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Summary. --  It is shown that, for static space-times, the phenomenon of 
Hawking radiation can be understood in terms of representations of the two- 
dimensional Poincar~ group. Thero zero-energy basis vector of one represen- 
tation contains positive-energy basis vectors of another representation. An 
action of the two-dimensional Poincar~ group is globally defined over the 
whole of space-time, but only generates isometries at the event horizon and 
in the asymptotically flat region (where it degenerates to simple 
translations). Some simple space-times are discussed. 

PACS 03.70 - Theory of quantized field. 

Introduction. 

The purpose of this paper is to draw attention to the role of the two- 
dimensional Poincar~ group in the phenomenon of Hawking radiation in static 
space-times (e.g., Schwarzschild and de Sitter space-times). 

In the first section, the quantum field theory of a scalar field in a curved 
space-time is reviewed in order to establish notation. The necessary existence of 
timelike Killing vectors, for the definition of energy, is emphasized. As an 
illustration the formalism is applied to two inertial observers in Minkowski 
space. 

In sect. 2 a class of static metrics (including Schwarzschild and de Sitter) is 
considered, and the two-dimensional Poincare group is shown to act on these 
space-times in a definite fashion, intimately connected with the existence of 

(*) To speed up publication, the author of this paper has agreed to not receive the proofs 
for correction. 
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Kruskal coordinates. Hawking radiation can be understood in terms of unitary 
transformations between representations of the two-dimensional Poincar~ 
group. 

Section 3 applies the formalism to some metrics which have not previously 
been considered in the literature. In particular, it is shown that a static 
homogeneous electromagnetic field will display the Hawking radiation 
phenomenon. 

Finally, a summary is given in sect. 4. 

1. - G e n e r a l  f o r m a l i s m .  

It would seem (1,5) that the concept of ,<particle number,  in a given quantum 
state is an observer-dependent quantity, i.e. the vacuum is observer dependent. 
We shall first review this phenomenon, by way of setting up notation. 

Consider a massless, classical, scalar field, r subject to the wave equation in a 
space-time ~$/, with a metric g (assumed to be globally hyperbolic and time 
orientable, so that the Cauchy problem is well posed, (~)): 

[ ] r  

A freely falling observer, S, might decompose r into a complete set of 
orthonormal functions, uk(x): 

r = • {ak uk(x) + at u~'(x)}, 
k 

where each uk satisfies [] uk = 0. (If k takes continuous values, the sum must be 
replaced by an integral.) 

However, a different geodesic observer, S ', might decompose r into a 
different set of orthonormal functions, u~,(x): 

r = ~, {a~, u~, (x) + a~t,u~*(x)} , 
k' 

where each u~, satisfies [] u~, = 0; uk would be obtained by S by setting up a 
locally inertial coordinate system (t, x), where t is his proper time and is tangent 
to his world-line. Similarly S' would use (t ' ,x ')  as locally inertial coordinates 
with t '  being his proper time. 

(') N. O. BIRRELL and P. C. W. DAVIES: Quantum Fields in Curved Space (Cambridge 
University Press, 1982). 
(2) G. W. GIBBONS and S. W. HAWKING: Phys. Rev. D, 15, 2738 (1977). 
(3) S.W. HAWKING and G. F. R. ELLIS: The Large Structure of Space-Time (Cambridge 
University Press, 1973). 
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Then S would wish to choose uk so that 

a u k ( x )  
8 ~  - i~(k) uk, oJ(k) >!0. 

In general, ~(k) can only be made independent of t if ~/St is a Killing vector for 
the metric g (at least locally, along a segment of the world-line of S, if not 
globally). If the metric and observer's world line, ~,, are such that separation of 
variables can be used (as will be the case for metrics and observers considered in 
the sequel), then uk can be chosen so that 

u k ( x )  - _ _  exp [ -  i~o(k)t] f i ( x ) ,  

where f i (x)  is independent of t. Similar comments also apply to S'. Then the 
Fourier coefficients can be obtained by Fourier transforming along the 
observers world-line, ], (x = x0 = const): 

1 S 
ak f i  (Xo) - -  

Y 

a ~ -  1 ~ / ~ k )  
~(Xo) ~--~] 

Y 

exp [ -  ioJ(k)t] r x0) dr, 

and the Fourier coefficients of each observer can be related: 

ak E(~kk'a~' * '* = +/~kk'  ak,), 
k '  

where 

_ 1 ~ ( k )  f exp [iw(k)t] u~,(t, Xo) dt 
~kk' f k ( x o )  - -  

Y 

~kk' --ffk (X0) ~ exp [ -  ioJ(k)t] u~, (t, x0) dt 
Y 

are Bogoliubov coefficients (4). 

