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How does healthy aging impact on the circadian clock?
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Abstract Circadian rhythms are recurring patterns in a

host of physiological and other parameters that recur with

periods of near 24 h. These rhythms reflect the temporal

organization of an organism’s homeostatic control systems

and as such are key processes in ensuring optimal physi-

ological performance. Dysfunction of circadian processes

is linked with adverse health conditions. In this review we

highlight the evidence that normal, healthy aging is asso-

ciated with changes in the circadian system; we examine

the molecular mechanisms through which such changes

may arise, discuss whether more robust circadian function

is a predictor of longevity and highlight the role of circa-

dian rhythms in age-related diseases. Overall, the literature

shows that aging is associated with marked changes in

circadian processes, both at the behavioral and molecular

levels, and the molecular mechanisms through which such

changes arise remain to be elucidated, but may involve

inflammatory process, redox homeostasis and epigenetic

modifications. Understanding the nature of age-related

circadian dysfunction will allow for the design of

chronotherapeutic intervention strategies to attenuate

circadian dysfunction and thus improve health and quality

of life.
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Introduction

The world population is inexorably aging (Ferrucci et al.

2008). Among the many societal and health challenges that

this situation poses is the need to understand how aging

impacts on circadian rhythms and sleep, in order to

delineate the impact that these changes may have on health

and wellbeing. Circadian rhythms are recurring cycles in a

host of physiological, biochemical and behavioral param-

eters that display periods of near 24 h (Dibner et al. 2010).

Contribution to the timing of the sleep/wake cycle is one of

the most prominent outputs of the circadian system and

there is a complex interplay between the circadian and the

homeostatic control systems in determining sleep onset and

duration (Franken 2013).

Circadian rhythms are internally generated by an

intrinsic circadian timekeeping system, which in turn

interacts with rhythmic stimuli in the environment to pro-

duce biologically salient rhythms. Given the large number

of mammalian processes that have been shown to be under

some type of circadian control, it should be of no great

surprise that clock dysfunction is linked with deleterious

health outcomes (Smolensky et al. 2015). This point is

further reinforced by consideration of the presence of

molecular clocks in the vast majority of mammalian tissues

and cell types, and the widespread influence of the clock on

gene expression (Koike et al. 2012). In this review we

discuss the evidence for circadian clock dysfunction in
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healthy aging, the impact of circadian timing for longevity

and how circadian dysfunction may contribute to deleteri-

ous health outcomes in older age.

Changes in circadian rhythms and sleep/wake
behavior associated with aging

Age has a marked effect on circadian rhythms and the

temporal organization of sleep/wake behaviors. A striking

example of this is alterations in the timing of sleep/wake

behaviors (termed chronotype) and how these change over

the developmental time course. Large-scale epidemiologi-

cal studies indicate that chronotype, as indicated by the

timing of the midpoint of sleep on non-work days, is pro-

foundly influenced by age, with infancy and childhood

being associated with early chronotype, adolescence with

late chronotype and older age with early chronotype

(Roenneberg et al. 2003). In terms of understanding the

physiological basis for these gross patterns in daily

behavior, analysis of older subjects under forced desyn-

chrony protocols that allow for the accurate assessment of

circadian rhythms, as opposed to sleep/wake rhythms,

reveals that the period of circadian rhythms in older people

does not differ from those in younger people (Czeisler et al.

1999). This finding indicates that the precision of the

intrinsic circadian timing is not overtly impacted by heal-

thy aging. However, numerous studies indicate that the

amplitude of circadian rhythms is progressively blunted in

healthy aging. This is manifested in a less clear demarca-

tion between consolidated periods of waking and sleep,

with more sleep episodes occurring in the day and more

waking occurring during the night (reviewed in Hofman

and Swaab 2006). Such disturbances may be of particular

importance for many functional domains; for example,

cognitive performance is predicted by circadian amplitude

in older participants (Oosterman et al. 2009). There may

also be altered phases of various rhythms in aging, with

core body temperature and melatonin secretion showing

altered phase (Duffy and Czeisler 2002; Yoon et al. 2003).

These results may indicate that the circadian systems are

less able to adjust to environmental time cues with age, and

as a result are more prone to desynchronisation (Arellanes-

Licea et al. 2014).

