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Abstract 

This thesis entitled ‘The synthesis and study of novel squaramide-based anion sensors’ 

is divided into five chapters. Chapter 1 gives a brief introduction of the significance of 

anions in biology, environment and industry which elicits the history, development and 

challenge of anion sensing and recognition. The mechanism of H-bonding interaction 

based anion sensing and recognition are particularly discussed, followed by the 

introduction of a series examples of anion receptors and sensors containing functional 

groups with the capability of H-bonding to anions. As the core of this research,  

squaramide-based anion receptors and sensors are particularly discussed. This chapter 

ends with the aims and objectives of the research conducted in Chapter 2 and 3. 

In Chapter 2, the design and synthesis of novel squaramidoquinoxaline (SQX) moiety 

based anion sensors are discussed. All desired compounds are synthesized through an  

efficient two step synthetic protocol and fully characterized. The characterization of 

their photophysical and anion binding properties reveals the -NO2 substituted 

compound to be an interesting candidate . In particular, crystal structure study and F- 

test strips study of the -NO2 substituted compound are also discussed in this chapter. 

Chapter 3 discusses the design and synthesis of macrocyclic squaramide (MSQ) moiety 

based anion sensors. At the beginning, the nitro and dinitro substituted MSQs are 

synthesized and characterized due to -NO2 substituted SQX showed great interest in 

Chapter 2. The preliminary attempts to synthesize fluorescent probe substituted MSQ 

which is capable of carrying out Förster Resonance Energy Transfer (FRET) are also 

discussed in this chapter. In addition, the anion binding properties of successfully 

synthesized MSQs are studied. 

Chapter 4 gives an overall conclusion of the entire work carried out in this research and 

also offers the idea for future work. 

In Chapter 5, the instrumentation, reagents, general experimental procedures and 

characterization of each compound discussed in this thesis are given. 
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Chapter 1 Introduction 

1.1 Why Are Anions Important 

Anions are negatively charged atoms (F-, Cl-, Br-, I-…) or molecules (CH3COO-, NO2
-, 

SO4
2-…), which play an important role in biology, environment and industry. Compounds 

containing fluoride are widely used in oral disease control, organic synthesis and 

industrial process.1 For instance, sodium fluoride (NaF) and sodium fluorosilicate 

(Na2[SiF6]) are the active ingredients to prevent tooth decay in toothpaste;2 Fluoride also 

helps to maintain the health of bones in human body.3 Tetra-n-butylammonium fluoride 

(TBAF) can be used to remove silyl ether protection group, it’s also known as a good 

phase transfer catalyst and mild base. However, many fluoride-containing compounds are 

extremely toxic and corrosive, improper treatment of wastes containing fluoride can cause 

severe pollution to the environment and result in disease to human. Chloride has a close 

connection to our daily life. Sodium chloride (NaCl) is the most common existential form 

of chloride, an adult normally needs to intake 2-5g sodium chloride a day, but excess 

intake of sodium chloride will cause hypertension.4 Hydrochloric acid is a water solution 

of hydrochloride (HCl) which is known as a strong monoprotic acid. It’s has many 

industrial applications and it’s also the main component of gastric acid. Bromide can be 

found in urine, serum and saliva of living organisms.5 Lacking bromide results in 

hyperthyroidism which inhibits growth, fertility and life expectancy. However, excess of 

bromide can cause bromism which results in skin eruption.6 Bromide is also one of the 

most difficult anions to be sensed due to the large ionic radius, low charge density and 

low hydrogen bonding ability. Inorganic cyanides are normally known as extremely toxic 

compounds which can cause severe damage to the environment due to their 

comprehensive applications in photography, gold mining and petrochemical industry.7 

The prevalence and importance of anions has led to widespread research interest in 

developing novel anion receptors for monitoring these anions in physiological and 

environmental samples. 
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1.2 Anion Recognition and Anion Sensing 

The early study of anion receptor chemistry was reported by Shriver and Biallas8 and by 

Park and Simmons in the late 1960s.9 Park and Simmons demonstrated that katapinate 

ions could encapsulate halides due to the formation of hydrogen bonds within the cavity 

(Figure 1.1).9 

 

Figure 1.1: Possible binding mode between katapinate ion and Cl-. Image taken from J. 

Am. Chem. Soc. 1968;90(9):2431-2. 