(4) N. N. BOGOLIUBOV: 2. [~ksp. Teor. Fiz., 34, 58 (1958) (Soy. Phys. JETP, 7, 51 
(1958)). 
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When we pass to quantum field theory, r becomes an operator, ~, on the 
Hilbert space of quantum states, and the Fourier coefficients a~, ak become 
creation and annihilation operators d~, dk. Note that the operators of S act on the 
same Hilbert space as those of S '. In particular, the vacuum according to S is a 
state, I0), defined by 

Io) = o v.  k,  

while the vacuum according to S' is a state 10') defined by 

~ 0 p k,t )=o. 

If ~kk' r 0, then S' sees 10) as containing particles: 

<04 f~; ~ t0) = E t ~ l  ~ , 
k 

where 571, ^'*~' ---ak, a~, is the number operator of S'. At the same time S sees [0') as 
containing particles 

(o'l Io') = 2 I Zkk'l 2, 
k' 

where N~ = a~ a~ is the number operator of S. More generally, a state Ink) which 
S sees as having nk particles of momentum k will appear to S '  to have n~, 
particles of momentum k', where 

n~, = Z {I fltk' 12} + nk(1 + 2 Iflkk' 12) 
I 

and vice versa. 
Thus, if/3kk, # 0, then the vacuum of one observer contains particles of the 

other, and the energies will also differ. If the two vectors ~/~t and ~/~t' were to 
commute, then they would have the same eigenfunctions and eigenvalues. Thus 
a necessary condition for ~kk' :~ 0 is that 

r 

This, however, does not seem to be sufficient, since it is only a local statement, 
whereas particle production requires a knowledge of the global structure of the 
space-time and the world-lines (in particular, the existence of an event horizon is 
an important ingredient, though examples are constructed in (9 where this is not 
essential). 

(5) N. SANCHEZ: Phys. Lett. B, 87, 212 (1979). 
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When ~kk' is nonzero and ~/3t and 3/3t '  are (at least locally) Killing, we have 
the following group-theoretical interpretation of particle production, uk 
(respectively u~,) are a basis of states of a representation of the (local) group of 
isometries. In this representation 3/3t  (respectively 3/St ' )  is diagonal. The 
isometry group is being represented on the space of functions. The Fourier  
t ransform is a unitary transformation between the two different 
representations.  The representations must be different if ~/~t and ~/at '  do not 
commute. When fikk'r the positive eigenvalue basis states of one 
representation contain negative eigenvalue basis states of the other, and vice 
versa. 

As a trivial example, consider two inertial observers, S and S',  in two- 
dimensional Minkouski space, 

t '  = y(t  - v x ) ,  x '  = r (x  - v t ) ,  

where y = ( 1 -  v2) -~/2 is a constant. Then 

a-t= r ~ - ~ -  v~ ,ax  , . 

Hence 3/3t  and 3/3t '  commute and have the same eigenfunctions. In particular, a 
r ight  moving mode has 

uk - ____1__1 exp [ -  i~( t  - x)], u~. - 1 exp [ -  i~ ' ( t '  - x')],  

where oJ = Ik I for massless particles. Along the world-line of S,  x = 0 and t' = ],t, 
x' = - yot thus 

1 ~o f e x p [ i ~ t ] e x p [ - ] , ( l + v ) ~ ' t ] d t ~  ~ ~ '~ 

and fi~o, = -ia_~,o,, = 0. This is jus t  the relativistic Doppler effect. 

2. - T h e  t w o - d i m e n s i o n a l  P o i n c a r ~  group .  

Now consider metrics of the form 

ds  ~ = - V(r )  dt ~ + V-1 (r) dr  2 + r 2 (dO ~ + sin 2 0 d~2), 

V(r )  = (1 - 2re~r) is the Schwarschild metric, while V(r)  = (1 + (A/3) r 2) is the de 
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Si t te r  metric. More generally V(r) = (1 - 2m/r  + e2/r e - (A/3) r 2) is the Reissner-  
Nords t rom-de Si t ter  metric. 