Anatomy and neurophysiology of the SCN
pacemaker and aging

Sleep is an active phenomenon that is controlled by var-

ious levels of the CNS (Stiller and Postolache 2005). The

centers that are implicated in the homeostatic regulation

of sleep state are located in the medulla oblongata, pons,

locus coeruleus, substantia nigra, the basal forebrain and

the hypothalamus (Stiller and Postolache 2005; Zeman

and Reading 2005). Interestingly these nuclei are under-

stood to be under the influence of the circadian system,

and further feedback onto that system (Moore, 2007). The

master circadian pacemaker of this system is located in

the suprachiasmatic nucleus (SCN) of the anterior

hypothalamus, which is a small bilateral structure located

directly dorsal to the optic chiasm, through which it

receives direct retinal innervations from intrinsically

photosensitive retinal ganglion cells (Saper et al. 2005).

The SCN then projects, mostly indirectly via other

hypothalamic relay stations, extensively throughout the

brain to control the phase of extra-SCN semi-autonomous

local CNS clocks (Saper et al. 2005; Guilding and Piggins

2007). Phase information is also conveyed from the CNS

to peripheral pacemakers through a complex mixture of

autonomic, endocrine and other physiological signals (e.g.

core body temperature) to ensure that that all of the

constituent pacemakers of this system have appropriate

phase-relationships; in other words, that there is internal

synchrony (Dibner et al. 2010).

So an obvious place to start when trying to understand

the nature of the mechanisms that give rise to alterations in

sleep/wake behavior in normal aging is to ask whether

there are anatomical and/or neurochemical variations that

occur within the master SCN pacemaker. A number of

studies have examined the SCN from post-mortem tissue

and reported that there are not major gross pathological

changes in the aged SCN; there is no evidence of marked

cell loss in the SCN during normal aging (Hofman and

Swaab 2006). Having said this, there is evidence for

alterations in distinct populations of neuropeptidergic

neurons in the SCN: cell numbers expressing arginine

vasopressin (AVP) do not show diurnal rhythms in older

subjects compared to the marked rhythms observed in

younger subjects (Hofman and Swaab 1994). Given a

recently demonstrated role for AVP in maintaining circa-

dian pacemaker resilience in the SCN (Yamaguchi et al.

2013), it is possible that alterations in SCN AVP produc-

tion in part underpin the altered circadian resetting

observed in older people and animals. Another key SCN

neuropeptide, vasoactive intestinal polypeptide (VIP), also

shows age-related changes. In males, aging is associated

with a decrease in VIP expression. VIP appears to play a

key role in the SCN neuronal network (Vosko et al. 2007)

and so alterations in VIP expression could be a key con-

tributor to circadian dysfunction in older age.

SCN expression of the MT1 melatonin receptor is also

diminished in healthy aging in the human SCN, indicating

that melatoninergic feedback to the SCN may be weakened

in aging (Wu et al. 2007). These findings are in agreement

with results from other similar studies that show that the
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SCN of aged rodents is less responsive to melatonin (Von

Gall and Weaver 2008). Aside from decreased SCN sen-

sitivity to melatonin, there is a considerable body of evi-

dence that suggests melatonin secretion by the pineal gland

is compromised by advancing age (Touitou 2001). In the

elderly there is on average a 50 % decline in nocturnal

melatonin levels, although there are high levels of inter-

individual variation (Touitou 2001). Increased wakening

after sleep onset, and concomitant increases in nocturnal

light exposure, could possibly explain such suppression,

especially given the recent suggestion that the human

melatoninergic system is more sensitive to suppression by

light than previously thought (Vartanian et al. 2015). A

recent cohort study of melatonin in an elderly population

has indicated that decreased 6-sulftoxymelatonin (a

metabolite of melatonin) was associated with declined

cognition and lower mood, and that these associations were

independent of each other (Obayashi et al. 2015a). Other

studies from the same cohort have indicated that higher

melatonin secretion is associated with decreased white

blood cell and platelet counts and with decreased arterial

stiffness (Obayashi et al. 2014, 2015b). These results

indicate that higher levels of melatonin secretion may be

protective for numerous physiological systems in aging.

Given that melatonin may exert anti-oxidant (Reiter et al.

2014) and anti-inflammatory actions (Hardeland et al.