The slow development of research was then followed by Graf and Lehn who reported 

macrotricyclic ligands as halides receptors in the mid-1970s.10 However, this field has 

rapidly blossomed since the 1990s and the research focus has shifted from the 

development of simple neutral receptors which complex anions in organic solvents to the 

design of selective anion receptors which can bind and sense anions in aqueous solvent 

mixture and in vivo, transport anions across cell membranes, detect anionic pollutants at 

very low concentration and extract and transfer specific anionic complex from aqueous 

to organic solution against Hofmeister bias.11 Nowadays, this field has become as a 

fundamental pillar of supramolecular chemistry with applications in many areas.12 

Chemosensor is a typical example of anion sensors which can produce changes in color 

or fluorescence properties when reacted with anions. The design of chemosensor has 

attracted many researchers’ interest due to the cheap price and user-friendly analysis 

method comparing to the classical methodologies.13 The “binding site-signaling subunit” 

approach is one of the main approaches used in the design of chemosensor where the 

binding unit and the signaling subunit of the chemosensor are connected through a 
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covalent bond.14 The binding unit react with anions via non-covalent interactions such as 

hydrogen bonding thus lead to change in absorbance (color) or fluorescence which can 

be detected by UV/Vis spectrophotometer, fluorescent spectrophotometer or naked eye 

(Figure 1.2).6 

 

Figure 1.2: General binding and sensing mechanism of “binding site-signaling subunit” 

type chemosensor. Image taken from Trends. Analyt. Chem. 2017;95:86-109. 

However, despite the intense research effort, design of selective and sensitive 

chemosensors are still challenging. The large size of anions leads to low charge to size 

ratio which inhibits their potential towards electrostatic interactions with the 

chemosensors. The different shapes of anions and their pH sensitivity also impede the 

development of chemosensors (Figure 1.3).15 Moreover, polar solvent like water tend to 

compete with anions for binding with chemosensors.11, 15 

 

Figure 1.3: The structural variety of anions. Image taken from Angew. Chem. Int. Ed. 

2001;40(3):486-516. 
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Cationic chemosensors bind to anions via electrostatic interaction, while neutral 

chemosensors bind to anions through non-covalent interactions like ion-dipole 

interactions, π-π* interactions and H-bonding interactions.16 Hydrogen bonding is  

important due to its critical role in enzymatic catalysis, arrangement of molecules in 

crystals, crystal engineering, proton transfer reaction and life processes.17 Moreover, 

design of chemosensor that bind anions through H-bonding interaction is the most 

common strategy for anion sensing. A hydrogen bond is known as an electrostatic 

attraction between H and electronegative atom such as N-, O- or F-. The anion receptors 

normally act as H-bond donor whereas anions are the H-bond acceptor. The directionality 

of H-bond allows for the possibility of designing preorganized receptors with specific 

shapes that are capable of selectively binding anions with different geometries or H-

bonding requirements in non-polar solvents.15 Effective design of neutral H-bond 

donor/receptor species allows the binding of anions in aqueous solutions which can 

overcome the enthalpic penalty.11 Several functional groups such as amide, 

thiosemicarbazide, urea, thiourea, pyrrole and squaramide are found to capable of 

efficiently forming H-bond to anions (Figure 1.4). All these functional groups contain at 

least one NH motif which enable them to be a good H-bond donor. Moreover, in case of 

amide, urea or thiourea, the presence of electron withdrawing carbonyl or thiocarbonyl 

group further increase the acidity of the NHs thus enables strong complex formation 

between anions and receptors. Squaramide motif is particularly special due to the 

existence of two NHs and the two adjacent carbonyls enabling it to become effective H-

bond donor and acceptor simultaneously.18, 19 

 

Figure 1.4: Some functional groups capable of H-bonding to anions. 

So far from the beginning of the anion receptor chemistry, researchers have been raising 

enthusiasm for the study of the H-bond based anions receptors. For instance, Gavette et 

al. reported a di-urea based anion-modulated switch which could adapt three different 

conformation depending on the anion guests.20 Li et al. reported a family of N-tert-butyl 

sulfinyl squaramide receptors which had highest binding affinity for Cl- in 2017.21 The 



5 

following sections of this chapter will provide an overview of the design and application 

of amide-, pyrrole-, calixpyrrole-, urea-, thiourea- and squaramide-based anion receptors 

from published literature. 

1.3 Amide Based Anion Receptors 

Amide-based anion receptors attract many chemists’ attention due to their less pH 

dependence and better solubility in organic media.6 More interestingly, employing neutral 

amide as H-bond acceptor to proteins is the most often way that allows anion binding by 

proteins.22 Lining the inside of a macrocyclic or affixing the groups to an acyclic 

framework in a pendant structure or as part of cleft or other rigid skeleton contribute to 

the most commonly preorganized anion receptors containing amide binding units.22 

Several receptors using the amide binding site will be discussed in this section. 

