peculiar to massless theories in four dimen-
sions, but the τ -terms are the same for all theories.
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