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Quantum nondemolition of the Universe
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The role of decohering histories in a quantum description of the Universe is examined. A sufficient
condition for different histories to decohere is derived, the cosmological nondemolition condition. This
condition automatically ensures that quantum histories decohere regardless of the initial wave function
of the Universe.
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The problem of constructing and interpreting a con-
sistent quantum description of the whole Universe has
occupied many workers since the inception of the quan-
tum theory. One school of thought holds that quantum
mechanics in itself cannot be a complete theory of the
world because the measurement process necessarily in-
volves a classical apparatus which cannot be described
purely in terms of quantum mechanics [1]. Yet others
hold that, interpreted correctly, the quantum theory is
complete in itself as a description of the physical world
[2]. There has recently been an increase of interest in the
cosmological aspects of this question as people are begin-
ning to enquire into a quantum description of the genesis
of the Universe (for a recent review see Halliwell [3]).
Indeed this has led to a debate as to the form of the initial
wave function of the Universe [4,5].

Nevertheless many physicists still feel uneasy about the
interpretation of these ideas and, in an attempt to allevi-
ate this uneasiness, a fresh view of quantum mechanics
has recently been proposed by Gell-Mann and Hartle [6],
based on the notion of decoherence (see also [7]). Their
approach is an attempt to put Everett's many worlds in-
terpretation of quantum mechanics [8] on a more solid
foundation and is based on the work of GriKths and
Omnes [9,10]. The concept of decoherence has been of
growing importance in the understanding of quantum
mechanics in recent years; see, e.g., [11].

The purpose of this article is to exhibit a method of ex-
plicitly constructing a large set of such decohered his-
tories for any given system. We shall give sufficient (but
not necessary) conditions for a set of histories to
decohere, which we shall call the cosmological nondemoli-
tion (CND) conditions.

A history in the approach of Gell-Mann and Hartle [6]
consists of an initial state in a Hilbert space, ~go), togeth-
er with a time series of projection operators in the
Heisenberg picture:

P (t ),P,(t, ), . . . , P)(t))
with t ) t

&
) - & t &. More generally the initial
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P(tx)ago) =P (t )P™:,'(t, )
. P, '(t, )lgo) . (2)

We shall call P (a) a history operator. It is not necessarily
a projection operator itself.

It is germane to the Gell-Mann —Hartle construction
that their projection operators can project onto spaces of
dimension greater than one; thus, it is possible that
N; (dimly where dieu% is the dimension of the Hilbert
space & of the quantum system. In other words, at a
given time t; the set IP, '(t,. )] is not necessarily complete.
Indeed, given such a set, Gell-Mann and Hartle define a
coarse graining [P, '(t, ) ] where P belongs to a smaller lat-
tice than a does with 1~P, ~N, N, '~N~, and each.
P, '(t, ) is a sum of some (po. ssibly only one, but in general
more than one) of the P; '(t; ) which is also exclusive, i.e.,t

P, '(t, )P, '(t, )=6& &,P, '(t, ).

The observation behind the Gell-Mann —Hartle propo-
sal is that our Universe appears classical to us; therefore,
whatever its quantum history, it must be such that it is a

state can be replaced by an initial density matrix po
representing a mixed state. In the sequel we shall always
assume that the initial state is pure, pz= ~1bo)(go~, but
this is not necessary for any of our arguments which all
go through without change for an initial state which is
mixed.

A set of histories comprises an exhaustive and ex-
clusive, but not necessarily complete, set of such projec-
tion operators at each time t; for every value of 1 ~ i ~ I,
I P; '(t; ); a; = 1, . . . , N, J. In equation form

N,. t

g P, '(t, )=1 and P. , '(t, )P, '(t;)=6. ,P, '.(t, ) . .
a. =1

1

Here 1 ~ o.; ~ N; labels the set of projection operators for
each t;. These sets might be different for each i, and can
even consist of different numbers X,. of projectors for
each i. %'e shall abbreviate the notation by defining a
vector, with integer coefticients 1~a; ~X, , on an m-
dimensional lattice tx=(a„. . . , a ). The total number
of such vectors is X =N 1V

~

' ' N
&

~ There are then
N histories for each initial state indexed by the vectors a,
one for each history:
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close approximation to a classical history. They then
seek a criterion for a subset of all possible quantum his-
tories that will single them out as possible candidates for
a universe that is a good approximation to a classical one.

I

The criterion that they adopt is a slightly more general
version of one introduced by Griffiths [9]. They demand
that the off-diagonal terms of the decoherence functional
should vanish for every pair of histories in the set, i.e.,

def r t

D[a,a']=Tr[P (t )P:,'(t, ) . . P, '(t, )lgo&(golP, '(t, ) P™:,'(t, )P™(t)]
r I

=&yolP" (t ) . . P: '(t )P™(t)P™:,'(t ) . P"(t )lqo&

=0.