2015), preserved functioning of the melatoninergic system

into older age may produce multiple physiological benefits.

Further, given the sleep-promoting properties of melatonin

(Zhdanova 2005), there is the possibility that aging is

associated with a vicious cycle. In such a cycle, weakened

SCN circadian output leads to diminished amplitude of the

sleep/wake cycle, more nocturnal awakening and more

nocturnal light exposure; this in turn decreases nocturnal

melatonin, lessens the feedback from melatonin back to the

SCN and thus propagates weakened SCN output. This in

turn would lead to more fragmented sleep, more sleep debt

and the consequences associated with that (such as alter-

ations in inflammatory mediators; Frey et al. 2007) against

a background in which some of the protection of melatonin

is lost due to age-related declines in its secretion and/or

diminished responsively of target tissues. Recently it was

suggested that the integrity of the cellular genome and

metabolic function can be influenced by light at night and

associated suppression of circadian melatonin production

(Belancio et al. 2015).

An optimal regime for the use of exogenous melatonin,

or melatoninergic agonists, to counter such effects in old

age has yet to be formulated and thoroughly investigated

(Vural et al. 2014).

Normal healthy aging is associated with low-grade

chronic neuroinflammation (‘‘inflammaging’’; Baylis et al.

2013) and alterations of inflammatory processes in the

hypothalamus have recently been shown to induce

remarkable senescence-resistant phenotypes (Zhang et al.

2013a). Neuroinflammation within the aged SCN may

therefore play a role in aging-related circadian dysfunction.

SCN from older rodents has been shown to demonstrate

elevated levels of microglial and astrocytic activation

(Deng et al. 2010). Further aging has been associated with

changes in SCN cytokine and cytokine receptor levels

(Beynon and Coogan 2010; Beynon et al. 2009). Given that

proinflammatory mediators such as tumor necrosis factor a

(TNF-a) and interferon-g (IFN-c) can alter SCN neuronal

function (Kwak et al. 2008; Nygård et al. 2009) and can

alter circadian phase (Duhart et al. 2013; Paladino et al.

2014), there may be a role for age-related neuroinflam-

mation in age-associated clock dysfunction. The induction

of chronic neuroinflammation that persists following sepsis

is also associated with altered circadian functioning, some

facets of which (e.g. altered phase resetting) appear to

resemble those reported in aged animal models (O’Cal-

laghan et al. 2012). Further evidence for such a mechanism

comes from drosophila models of Alzheimer’s disease,

wherein there are significant impacts on circadian rhythms

in behavior, even though central clock neurons are spared

(Long et al. 2014). These findings suggest that in these

models a synaptic pathology, possibly associated with

increased inflammation, is important in mediating the

impairment of circadian rhythms in behavioral output,

rather than behavioral impairment being a function of clock

neuron dysfunction.

Given that aging is not associated with marked neu-

ronal loss or other neuropathology in the SCN, it is

important to note that several studies indicate that aging is

associated with substantial alterations in SCN neuro-

physiology. SCN neurons normally show rhythms in their

electrophysiological discharge rates in a neurochemical

phenotype-dependent manner (Belle et al. 2009). The

pattern of firing appears to be important physiological

outputs of the SCN, and in the aged SCN there is a

blunting of this rhythmic output (Farajnia et al. 2012;

Nakamura et al. 2011; Watanabe et al. 1995). These

changes in SCN output may be reflective of changes in the

inter-neuronal coupling of the SCN network, a hypothesis

that would be in keeping with the above-mentioned

changes in neuropeptides in the aged SCN. Further, there

have been descriptions of age-related changes in the

GABAergic SCN (Palomba et al. 2008) as well as changes

in responsiveness to glutamate, histamine and GABAergic

stimulation (Biello 2009). The overall finding appears to

be that the amplitude of SCN output decreases with age,

perhaps through weakening of the SCN network and intra-

oscillator coupling (Farajnia et al. 2014); such an effect is

consistent with the behavioral findings of dampened

rhythm amplitudes in older age.
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Clock genes and aging

The discovery of the molecular clocks that control cell

activity has expanded our understanding of physiology and

behavior. However, the rhythmic mechanisms by which

transcriptional signals can coordinate behavioral and

physiological processes are not yet fully elucidated (Cho

et al. 2012). The circadian clock generates the circadian

rhythm and involves a panel of clock genes whose basic

properties are conserved from flies to humans (Hardin,

2011). In most mammals, nearly all the cells and organs

exhibit circadian modulation of gene expression (Dibner

et al. 2010). However, the mechanisms underlying age-

related decay of the circadian system are still not well

understood. The circadian rhythm is driven by a molecular

clock involving a transcriptional negative-feedback loop.

