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ABSTRACT. 2014 The time evolution of a quantum state in the Schrodinger
picture of quantum mechanics is presented as a curve in CPn. An (n + 1)-
state quantum system is considered semi-classically as a cpn bundle over
three dimensional space, with structure group SU(n + 

RESUME. 2014 On identify 1’evolution temporelle d’un etat quantique dans
la representation de Schrodinger de la Mecanique Quantique avec une
courbe dans Un systeme quantique a (n + 1) etats est considere du
point de vue semi-classique comme un fibre cpn au-dessus de l’espace
a trois dimensions, avec SU(n + 1 comme groupe de structure.

INTRODUCTION

In this paper, a geometrical interpretation of the time development
of the Schrodinger equation for discrete quantum systems is developed.
For a Hamiltonian with n + 1 eigenstates, the space of all possible quan-
tum states is interpreted as the complex projective space CPn. A given
set of initial conditions corresponds to a single point on CP" and if the
system is left undisturbed it will follow a continuous one dimensional
curve in CP", the particular curve and the rate at which it evolves being
determined by the initial conditions and the Hamiltonian. The Hamil-
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258 B. DOLAN

tonian enters as a vector field on the vector at each point being the
tangent vector to the unique curve (at a given instant of time) through that
point describing the evolution of the state that corresponds to that point.

In section one the general correspondence between state vectors and
points in cpn is described. In Section two, the two state quantum system
is analysed and described in terms of curves on S2, first for a time inde-
pendent Hamiltonian and then using time dependent perturbation theory;
thirdly, non-commuting Hermitian operators, and their eigenstates are
considered. Section three treats the three state quantum system and sec-
tion four the general (n + 1) state system, both for time independent
Hamiltonians. Finally in section five position dependent Hamiltonians
are considered semi-classically, viewed as cpn bundles over three space
and the particular case of an electron orbiting a monopole is treated as
an example of a non-trivial bundle.

GENERAL FORMALISM

For a quantum system, a particular state is an element of a complex
(n + 1) dimensional Hilbert space. Choose a basis { ~, i = 0, ..., n } of this
Hilbert space where each ei is an eigenstate of the Hamiltonian (assumed

n

given). Denote ~ ~ ~ = by (zo, ..., zn) where zi are complex numbers.
a=o

I t/J &#x3E; can then be identified with a point in ~n + 1. Any two vectors which
are a complex multiple of one another are identified as the same quantum
state, i. e. (zo, ..., z~) = ~o? ... , zn) is considered to be the same state as
(zo,..., zn), B { 0 }. This is the definition of the complex projective space

with n complex dimensions (or 2n real dimensions). Thus the space
of all possible quantum states of a system with n + 1 eigenstates is topo-
logically Each point of cpn corresponds to a different state of the
system. As the system evolves in time, according to the Schrodinger picture,
it traces out a one dimensional curve in Provided the system is left
undisturbed, this curve will be continuous, but if a measurement is made
the system will make a discontinuous jump from one point of cpn to ano-
ther, the latter being a point corresponding to an eigenstate of the quantity
measured.

If the ei are normalised to unity, using a metric on the Hilbert space,
then this gives a natural metric on the Fubini-Study metric [1 ].
This is obtained by embedding cpn in cn+ 1 and restricting the zi, so that

n

 = 1, i. e., = 1, thus restricting the zi to lie on the unit

t=0
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259THE TIME EVOLUTION OF THE SCHRODINGER EQUATION

sphere, s2n + 1, in cn+ 1. Using the standard metric on S2n + 1, the Fubini-
Study metric on cpn is obtained by projecting out the remaining U(l)
from (zo, ... , zn). This corresponds to the Hopf fibration of s2n+ 1.
Let be a ket for an n + 1 dimensional quantum system. If the

system is left undisturbed, the time evolution of the ket is given by the
Schrodinger equation (the notation is that of Ref. [2 ]).

where H(t) is the Hamiltonian - a Hermitian operator on the Hilbert space.
Interpreting as a curve y(t) in the Schrodinger equation is

Thus we have a geometrical interpretation of the Hamiltonian as a time
dependent vector along y(t) on (The symbol H(t) is used here to repre-
sent a Hermitian operator in a Hilbert space and the corresponding
vector on The method of obtaining the correspondence will be deve-
loped in the following sections).
By varying we can vary y so as to cover the whole of cpn and thus

extend HV(t) to a time dependent vector field on Note that for y(t)
corresponding to a state satisfying the Schrodinger equation the tangent
vector to the curve y(t) at any point does not depend on the direction of y(t)
at earlier times, since it depends only on HV(t). This corresponds to the fact
that the time evolution of a quantum system depends only on the Hamil-
tonian and the state at a given time not on the past history of the state.