Deetz et al. reported a macrobicyclic receptor 1 containing a dibenzo-18-crown-6 and a 

bridging 1,3-phenyldicarboxamide scaffolds.23 The authors demonstrated that in the 

presence of 1 mol equiv. of K+ or Na+, the receptor showed 9- or 8-fold enhancement of 

binding affinity to Cl-, respectively. Receptor 1 also capable of selectively binding to 

DMSO (Ka = 160 M-1 at 295 K) comparing to acetonitrile, nitromethane or acetone in 

chloroform solvent. Latterly, Mahoney and co-workers reported another macrobicyclic 

receptor 2 with less space between the cation and anion binding sites which may enhance 

the binding cooperativity.24 In this case, receptor 2 showed 40-fold enhancement of 

binding affinity for Cl- in the presence of K+ and 5-fold in the presence of Na+. 
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In 2002, Piatek et al. reported a selective colorimetric anion sensor based on an amide 

group containing macrocycle.25 Association constants were calculated from the 1H NMR 

titrations for complexes of receptor 3 with F-, AcO-, H2PO4
-. HSO4

-, Br- and Cl- in DMSO-

d6 and CD3CN. Except for F-, a crucial increase of the association constant was obtained 

by the change of solvent from DMSO-d6 to CD3CN. H2PO4
- showed greatest increase 

with Ka = 142 (DMSO-d6) and Ka = 4271 (CD3CN) was attributed to the additional H-

bonding interactions between the OH group of H2PO4
- and ethereal oxygen atoms of 

receptor 3. Dramatic color change from colorless to dark blue was observed upon the 

addition of F- towards DMSO solution of the receptor 3, and yellow color change of 

receptor 3 was also observed upon the addition of AcO- and H2PO4
- ions, respectively. 

Moreover, acetonitrile solution of receptor 3 showed selective coloration for these anions 

from colorless to turquoise (F-), yellow (AcO-) and purple (H2PO4
-) allowed receptor 3 to 

be an ideal anion sensor (Figure 1.5). 

 

 

Figure 1.5: Color changes (if any) induced by the addition of anions. From left to right 

(acetonitrile solutions): 3; 3 + F-; 3 + Cl-; 3 + Br-; 3 + AcO-; 3 + H2PO4
-; 3 + HSO4

-. Image 

taken from Chem. Commun. 2002;(20):2450-1. 

Jana and et al. synthesized a group of quinoline-functionalized bis-amide receptors 4 - 6, 

where the cooperation of the two amide NH groups symmetrically disposed about the 

central spacer.26 The 1H NMR titration revealed the 1:1 complexes formation between 
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receptors 4 - 6 and the tested anions. Receptors 4 and 5 showed enhanced binding ability 

to the tested anions comparing to their open-chain counterparts. However, receptor 6 

showed relative weaker binding ability comparing to receptors 4 and 5 owing to the far 

distance between the binding sites of m-xylylene core.  

 

 

 

Latterly, Fagade et al. synthesized an amide-based dipodal Zn+ complex which could be 

used to detect HSO4
- in a semi-aqueous system.27 The anion binding ability of receptor 7 

was evaluated by the addition tetrabutylammonium salts of various anions (F−, Cl−, Br−, 

I −, CH3COO−, H2PO4
−, NO3

−, CN− and HSO4
−) in a DMSO-H2O (50:50, v/v) solvent 

system. Interestingly, only the addition of HSO4
− leaded to a distinct decrease as well as 

a blue shift in the fluorescence intensity of receptor 7 (Figure. 1.6). After various 

studies(fluorescence, UV/Vis and DFT calculations), the authors suggested that the 

quenching of the fluorescence of receptor 7 is resulted from the formation of hydrogen-

bonded complex between the amide sites of the receptor and HSO4
−. 
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Figure. 1.6: Fluorescence emission spectra of receptor 7 upon addition of a particular 

anion (F−, Cl−, Br−, I−, CH3COO−, H2PO4
−, NO3

−, CN− and HSO4
−) of 

tetrabutylammonium salts in DMSO–H2O (50:50, v/v). The inset represents: (A) a 

solution of 7 and (B) 7 + HSO4
−, both solutions were irradiated under UV light. Image 

taken from Org. Biomol. Chem. 2013;11(39):6824-8. 

 

1.4 Pyrrole and Calix[4]pyrrole Based Anion Receptors 

Pyrrole- and calix[4]pyrrole-based anion receptors differ from the amide-based anion 

receptors discussed above. They can only act as H-bond donors owing to lack of H-bond 

acceptor functional groups. However, calix[4]pyrrole-based receptor with  nonplanar, 

tetrapyrrolic macrocyclic conformation that capable of binding to Lewis basic anions 

such as halides.28 Since the first work of introducing calix[4]pyrrole into the design of 

anion receptors by Sessler et al. in the mid-1990s, calix[4]pyrrole-based receptors have 

been proven to show high affinity and selectivity towards various anions by incorporating 

straps on one side of calix[4]pyrrole or introducing probe units at the periphery of the 

mother macrocyclic.28, 29 This section will discuss some pyrrole- and calix[4]pyrrole-

based anion receptors from published literatures. 