(y, lP(a')P(a) ly, & =O . (4)

The criterion that Gell-Mann and Hartle adopt for a set
of histories to exhibit approximately classical behavior is
that all different histories approximately decohere. This
means that the N X N matrix D [a,a'], where a labels the
rows and a' labels the columns, is (approximately) diago-
nal. Given any history which has coherences, it is possi-
ble to coarse grain until the coherences disappear. The
most refined coarse graining that eliminates coherences
(there may be more than one) is a candidate for a set of
classical histories which still retains a maximal amount of
information about the system. Further coarse graining
preserves decoherence, but loses more information about
the initial state, until all N, =1 and P (t; ) = 1 and all in-
formation is lost.

Below we shall state a condition, the CND condition,
which automatically leads to decoherence of histories.
We shall see that this condition is very restrictive and, if
adopted, puts a very tight constraint on possible histories
in quantum gravity.

A consequence of the CND conditions will be that,
after the time t„ the system is in an eigenstate of all sub-
sequent projections. This means that all subsequent pro-
jections after, but not necessarily including, t, do not dis-

turb the state P, '(t, )lg &o. Hence they behave in a
manner analogous to quantum nondemolition (QND) ex-
periments [12] for all times after t&. If we are dealing
with a system which consists of the entire Universe and
its possible histories we have a situation which corre-

I

px( t) ilttl
& ( l

—iftt

When this criterion holds, P(a) and P(a') are said to
decohere. [Griffiths adopted the slightly less stringent
condition that only the real part of (3) hold [9].] We have
adopted the notation a=(a, a „.. . , a, ), i.e., the
vector a with the components in the reverse order.
Clearly it is necessary for the final projection operators

P (t ) and P (t ) to be equal (i.e., a =a' ) in order
that this trace does not vanish trivially.

In practice the criterion of decoherence, (3), can be re-
placed by that of approximate decoherence. P(a) and
P (a') are said to approximately decohere if

I

sponds to quantum nondemolition of the Universe,
whence the phrase cosmological nondemolition (CND),
which follows directly from our conditions below.

A second criterion in the Gell-Mann —Hartle approach
for a quantum history to be a candidate for a good
description of our classical Universe is that of the emer-
gence of classical behavior for macroscopic bodies, but it
is perhaps worthwhile bearing in mind that there may be
some advantages to retaining some of the quantum
behavior of the system in attempting to describe the mac-
roscopic structure of our Universe. For example, it has
been suggested that quantum correlations over large dis-
tances could be important in the description of the large
scale structure of our Universe [13]. The CND hy-
potheses as presented here is not compatible with a com-
pletely classical description of the Universe; variables at
successive moments of time are not completely correlated
according to classical laws, but this may prove to be an
advantage in the long run. There is still much to be un-
derstood at the interface between the classical and quan-
tum worlds.

We shall first give some examples to illustrate our
point. For the first example consider a free nonrelativis-
tic particle of mass M moving on the one dimensional
real line with the coordinate —~ &x & ~. Firstly we
shall take m =2 and X&=F2=2. Thus there are only
two mutually exclusive and exhaustive projection opera-
tors at each of the two times t, and t2, and hence four
possible histories labeled by

(1,1),
(1,2),

a=(a), a2)= (2 1)
(2, 2) .

We can use the exhaustive property of the projection
operators to write

def

P,'(t, )=1 P,'(t, )=P,'(t, ) fo—r i =1,2 .

We shall define projection operators P"(t) by

J dy I dy'exp i
277 g —a) —a) 2t
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--- exp i
Qi, i, (i, i, —)

l
4

where ly ) are an orthonormal basis of position eigenstates, (yly') =5(y —y'), H =P /2M is the Hamiltonian operator
and lx ) is a fixed position eigenstate with eigenvalue x. We have set A'= l.

Now we choose P,'(i, ).=P '(i; ) for two positions x, and x2. A little work shows that, for i, Atz,
3/2

P„(i,)P„(i,)= M
I 2 2'

2

X f dy f dy'exp. i—
t2

(x, —y')

P '(i, )P '(i, )P '(i, )=
2

f dy f dy'exp —™[(y—xl) —(y' —x&) ] ly)&y'l .2' ii(ip il ) —ca —a) 2

Now suppose the initial state is lxo). Then it turns out that

D [(1,1),( 21)]=( xl P'(i, )P '(i, )P '(i, )P '(i, )lx, )

=(x lP '(i, )P '(i )lx ) —(x lP '(i, )P '(i )P '(i, )lx ) (10)

is never zero for finite times. For large times t2 & t& it

tends to zero like =I/Qt2i&(tz il ). Thus —these his-
tories never decohere for any finite values of t2 & t, .