In particular, if the Hamiltonian is time independent, given any point
in the tangent vector for any y(t) obeying the Schrodinger equation
always points in the same direction, thus y(t) can never intersect itself.
If y(t) ever passes through the same point of cpn for different values of t,
then it forms a closed loop in for a time independent Hamiltonian.

THE TWO STATE QUANTUM SYSTEM

a) Evolution with time independent Hamiltonian.

Consider a quantum system with only two eigenstates (e. g. the spin
of an electron in a magnetic field). The space of all quantum states is thus
CP1 which is topologically S2, the two dimensional sphere.

Choose co-ordinate on CP1 as follows. Let If 0, let

Zo(l, z 1 /zo) = zo( 1, ~ 1 ). Then ç 1 is a single complex co-ordinate and covers
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260 B. DOLAN

the whole of the southern hemisphere 1. (Indeed ~ 1 can be used
to cover the whole sphere except for the north pole where |03BE1| ~ (0).
Similarly, if z1 ~ 0, let = z1(03BE0, 1). Then Ço covers the northern
hemisphere for I Ço I ~ 1. In the overlap of the two co-ordinate regions
Çl = ~0 1. Writing Ço = 0 ~ r  oo, 0 ~ c~  2~c, then in standard
polar co-ordinates on S2 (radius unity) r = tan 8/2, 0 ~ 9  7r. (See fig. 1).
The magnitude of Ço gives the polar angle on S2 and the phase the azimuthal
angle. This procedure is nothing more than the stereographic projection
of S2 onto [R2 ~ c.

Consider a time independent Hamiltonian, with eigenvalues Eo and Ei.
Take ( 1, 0) I t/J 1 ) = (0,1) as eigenvectors in the Hilbert space,
([2, with eigenvalues Eo and E 1 respectively. With the co-ordinate identi-
fication above, the north pole corresponds to the eigenvector and
the south pole to ~. The values of 0/2 is the mixing angle for a general
state. In general, if the polar co-ordinates had been chosen with a different
orientation relative to ç 0, the eigenstates would not be at the poles, but
they are always diametrically opposite one another.
The Schrodinger equation reads

giving

and
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261THE TIME EVOLUTION OF THE SCHRODINGER EQUATION

Hence once the initial state is given, ço(O) 0, or ~(0) 0,
the subsequent magnitudes or ~1(t) do not change, only their phases.
Hence the evolution of a quantum state is described by circles of constant
latitude, the state orbits at a rate ~ = (E 1 - (see fig. 2) and these
are the flow lines of the Hamiltonian vector field on S2.

The state does not move from its initial position on CP1 if Eo = E 1
or if it is at one of the zeros of the Hamiltonian vector field at t = 0. The
zeros of the Hamiltonian vector field therefore are at the eigenstates.
The Fubini-Study metric on Cpl (i. e. the standard metric on S2) has

SO(3) as its group of isometries and the flow lines of the Hamiltonian vector
a

field correspond to the flow lines of the Killing vector - 
of this metric.

b) Time Dependent Perturbation Theory.

Following the usual construction of perturbation theory [2] ] suppose
that the Hamiltonian can be decomposed into the sum of a time independent
part, H, and a time dependent part, V, proportional to some small para-
meter. The Schrodinger equation is now

Vol. 45, n° 3-1986.



262 B. DOLAN

Define the evolution operator, T, by

Let

where Eo and E 1 are the eigenvalues of the unperturbed Hamiltonian, H.
Also let

Then the Schrodinger equation reduces to

Now expand T* in the small parameter

where Tn* is order in the small parameter, giving

Consider the first order equation

Suppose that, in the eigenbasis of the unperturbed Hamiltonian, V has the
form _ _ _ . ... .

with voo and vll real. Then, to first order in vi~

where ’ the superscript on means first order in v~~.

Annales de l’Institut Henri Poincaré - Physique theorique



263THE TIME EVOLUTION OF THE SCHRODINGER EQUATION

This gives

and

As an example of the use of these formulae, consider the case where 
for t  0 and vij are constant for t &#x3E; 0, with real.
Then if Ei,

with a similar expression for ~ 11 ~(t).
To picture the evolution of the system consider the following cases,
i) zo(0) = 0, Eo = - E1 - E &#x3E; 0 (i. e. the system sits at the north pole

until V is switched on). Then ço(O) is well defined and

Thus

Vol. 45, n° 3-1986.
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and

F

Hence the system describes a small circle, radius 2014, tangent 
to the north

pole (see fig. 3). The period is since the circle is covered twice for

0  ~ 

Either 03BE0 or 03BE1 1 wll do as a co-ordinate. Take 03BE0

Thus

Annales de l’Institut Henri Physique theorique .