The canonical genes involved in the molecular system of

the mammalian circadian clock include the Circadian

Locomotor Output Cycles Kaput gene (clock), the Brain

and Muscle ARNT-like protein 1 encoding gene (bmal1),

Period genes (per1, per2 and per3), Cryptochrome (cry1

and cry2), and rev-erb-a (Nagoshi et al. 2010; Parish 2013;

Rakshit and Giebultowicz 2013). The basic intrinsic

mechanisms involve BMAL1 protein forming a hetero-

dimeric complex with CLOCK (or NPAS2), which in turn

drives the transcription of the per and cry genes and con-

sequently increases PER and CRY protein levels. PER and

CRY proteins are released from the nucleus into the

cytoplasm where they form PER/CRY heterodimers. When

the PER/CRY heterodimer concentration reaches the crit-

ical level they move back into the nucleus and acts as

negative regulators of BMAL1-CLOCK/NPAS2 hetero-

dimer, thereby inhibiting its own protein synthesis (PER/

CRY inhibitory feedback loop) (Dibner et al. 2010).

Another two proteins have been described to modulate

bmal1 gene expression. These proteins are represented by

nuclear receptor subfamily 1 group D member 1 (nr1d1,

also known as rev-erba) and ROR-related orphan receptor

1 (ror1). Expression of rev-erba and ror is driven by the

CLOCK:BMAL1 complex, and feeds back onto bmal1

expression, adding a second feedback loop to the system.

The clock gene cycle ultimately influences cellular physi-

ology by regulating rhythmic expression of clock-con-

trolled genes, in a tissue specific manner (Panda et al.

2002). Recent analysis has revealed that circadian control

of the transcriptional landscape is surprisingly widespread

and highly complex, and that non-transcriptional processes

also play key roles in generating rhythmic molecular output

(Koike et al. 2012).

A number of studies have examined the effects of aging

on clock gene expression in various tissues. Middle age in

mice was reported to be associated with alterations in the

amplitude and/or phase of expression of the CLOCK and

BMAL1 proteins in the SCN, hippocampus, amygdala and

the paraventricular, arcuate and dorsomedial nuclei of the

hypothalamus (Wyse and Coogan, 2010). Similar findings

are reported for expression of mRNA for bmal1 and per2 in

non-SCN brain regions in older hamsters (Duncan et al.

2013). Further analysis of rhythmic clock gene expression

patterns during aging shows that the SCN shows changes in

rev-erb a, dec1 and the clock-controlled gene dbp, and that

heart and liver clocks also show significant changes in

rhythmic clock gene expression (Bonaconsa et al. 2014).

Aging does not seem to be associated with catastrophic loss

of molecular rhythmicity in the SCN, as aged mice show a

dampened rhythm of per2 but an unaltered rhythm of per1

(Weinert et al. 2001). Further, per1 rhythms are not altered

in the aged rat and hamster SCN (Asai et al. 2001; Kolker

et al. 2003). The use of circadian clock gene reporter

systems has further elucidated the impact of aging on

molecular rhythms. Per1:luc rats show modest age-related

changes in SCN rhythms, while peripheral oscillators show

more profound changes in per1 expression (Yamazaki et al.

2002). A further study using Per1:luc rats show that the

rates of re-entrainment of peripheral oscillators to a phase-

shift are altered with age, while the rate of SCN resetting is

not altered (Davidson et al. 2008). Such a result may

indicate that the mechanism through which phase infor-

mation is conveyed from the central clock to peripheral

clocks is altered with aging and such a mechanism may

contribute to desynchronisation of constituent pacemakers

of the circadian system; it is this desynchronisation that

may underpin the deleterious effects of age-related circa-

dian dysfunction.