Fo r  all of these metrics 3/3t is a timelike Killing vector  in the region V > 0, but  
it is only tangent  to geodesics in the region V >  0 when V--~ 1 (r = r0). When 
V = 0 (r = rE) there  is an event  horizon, and the Schwarzschild coordinates are 
singular. Nonsingnlar  coordinates at  r = rE can be found (2.6), and are obtained by  

defining 

r* = ; dr  
V(r) 

and 

v = t + r * ,  w = t - r * .  

Then Kruskal  coordinates are defined by 

(I) v' = exp [v/h], w' = - exp [ -  w/~], 

where  ~ is a constant. (The sign of r*  is chosen for the Schwarzschild case. F o r  a 
uniform t r ea tmen t  of de Si t ter  we would use the opposite sign, but  the final 
resul t  is the same.) The metric can be analytically continued to the regions with 

v ' < 0  and w ' > 0 :  

(II) v' = exp[v/h],  w' = e x p [ - w / h ] ,  

(III)  v' = - exp [v/h], w' = exp [ -  w/h], 

(IV) v' = - exp [v/hi, w' = - exp [ -  w/h]. 

F o r  the Schwarzschild metric,  an observer  at ro -- ~ is in region I, while for  the  

de Si t te r  metr ic  an observer  at ro = 0 is in region I. 
The Penrose  diagrams (3) for these two cases are shown in fig. 1. 
With t' = ~(vl ' + w'),  r' -- ~l (v' + w'),  the metric takes the form 

ds 2 = ~2 V(r) exp [ -  2r*/~] ( -  dt '2 + dr  '2) + r 2 (dO 2 + sin 2 0 d~2). 

L e t  C(r )=  ~V1/2exp[ - r*/2]. Then for these coordinates to be nonsingular at 

r - - r E  we require  c(rE)r  0 and is finite and (de~dr)IrE is finite. These conditions 

(6) M. D. KRUSKAL: Phys. Rev., 119, 1743 (1960). 
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t = c o n s t  t ' = o o  

r=const ~ r= Pm=r r=const \ t=const 

/ ",,?- , ~  ; ~ - / '  _t: \ , . /  "~.~x.,.~ ~" ~ / , ' ' / r  
/ ~ ; ~ - ~  7 7 . . ' " I  ' . 2 ~  ~.~o = = \ ~  ~ I . - , / / , : ~ I  - ~ = ~o,,t 

IV ~ r=O=r  o 

Fig. 1. 

are necessary,  but  not sufficient, for the metric to be nonsingular at r = rE. Now 

dr  V -~r u ' 

where  ~- is for Schwarzschild or de Sitter,  respectively.  

Since c r 0 and V = 0 at r = rE, we must  have 

1 _ + 1  dV 

7 -  -~-~r r-rE' 

i .e.  ~ = 4m for Schwarzschild, ~ = V r ~  for de Sitter.  ~ is the ,,surface g rav i ty ,  
as defined in (9, it is the acceleration of an inertial observer  at rE relat ive to one 
at ro. 

Kruskal coordinates are well behaved at r = rE, but  they are singular as 
V-~ 1 (r = ro), since c-~  0 there.  

I t  can be shown that  at r = rE (and o n l y  at r = rE), 3/3t '  is a timelike Killing 
vector,  and is tangent  to geodesics (this point has been emphasized by 
Unruh (8)). At  r =ro  (and o n l y  at r = ro), 3/~t  is a timelike Killing vector  and 
tangent  to a geodesic. 

Since t' = exp [r*/~] cosh(t/~) and r '  = exp [r*/~] sinh(t/~), we have the 
following algebra: 

[ ~  a ]  1 
~/v,~ =~, ~r" 

(v) S. W. HAWKING: C o m m u n .  Math.  Phys . ,  43, 199 (1975). 
(8) W. G. UNRUH: Phys .  Rev. D, 14, 870 (1976). 
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a a ] _ l  a, 
' 

at" =0 .  