265THE TIME EVOLUTION OF THE SCHRODINGER EQUATION

For 2014 « 1, the system circles round the equator until V is switched on
E

at t = O. Thereafter the system follows the great circle given by

v

which is a circle tilted through an angle E (see fig. 4).

Finally consider the case - of degeneracy Eo = E 1 = E &#x3E; 0. Then, with
v = &#x3E; 0 and v = v10 , real ( &#x3E; 0)

For example zo(0) = 0. Then the system sits at the north pole until t = 0,
when V is switched on. Subsequently

Thus, provided 2014 « 1, 0 grows linearl 0 = 2014, and remains constant.g y ~ , ~ a .

Hence the system begins to roll down a great circle of constant longi-
tude (see fig. 5).

Vol. 45, n~ 3-1986.



266 B. DOLAN

Given a time independent Hamiltonian, H, with eigenvalues Eo and Ei,
consider any other Hermitian operator

in the Hamiltonian eigenbasis. Let (~) and (~_) be eigenvectors of A
(this assumes that (~) is not an eigenvector) with eigenvalues ~+ and ~, _

respectively.
Then

where 1] = 201420142014, , c ~ a. If c = a, then
2h

The two eigenstates must correspond to two points on S2. These are
given by

Annales de l’Institut Henri Poincaré - Physique theorique



267THE TIME EVOLUTION OF THE SCHRODINGER EQUATION

Hence

Thus

(if c = a, then e + - 6 _ = 03C0/2) and the eigenstates of A lie diametrically
opposite one another on S2. To visualise the situation, consider the fol-
lowing two cases.

(see fig. 6) Lines of constant mixing angle for the eigenstates of A are circles
of constant latitude relative to the eigenpoles of A. These intersect the circles
of constant 9, since the eigenpoles of A are tilted relative to the eigenpoles
of the Hamiltonian through the angle 0- = 1 /2~.

If A is a perturbed Hamiltonian, then this shows that the results

i) and ii) of part b) for the time dependent perturbation theory are
v

exact for small - i. e. the orbits are correct for all time.

Vol. 45, n° 3-1986.
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ii) If a = c, then the eigenpoles of A lie on the equator of the Hamilto-
nian. If the state is set up at t = 0 with an equal mixture of eigenstates of
the Hamiltonian, then its subsequent evolution will take it directly through
both eigenstates of A, with period Ei).

THE THREE STATE QUANTUM SYSTEM

Consider a quantum system with three discrete eigenstates and a time
independent Hamiltonian. Topologically the space of all possible quantum
states in The Schrodinger equation for a Hamiltonian with eigenva-
lues Eo, E1 and E2 is

0, let ~ 1(t) = and ~2(t) = (The case Zo(0) = 0
can be treated in an obvious way, by choosing a different co-ordinate
chart in and 03BE2 are complex co-ordinates on and the system
follows a one dimensional curve in parameterised by t and given
explicitly by

Unlike the two eigenstate system, this curve is not closed unless

for some integers n and m (if either E 1 = Eo or E2 = Eo, one co-ordinate
remains fixed and the motion is restrained to 

Let

then the time evolution of the system is such that rl and r2 are fixed (by
initial conditions) but 03C61 and 03C62 vary with time. Thus the curve described
by the system lies on a two dimensional torus embedded in p2_ 

J 
____ 

..., 
~.____

Explicitly

The situation is depicted 0 figs. 7 and 8.
The point ç 1 == ç 2 = 0 does not move with time. It is a stationary state,

Annales de l’Institut Henri Poincare - Physique " theorique "
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the eigenstate of the Hamiltonian associated with the eigenvalue Eo.
There are two other stationary points (which require different co-ordinate
charts) given by

These three stationary points correspond to the three zeros of the Hamil-
tonian vector field on That there are three zeros of any vector field

on Cp2 follows from the fact that the Euler characteristic, X, of Cp2 is 3.