There are obvious difficulties in the examination of

clock gene expression cycles in human tissue, especially

CNS tissue. Examination of post-mortem tissue has

revealed that there are circadian rhythms of PER2, PER3

and BMAL1 in the cerebral cortices of the study partici-

pants who had a mean age of *85 years, indicating that

rhythmic expression persists in cortical areas into old age

(Lim et al. 2013). Examination of clock gene expression

patterns in leukocytes reveals that there are rhythms in

PER1, 2, 3 present in older participants, although the

phases of these rhythms are altered compared to younger

subjects (Hida et al. 2009). Aged subjects also appear to

show changes in circadian patterns in lymphocyte sub-

populations, demonstrating that circadian effects of aging

may translate into immunological changes (Mazzoccoli

et al. 2011).

Via which mechanism might clock gene expression be

modulated in aging? Recent studies have focused on the

cross talk between the circadian and metabolic control

systems to identify modulators that may be of importance in
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aging. One such mediator is SIRT1. SIRT1 impacts on the

central circadian clock in the brain by activating the tran-

scription of the two major circadian regulators, bmal1 and

clock. SIRT1 action involves another two players, peroxi-

some proliferator-activated receptor gamma coactivator

1-alpha (PGC-1a) that is encoded peroxisome proliferator-

activated receptor gamma coactivator 1 (ppargc1) gene and

nicotinamide phosphoribosyltransferase (NAMPT) (Ram-

sey et al. 2009; Chang and Guarente 2013). SIRT1 and

PGC-1 a form a regulatory complex that integrates the

mammalian clock, energy metabolism, cellular stress and

lipid metabolism (Liu et al. 2007; Wang and Lung 2012).

PGC-1 a stimulates the expression of the clock genes,

bmal1 and rev-erb-a, through coactivation of the ROR

family receptors. In aged, wild-type mice, SIRT1 level in

the SCN is decreased concomitantly with levels of BMAL1

and PER2 (Chang and Guarente 2013). Further, older ani-

mals show altered free-running period, entrainment and

phase resetting. Intriguingly, sirt1 knockout results in a

senescent-like phenotype on these circadian parameters,

while sirt1 over-expression results in an anti-aging pheno-

type in terms of circadian changes (Chang and Guarente

2013). SIRTs are also proposed to contribute to epigenetic

changes that occur in the clock with aging (Orozco-Solis

and Sassone-Corsi 2014). Aging has been shown to impact

on clock gene methylation in various peripheral tissues

(Zhang et al. 2013b). Another signaling pathway that may

be involved in age-related epigenetic clock modifications is

the mTOR cascade, as mTOR is associated with cellular

senescence (Orozco-Solis and Sassone-Corsi 2014) and is

also associated with clock function (Cao et al. 2011, 2013);

therefore it may play a role in linking the clock to aging

(Khapre et al. 2014).

Circadian rhythm and healthy aging

There are a number of lines of evidence that suggest that

proper circadian function is important in healthy aging.

Firstly there is evidence based on the circadian resonance

theory which hypothesizes that the environmental cycles

that animals are exposed to should display periods that best

match the period of the intrinsic circadian pacemaker for

optimal physiological outcomes. This hypothesis is sup-

ported by evidence pertaining to the association between

free-running period and longevity, with deviation of free-

running period (the length of the circadian cycle expressed

in constant environmental conditions) away from 24 h

being associated with shorter life spans in different rodent

species and mouse strains (Wyse et al. 2010). Further

support from this idea comes from experimental studies

examining free-running periods of individual mice, which

show that the free-running periods closer to 24 h are

associated with greater longevity (Libert et al. 2012).

Interestingly, the tau mutant hamster, which has a free-

running period of *20 h, shows enhanced longevity

compared to wild types when housed in constant dim red

light (Oklejewicz and Daan 2002), while a previous study

had indicated that heterozygous tau mutant animals (with a

period of about 22 h) housed under a 12:12 light:dark cycle

showed reduced longevity (Hurd and Ralph 1998). Con-

verse findings are reported for the long-lived MUPA mouse

which displays circadian free-running periods of 24 h at

both young and older ages, compared to the wild-type

controls whose periods deviate from 24 h (Gutman et al.