This is the algebra of the two-dimensional Poincar6 group. It  holds everywhere,  
but only generates isometries at r = r E ,  when V = O .  (At r0, where V =  1, 
a/at'--~ 0 and ~/~r'--~ O, the algebra reduces to simple time translations, ~/~t, 
which are Killing.) 

Thus a freely falling observer at r = rE, S ', would naturally define outgoing s- 
wave functions 

u '  - 1 1 exp [ -  i~,'(t' - r')] 

(these functions only satisfy [] u' ,  = 0 at r = rE). However a different freely 
falling observer, S, at r = r0 would naturally define s-wave eigenfunctions by 

1 1 1 exp [ -  i~(t - r*)] 
u ~ - 2 v ~ = r o  

(these functions only satisfy [] u~ = 0 at r = r0). The 1/r dependence of u~ can be 
dropped without loosing any physics, since S actually measures the expectation 

value of any r independent operator, A, as J u * A u ~ d ~ .  If  a geodesic 
S 2 (to) 

observer at r* = r*(V = 1) watches a plane wave u' ,  coming from r = rE, he will 

find 

{ co ~1t2 exp [ -  io~r*] 
= exp [io~t] exp [ - i o / ( t '  - r')] dt ,  

where t ' - r '  is a function of t only. In ( t ' , r ' )  coordinates, the world-line, 

ro = const, is given by 

{1 ] 
t' - r '  = - exp - ~ (t - rod , 

where r* = r* (r0) = const. 
Changing interpretat ion variables to r = exp [(1/~) ( r ~ -  t)], 0 < r < ~ ,  

~ ,  = ~ -  I" (-1-i~'~) exp [ i~ '  r] d r .  

0 
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If we give ~' a small, positive, imaginary part, we can integrate by parts to get 

09 p 

which is the integral arrived at in C). 
Thus 

_ 1 ~ exp [2rAco] 

~ ,  is obtained by analytically continuing ar to a_o~,o, : 

1 ~ 1 
io , ip~,12 = 2~ o~' 1 - exp [2r:~co]" 

This is the thermal radiation formula obtained by Hawking (7) with kB T = 1/2r:h~ 
(ku = Boltzmann's constant). 

In the original work of Hawking on the Schwarzschild metric, time 
asymmetry was imposed by assuming that the black hole formed under 
gravitational collapse. Here time asymmetry is imposed since the observer at r0 
only looks at outcoming modes. For the de Sitter metric, the same result holds, 
provided the observer only looks at u' modes coming from the past. 

From the point of view of group theory, the Fourier integral performed to 
calculate the coefficients, ~o,, is seen as a unitary transformation between 
different representations of the two-dimensional Poincar~ group. Seen in this 
light, the phenomenon of particle creation can be deduced from a knowledge of 
the algebra only, since this is sufficient for the construction of the unitary 
representations (of course the algebra itself is only constructed from a 
knowledge of the global structure of the metric). The fact that the positive 
energy eigenstates of 3/~t' contain negative-energy eigenstates of 3/3t becomes 
a statement of group representation theory. 

3. - N e w  a p p l i c a t i o n s .  

The previous presentation has been made general enough for a treatment of 
other metrics of a similar form. For example, the Bertotti-Robinson metric (9,10) 

ds 2 = - (1 - ~2z2) dt2 + (1 - ~2z2)-ldz2 + (1 + ~z2) dx 2 + (1 + ~2 z2)-ldy2 

(9) B. BERTOTTI: Phys. Rev., 116, 1331 (1959). 
(1o) I. ROBINSON: Bull. Acad. Polon. Sci., Ser. Math. Astr. Phys., 7, 351 (1959). 
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has the same essential features with V ( z ) =  ( 1 -  a2z2). This is the metric 'for a 
static, homogeneous, electromagnetic field, with 

E 2 + B 2 = 2a2. 

If  x and y are suppressed, it is just  the two-dimensional de Sitter metric. There 
will be an event horizon at z = 1/a and thermal particle production with 

k B T - 
2~h " 

However, if the electromagnetic field were to become strong enough for 
appreciable temperatures to develop, it has to be so strong that its energy 
density is much higher than 2 m e / ~  where me is the mass of the electron and 
~ e = h / m e c  the electron Compton wavelength. Such strong fields would 
spontaneously create e+e - pairs, which would nullify the field, i .e .  the vacuum 
could not sustain such strong fields. 