Now consider the following change in co-ordinates

Vol. 45, n° 3-1986.
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where 0  p  oo, 0  ()  03C0, 0  03C6  203C0, 0  03C8  403C0, 03B8, 03C6 and 03C8 are

Euler angles on S3 (~ is a different co-ordinate from ~1 and ~2 used earlier).
In this co-ordinate system, the Fubini-Study metric on CP2 is given by [1] ]

The tangent vectors to the torus on which a curve, obeying the Schrodinger

equation, lies are 2014 and 2014, for fixed rand e. These two vectors fields
are Killing vectors for the metric, g, and obviously commute. The group

of isometries of g is which has rank 2. Thus 2014 and 2014 actually
a~

span the Cart an subalgebra (i. e. the maximal Abelian subalgebra) of the
algebra of Killing symmetries for g (in the standard representation of

Annales de l’Institut Henri Poincaré - Physique theorique



271THE TIME EVOLUTION OF THE SCHRODINGER EQUATION

the SU(3) algebra, 2014 and 2014 would be linear combinations of ~3 and /).g).
a~

This is a generalisation of the CP1 case, where the Cartan subalgebra was
only one dimensional and so the flow lines lay on T 1 : S rather than T2.
Thus we are led to the interesting interpretation of the torus on which

the curve for a quantum system lies - it is the surface generated by the
flow lines of the Killing vectors in the Cartan sub algebra of the group
of isometries of the Fubini-Study metric on The size of the torus is
specified by the initial conditions p(o) and 8(0), and the curve followed
on the torus is specified by the initial conditions and and the
Hamiltonian eigenvalues. As before, if the Hamiltonian is time independent,
the curve must not intersect itself, but just winds round the torus indefin-
tely (fig. 7).
Of course, all this is only valid if the system is left undisturbed. If a measu-

rement is made, the system immediately jumps to a point in Cp2 corres-
ponding to an eigenvalue of measured operator.

THE (n + 1) STATE QUANTUM SYSTEM

A system with (n + 1) eigenstates is topologically Generalising
the results of the previous two sections, the time evolution of such a system
(if left undisturbed) will be described by a one dimensional curve on an
n-dimensional torus, Tn, the direction of the curve being specified by the
Hamiltonian eigenvalues Eo, ..., En. The Hamiltonian, considered as a
vector field on will have (n + 1) zeros since the Euler characteristic
for cpn is n + 1 and so there will be n + 1 stationary states, the eigenstates
of the Hamiltonian (corresponding to the limit as the torus shrinks to
zero size).
The group of isometries of the Fubini-Study metric on cpn is

SU(n + which has rank n and therefore the Cartan subalgebra
will have dimension n. For given initial conditions, the torus will be gene-
rated by the flow lines of the Killing vector fields for the metric which lie
in the Cartan subalgebra.

In the limit of n oo (e. g. the Harmonic Oscillator) the manifold cpro
is well defined and so can be used to describe such a discrete system. A
continuum system (i. e. one with an eigenvalue spectrum which is conti-
nuous) however, cannot be described in this way since the infinity of eigen-
values are dense in the real line and it is not possible to set up a one to one
correspondence between the eigenvalues and the integers which label the
co-ordinates in CP°°.

Vol. 45, n° 3-1986.
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POSITION DEPENDENT HAMILTONIANS

So far only abstract Hamiltonians have been considered, with given
eigenvalues (possibly time dependent). Now consider the case where the
Hamiltonian depends on position (it will be assumed that the number of
eigenvalues does not depend on position). When the Hamiltonian depends
on position, the situation is more complicated. In a full quantum treat-
ment, the eigenvalues of the Hamiltonian are only obtained after integrating
bilinears in eigenfunctions over all space. In general, the system will have
both discrete and continuous sectors. One approach would be to put
the system in a finite box, which would make the spectrum totally discrete.
Here a simpler, semi-classical treatment will be applied. The position

of the particle will be treated classically, while the internal degrees of
freedom (e. g. spin) will be treated quantum mechanically. This situation
is, mathematically, a cpn bundle over three dimensional space, with a
different Hamiltonian vector field at each point in three space. As we move
about in three space, the zeros of the vector field will move about on cpn.

Choosing one such zero gives a unique point on cpn associated with each
point in space and so gives a section of the cpn bundle over the three space
(this assumes that the eigenvalues of the Hamiltonian are non-degenerate).
The fibre group for the bundle will be SU(n + since the Hamil-
tonian vector field can be moved about by Lie transport along the flow
lines of the action of this group on cpn.
For example, consider the case of an electron moving in the classical

background of a charged particle with, possibly external, magnetic fields. ,

The electron’s spin is a two state quantum system and so can be described
by S2. Since the field of the particle is infinite at the origin, this
point must effectively be removed from space, giving space the topology
t~~ x S2 (~ = positive real numbers). The system can therefore be des-
cribed by an S2 bundle over ~ x S2, the structure group of which will
be S0(3) ~ 

If the Hamiltonian for the system is given, then we know how the zeros
of the Hamiltonian vector field on the quantum S2 move as we move about
in three space. This associates an element of SO(3) (a rotation of the quan-
tum S2) with every one dimensional path in space. Taking the limit as the
paths shrink to zero gives one element of the Lie algebra of SO(3) associated
with every direction in three space, i. e. an SO(3) Lie algebra valued connec-
tion on the bundle. Thus the Hamiltonian determines the connection and
hence the global topology of the bundle.