Now consider the two projection operators
P~= lp ) (p l

and P~= 1 P~ for some —momentum eigen-
state lp) with an eigenvalue p. Since the Hamiltonian
commutes with the momentum operator these two pro-
jection operators are independent of time. Take a
different set of histories, again with m =2, X& =2, and
%2=2, but now

P,'(i, )=e 'P 'e '=P ', P', (i, )=P ',
P'(i )=e 'P 'e '=P ' P (i )=P '

It is easy to show that all four I P ', P '
j commute with

p —p
each other and, since P 'P '=0, it is automatic that
these histories decohere for any initial state, as

P 'P 'P '=P 'P 'P '=P 'P P '=P 'P 'P '=0

(12)

and hence a11 off-diagonal elements of the matrix
D [a,a'] vanish.

This example is very simple because the projectors Pp
are independent of time. A less trivial example is the fol-
lowing, where a time dependent set of projectors is con-
structed which nevertheless still ensures decoherence be-
cause they commute at the times t, but not at all other
times.

Consider a spin- —,
' particle in a constant magnetic field

8 in the z direction. The relevant term in the Hamiltoni-
an for the time evolution of the spin is
8=B o =(o z), where we have set eA'/c =1. Define
the projection operators in the x direction by

Clearly these form an exhaustive set, since 1 =P+ +P„.
Their time evolution is given by

+ —IAt
1

Te
(14)

It is straightforward to show that

and
1/2

1

&2M'

with [Q,a ]= 1, and the Hamiltonian is

1 0
[P,+(i),P,+(i')]= ——sin[2B(i —i')] 0 1, (15)

and it immediately follows [since P (i)=1—P+(i)] that
all four commutators [P+—(i),P„+(i') ] vanis—h if and only if
t —t'=r~/2B, where r is an integer.

a,.
As a consequence any pair P, '( i, )with N; =2, .

Vi =1, . . . , m and P; '(i;)=P,+(i, ) will a—utomatically
decohere when all the differences 2B (i; —t~)/m =r;, are
integers for every pair Ii,j I, regardless of the initial state.
This is simply due to the the fact that, if any a, Wa,' in
the matrix D [a,a'] when r,"EZVi,j, then we can com-

I

mute P, '(i; ) through until it hits P, '(i;) and destroys it
since the projection operators at any given time t,- are ex-
clusive.

The foregoing example serves as a prototype for a fur-
ther interesting case, that of the harmonic oscillator with
characteristic frequency co for a particle of mass M. The
creation and annihilation operators are

r 1/2
1x+i

&2M'

1 +1
P =—(1+o. )=——

+1 1
H= p + cox =co & &+—1 2 M

2M 2
(17)
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The Heisenberg picture leads to the time evolution

g ( t }
— i Coi/ g t( t )

—e i rllrg t (18)

We shall construct the Fock space of ei~enstates from the
ground state ~0) by ~n ) =(1/+n )(a )"~0). Note that
our normalization is chosen so that ( n

~
n ) = 1. Now

define the projection operators

1 +I
+1 1

where the two dimensional subspace spanned by ~n + 1 )
and ~n ) has been represented in matrix form. The P„*
have time evolution

1
P„(t)=——

2 +e
+e loot

(20)

Since P„(t) = 1 P„(t)—we have an exhaustive set of two
exclusive projections at time t for each value of n. The
analogy with P,*(t) for the spin- —,

' particle is obvious.
One finds again

1 0
[P„(t),P„+(t')]= —

—,'sin[co(t t')]— (21)

Thus if we have a set of tP„(t;)I at different times
t )t, & . . &t, then they are all mutually commut-
ing provided u(t; t ')/m. =r; —ar.e all integers Vi,j By.
the same argument as before, we see that any set of his-
tories constructed in this way automatically decoheres
provided all the co(t; —t )/n. are integers.

One can show that

(22)

provided n'An+I or n. Thus we can even let the occu-
pation number n depend on the times t; giving a set I n, I,
provided no two of the n, differ by unity, and the con-
struction still gives decohered histories automatically in-
dependent of the initial state.

This model can be extended to a set of JV independent
oscillators, labeled by an integer s = I, . . . , JV, with fre-
quencies co, . We will assume that every co, is a rational
multiple of some basic frequency ~. This assumption al-
lows us to write each co, as co, =(p, /q, )co for two relative-
ly prime integers p, and q, . I.et each oscillator have pro-
jection operators P +, (t, ), defined as a—bove, at each t;. n

n,.

is an integer labeling a Pock state
~ n; ) for each oscillator

s at time t, . There are 2JV such projection operators at
each t;, JV of the P+, (t;) plus their JV complements

P, (t;). They can thus be represented by (2JVX2JV)-
l

dimensional matrices. The condition that these matrices
all commute is that no pair of integers in the set In,']
difFer by unity and that every co, (t; ti )/vr be an in—teger
for all pairs It, , t J. This will be true if the difFerence of
every pair t; —t is m. times a multiple of the largest in-
teger from the set of denominators, i.e.,

maxIqi, . . . , q~]. Again any such system automatically
gives rise to decoherent histories independently of any as-
sumptions about the initial state.