2011). These findings may indicate that it is not the devi-

ation of the period from 24 h per se that is important, rather

the mismatch between the circadian period and the period

of the imposed light/dark cycle. Other studies have shown

that an abrupt phase-advance of the light dark cycle can

induce remarkable mortality in aged rats and mice

(Davidson et al. 2006, 2008), indicating that as the circa-

dian system ages it becomes very sensitive to acute large

perturbations.

There is also evidence that clock genes may play

important roles in healthy aging aside from their roles in

dictating functional circadian rhythms. Mice deficient in

clock genes show impaired average and maximum life

spans: for example, the clock knockout mouse shows a

15 % reduction in average life span (Dubrovsky et al.

2010). The clock gene bmal1 is the only obligate mam-

malian clock gene for behavioral rhythmicity, with bmal1

knockout animals showing no circadian rhythms under

free-running conditions (Bunger et al. 2000). These ani-

mals also show a remarkably severe accelerated aging

phenotype (Kondratov et al. 2006). This phenotype

includes cataract development, sarcopenia, leanness and

very premature mortality (an average life span of only

37 weeks; Kondratov et al. 2006). Bmal1 has been shown

to be involved in redox homeostasis, and its knockout

results in profound astrogliosis in the brain and neurode-

generation, independent of the loss of circadian rhythms in

behavior (Musiek et al. 2013). Bmal1 also interacts with

the NF-jB signaling system, and it has been proposed that

bmal1 knockout results in a chronic inflammatory state that

contributes to the accelerated aging phenotype (Spengler

et al. 2012).

Circadian rhythms in age-related diseases

Circadian rhythm and sleep disturbances are described as

being prominent in a number of chronic, age-related

conditions. These include Alzheimer’s disease (Coogan

et al. 2013), age-related cognitive decline and mild cog-

nitive impairment (Cochrane et al. 2012; Ortiz-Tudela
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et al. 2014; Naismith et al. 2014), Parkinson’s disease

(Breen et al. 2014), rheumatoid arthritis (De Cata et al.

2014), type II diabetes mellitus (Rakshit et al. 2014) and

cancer (Palesh et al. 2014). Further circadian rhythm

disturbances are reported in a number of life-long psy-

chiatric conditions such as schizophrenia (Wulff et al.

2012), bipolar disorder (Robillard et al. 2013) and adult

attention deficit hyperactivity disorder (Baird et al. 2012).

Age may also play an important role in linking circadian

disruption to mood disorders, such that the nature of the

circadian rhythms observed, for example, in young

patients with major depression may differ markedly from

those in older patients with major depression (Campos

Costa et al. 2013). An interesting facet is that circadian

and/or sleep disturbances may be prodromal signs of

common illnesses of old age. This possibility was high-

lighted in a prospective cohort study which demonstrated

that circadian rhythm changes in locomotion are signifi-

cant predictors of subsequent dementia or mild cognitive

impairment (Tranah et al. 2011). Such sub-clinical chan-

ges may represent novel diagnostic opportunities that

allow for early intervention. In terms of delivering

chronotherapeutic interventions to ameliorate circadian

dysfunction, it is important to appreciate the nature of the

dysfunction first. As healthy aging and, in a more exag-

gerated manner, neurodegenerative disorders are accom-

panied by marked dampening of circadian amplitude and

rhythm fragmentation, chronotherapeutic interventions

that involve strengthened zeitgebers may prove most

effective. The use of brighter lights in nursing home day

rooms has already been shown to be effective in slowing

cognitive decline (Riemersa-van der Lek et al. 2008).

Other interventions, such as scheduled exercise, may also

prove effective and there is good evidence from pre-

clinical models for this strategy (Leise et al. 2013; Power

et al. 2010). For other conditions, such as mood disorders,

the most notable circadian changes are those in phase and

desynchronisation of output rhythms, and such changes

suggest that the most fruitful approaches will involve

chronotherapy that reset clock phase (Coogan and Thome

2011).

Conclusion

We have outlined evidence above that illustrates the fas-

cinating, bidirectional relationship between aging and the

circadian system. As the world population thankfully

continues to live longer, understanding how the circadian

system may be manipulated by environmental, behavioral

and pharmacological interventions to increase health in old

age and attenuate the development and severity of chronic

illnesses becomes more important, and this in turn signals a

pressing need for more research focussed on this important

question.
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