Other metrics which would display the same phenomenon are the 
,,generalized>) Reissner-Nortstrom-de Sitter metrics (11): 

ds  2 = - V ( r ) d t  2 + V ( r )  -1 dr 2 + (dx ~ + 2  2 (Z, ~)d~2), 

where 

and 

2 ( X , D =  1 sinh(V~z) 

( V ( r )  = - ~ - - -  + - r ~ ~ = + 1 , 0  
r V - -  " 

However such metrics are difficult to interpret physically. Other metrics are the 
Kerr metric, discussed in(7) and the Taub-NUT metric(3). For the latter, 
however, the region in which the radiation would be observed has closed timelike 
curves, and so the physical interpretation is obscure. 

4 .  - C o n c l u s i o n .  

In conclusion, it has been argued that the phenomenon of Hawking radiation 
can be understood from the point of view of the representation theory of the two- 

(11) D. KRAMER, H. STEPHANI, M. MACCALLUM and HERLT: E x a c t  Solu t ions  of  

E ins t e in ' s  F ie ld  Equa t ions  (DVB, 1980). 
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dimensional Poincar6 group. This necessitates the analysis of two inequivalent 
geodesic world-lines. To perform the unitary transformations between the 
representations it is necessary that the tangent to one observer's geodesic be 
Killing along the whole geodesic, though the other world-line only has a Killing 
tangent vector at the event horizon. 

The Killing symmetry appears essential for an understanding of the problem. 
It is not necessary however that both observers be geodesic, as witnessed by the 
thermal radiation seen by a uniformly accelerating observer in Minkowski 
space (1), where the role of the Poincar6 group is manifest. 

Finally, let us emphasize that the generators of the two-dimensional Poincar6 
group are defined globally, however, they only generate isometries at the event 
horizon r = rE and at r = r0. 

The author would like to thank I. M. Benn for comments which led to this 
investigation. 

�9 RIASSUNTO (*) 

Si mostra che, per  spazi-tempo statici, si pub comprendere il fenomeno della radiazione di 
Hawking nei termini delle rappresentazioni del gruppo di Poincar6 a due dimensioni. I1 
vet tore di base ad energia zero di una rappresentazione contiene vettori  di base ad 
energia positiva di un 'al t ra  rappresentazione. Un'azione del gruppo di Poincar6 a due 
dimensioni ~ globalmente definita su tut to lo spazio-tempo, ma genera solo isometrie 
all 'orizzonte degli eventi  e nella regione asintoticamente piat ta  (dove degenera in semplici 
translazioni temporali).  Si discutono alcuni semplici spazi-tempo. 

(*) Traduzione a cura della Redazione. 

TeopeTn~o-rpynno~o~ no~xo~ ~ npo6~eMe H3AyqeHH~ qepno~ ~blpbl. 

Pe31oMe (*). - -  1-[OKa3blBaeTC~l, qTO ~2"DI CTaTHqeCKHX rIpOCTpaHCTBa-BpeMeHH ~BJIeHrte 
ri3nyqeHrln XoKmJra MO)KHO UIOH~ITb B TepMHHaX npeJlcTaBJieHn~ JIByMepHo~ rpynIIbl 
HyanKape. Ba3nCHbIfi BeKTOp nyneBofi aHeprHn O~HOrO npe/IcTaBJmHn~ co~tep~KuT 
6a3ncnbie BeKTOpbI C nono>KHTeJIbnofI 9neprHe~ Jlpyroro npe/IcTaBJmmm. ~efiCTBne 
JIByMepno~ rpynnb~ 1-IyaHKape rno6anbRo onpe;aenseTcs Ha BCeM npocTpartcTBe-BpeMenn, 
HO n3OMeTpHI4 o6pa3yIOTC~ TOnbKO Ha ropH3OHTe CO6t, ITri~ n a acaMnTOTnqecKn nnocKofl 
O6JmCTH (rae ae~cTBne npon3aOaHT'npocTbie apeMeHHbie TpancnnttHn). O6cyn<aarOTCn 
HeKOTOpUm npOCTbm TmIbl npocTpaHCTBa-apeMeH~. 

(*) llepeeeOeHo pec)am4uetZ 

46 - II Nuovo Cimento B. 