Since [R~ is contractible, bundles over ~+ x S2 are in one to one corres-
pondence with bundles over S2. For any bundle with structure group, G,
over a sphere, sn, the bundle is classified by an element of [3 ].

Annales de l’Institut Henri Poincaré - Physique theorique
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Now 03C01 (SO(3)) = Z2, therefore we know that there are two inequivalent
bundles for this system. One is obvious, the trivial bundle, where a constant,
external magnetic field is applied to e. g. a Hydrogen atom, and the elec-
tron’s spin is aligned parallel or anti-parallel, as in the Zeeman effect.
Then the zeros of the Hamiltonian vector field do not move on the quan-
tum S2 at all as we move about the spatial S2, and the SO(3) connection is
everywhere zero.
The other, non-trivial, bundle is also of interest, however. To see what

physical system this bundle corresponds to, consider the elements of

rcl(SO(3)). If, in moving round a closed path in SO(3), starting from the
identity, we arrive back at the identity via a rotation of 4cn, n an integer,
then this corresponds to the identity element of If however,
we arrive back after a rotation of (4n + 2)7r, then this corresponds to the
non-trivial element Suppose n = 0. If we follow a closed path
on the spatial S2, e. g. round the equator, then this will correspond to a
closed path in SO(3), given by the movement of the zeros of the Hamil-
tonian vector field (spin up and spin down in the magnetic field). If the zeros
of the Hamiltonian vector field rotate through 27T on the quantum S2,
then we have a quantum system corresponding to the non-trivial element
of (Remember that the zeros of the, Hamiltonian vector field
are always diametrically opposite one another).

Such a configuration is supplied by an electron moving in a radial
magnetic field. Then the eigenstates of the Hamiltonian correspond to
the spin pointing radially inwards or radially outwards, and they rotate
through 27T on the quantum S2 as we go once round the equator of the
spatial S2. 

Let 0 ~ a  7T and 0 ~ {3  2~c be polar co-ordinate on the spatial S2,
radius r (e and 03C6 are reserved for polar co-ordinates on the quantum S2) and

where B = with g the monopole strength. The Hamiltonian is

Then, on the quantum S2, with co-ordinate ç 1 as in section 2c, the zeros
of H are given by _

Vol. 45, n° 3-1986.
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So

and

showing that 03C6+ rotates through 21t as 03B2 does, as claimed.
Classically, there are no stable orbits for an electron in a monopole

field. However, if the central charged particle has electric charge as well
as magnetic charge, then stable orbits exist, and such a system could be
realised as an electron orbiting a dyon.
More generally, for an n + 1 state quantum system in the classical

background of a charged particle, the relevant topology would be that
of a cpn bundle over ~ x S2, with structure group SU(n + 
These bundles are characterised by + 1)/~n + 1 ,: Zn+ 1. Hence
there are n + 1 such inequivalent bundles.

CONCLUSIONS

It has been shown how an (n + 1) state quantum system evolves, according
to the Schrodinger picture, as a curve in CP". The curve lies on an n-dimen-
sional torus, T", which is generated by the flow lines of the Killing vectors
spanning the Cartan subalgebra of the isometry group for the Fubini-
Study metric on CP". The size of the torus is determined by the initial condi-
tions of the quantum state. The one dimensional curve, and the rate at
which it evolves, is determined by the Hamiltonian, which is viewed as
a tangent vector to the curve. The Hamiltonian is a vector field on CP"
with n + 1 zeros (corresponding to the fact that the Euler characteristice
of CPn is n + 1). The points of CP" at which the Hamiltonian vector field
vanishes correspond to the .n + 1 eigenstates of the Hamiltonian.
When the Hamiltonian depends on position, the whole system can be

viewed semi-classically as a CP" bundle over three space, with fibre group
SU(n + The Hamiltonian determines the connection. The specific
case of an electron in a dyon field (corresponding to an S2 bundle over S2)
has been considered in detail.

It is interesting to note that, if the connection is given dynamical status,
we are naturally led to the notion of a non-relativistic SU(n + 1) gauge
theory associable with n + 1 state system.
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