Having presented these examples we now go on to ela-
borate on the concept of mutually commuting projection
operators and the part they play in the Gell-
Mann —Hartle construction.

The basic idea is the following. Suppose a history con-
sists of an initial state, ~italo), and a set of m exhaustive
and exclusive projection operators implemented at times
I t, , . . . , t J, so that N; =iV/m, 'tfi T.hen, if the projec-
tion operators are mutually commuting at the times at
which they are implemented (but not necessarily at all
other times), they can be simultaneously diagonalized. In
an eigenbasis of the projectors it is then clear that any
product of projectors at different times t;, 1 ~i ~ m, must
be diagonal with eigenvalues one or zero. (This does not
have to be true at an arbitrary time, but only at times
from the set I t, J, also the eigenvalues of the projectors
can change with time, e.g., a given projector might have
one particular eigenvalue being 0 at t; and 1 at t, +,.)
Thus the history operator P(a), the product of projectors
over the entire history, is now itself a projection operator
onto a linear subspace of the whole Hilbert space of the
quantum system. Different histories will resu1t in
different subspaces and if all of these subspaces are linear-
ly independent of each other then the histories automati-
cai/y decohere, since P(a)P(a') =0 for two different sets
usa'. That these subspaces are linearly independent for
different histories is automatic since the projections at
each time t; are assumed to be exclusive.

Note that the decoherence of histories via this mecha-
nism is independent of the initial state ~fo), only the
probability of a given history will depend on ~$0). Thus,
in this construction, the debate mentioned above between
the Hawking and Hartle [4] and Vilenkin [5] proposals
for the initial quantum state of the Universe loses some of
its immediacy, though it would still be important to find
the class of initial states which leads to a probability close
to unity for the observed Universe (i.e., homogeneous
Robertson-Walker universe).

Thus we postulate the following hypothesis.
Cosmological nondemoli tion hypothesis. The possible

quantum histories of the Universe for any initial state
~ $0) correspond to sets of mutually exclusive and exhaus-
tive projection operators [P; '(t; )I for each i, labeled by
the N =N&N2 N distinct vectors a, which are mutu-
ally commuting for all the specified times t, , 1 ~i ~ m.

The condition that the projection operators be mutual-
ly commuting at all the chosen times t; can be a very
strong one. It can easily preclude the possibility of
P; '(t;) being complete, and thus force us into losing in-
formation about the initial state. It will certainly place a
very strong restriction on the possible histories of the
Universe and could conceivably even single out a unique
history, leading to a unique prediction for the possible
time evolution of our Universe.

In general coarse graining can only improve the com-
mutation properties of the projection operators. For ex-
ample consider a consistent history for a spin- —, particle
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P', (t, )=PI(tt), P, (t, )=P, (t, )+Pt(t, ),
P2 (tz) =P,'(t, ), P', (t, ) =P', (t, ) .

(23)

Now all projection operators in this new set commute
with each other and the CND condition is satisfied.

It is possible to relax the constraints somewhat and
demand that the projection operators be merely approxi-
mately commuting at the times t, (the approximate CND

with m =2, N, =3, Nz =2, and

P', (t, )=P„, Pt(t, )=P„P,(tt)=1 P—„—P, ,

P,'(t, )=P„, P,'(t, ) =1 P„—,

where P„=—,'(») and P, =(o o). This history is con-
sistent but does not satisfy the CND condition, since nei-
ther P, (t, ) nor Pt(t, ) commutes with P2(t2) or Pz(tz).
%'e now coarse grain to a new set of histories with
N& =2 Xp=2, and

condition). By this we mean that the modulus of their
ofF-diagonal components is much less than unity. After
all, in their original proposal, Gell-Mann and Hartle only
required approximate decoherence for a quantum history
to be regarded as approximately classical. If the o6'-
diagonal components are small then, in the Schrodinger
picture, the Universe does not have much time to wander
away from its state at t; to a diferent eigenstate of
P, ++, '(t, +, ) and thus will almost inevitably be projected
to the same eigenstate at t;+&. Indeed in perturbation
theory, for small time intervals b t; = t; +, t, [t—hat is
small relative to the rate of change of P, '(t, )], r.athe. r
than the probability of a transition being proportional to
At; (Fermi's golden rule), it is proportional to (At, ). .

Thus the rate of change is proportional to At; and van-
ishes for small bt;. This is the famous "watched pot" or
quantum Zeno e6'ect. Thus the approximate CND condi-
tion leads to approximate decoherence. A more detailed
version of the ideas presented here will apear in Ref. [14].
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