Anandan and co-workers reported pyrrole-based Schiff bases as colorimetric and 

fluorescent chemosensors for fluoride and hydroxide anions.30 Receptors 8 and 9 showed 

high selectivity towards F- and OH-. The solution of receptors 8 and 9 in acetonitrile 

turned into yellow and permanganate colored upon the addition of F- and OH- respectively. 

Receptor 9 showed predominant color change than receptor 8 due to the presence of NO2 

group. The results indicated that both receptors could become useful candidates for F- and 

OH- sensing. 
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Anzenbacher and co-workers synthesized fluorescent sensors 10-14 based on the 

calix[4]pyrrole structure and its expanded congener calix[2]benzo[4]pyrrole with 

respective fluorophore moiety attached through conjugated vinyl linker.31 NMR, UV/Vis, 

and fluorescence titration experiments were used to investigate the anion binding 

properties of five sensors, and calculate the corresponding affinity constants for the tested 

anions. The present fluorescent sensors 10-14 were demonstrated to show cross binding 

reactivity. Moreover, the parent calix[4]pyrrole-based 10, 12 and 14 were found to be 

more efficient sensors for anions, including dicarboxylates. A fluorescence-based 

microarray device of five fluorescent sensors 10-14 was used to successfully classify 18 

different anions and to perform multiple quantitative analyses. The graphical output of 

the linear discriminant analysis (LDA) showed all the 18 analytes were recognized by an 

array of five sensors with 100% correct classification in trials (Figure 1.7).  
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Figure 1.7: Graphical output of the linear discriminant analysis (LDA) showing the 

response pattern of the sensors 10-14 to 18 individual analytes. Clear clustering of results 

was observed, allowing 100% correct classification in individual trials. Image taken from 

Chem. Eur. J. 2018;24(19):4879-84. 
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Taner and et al. synthesized a colorimetric receptor 15 based on calix[4]pyrrole binding 

oxime for selective recognition for F- ions.32 UV/VIS, and 1H NMR titrations study 

revealed that the receptor exhibits selective recognition towards F- over other anions 

which is mainly due to the H-bond interaction between receptor and F-. Color change 

from colorless to yellow of 15 in the presence of F- was observed by naked eye, thus 

provided a simple and general method for the detection of F- ions. 

 

Güler’s group reported a calix[4]pyrrole derivative containing Bodipy unit as potential 

fluorometric and colorimetric sensor for F- ion.33 The receptor 16 showed colorimetric 

and ‘turn-off’ fluorescent response in the presence of high electronegative and small size 

anions F- due to the formation of H-bonds between anions and NH proton of receptors 

(Figure 1.8). 
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Figure 1.8: The photographs of 16 (1.0×10-4 M) solutions in acetonitrile in the presence 

of various anions (10 equiv.), taken either under day light (down) or in the dark and 

lightened by 365 nm light from a hand-held UV lamp. Image taken from Spectrochim. 

Acta. A. Mol. Biomol. Spectrosc. 2014;118:903-7. 

 

1.5 Urea and Thiourea Based Anion Receptors 

Urea is known as the most classical and one of the first investigated -NH containing 

receptor as it contains two NHs and on electron withdrawing carbonyl group.34  Two NHs 

make it more effective H-bond donor and carbonyl group further promote the anion 

binding ability of urea. Urea and thiourea moiety are excellent H-bond donors therefore 

have been used widely in the design of anion receptors, gelators and medicines etc.35 With 

the nature of forming parallelly oriented hydrogen bonds, urea and thiourea are found to 

form eight-membered ring complexation with oxoanions at high affinity. They are also 

able to form six-membered ring with spherical halides (Figure 1.9).36 The formation of 

the ring system allows the strong and stable binding towards anions. 

 

Figure 1.9: H-bond orientation of urea or thiourea receptors in oxoanions and halide 

complexes.36  
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Gómez et al. studied the difference of anion binding ability between urea and thiourea 

based anion receptors 17 and 18.37 The higher acidity of thiourea enables strong complex 

formation between receptor and anion, but also easily leads to deprotonation of the 

receptor, where deprotonation of receptor 18 was observed with all the tested anions 

except with the least basic Cl-. Moreover, only F- deprotonated the less acidic urea-based 

receptor 17. Interestingly, the strongest binding was achieved with CH3COO- due to the 

geometrically favored bifurcated conformation of H-bond. 

 

Monzani and co-workers investigated the interactions between 4-nitrophenyl substituted 

urea-based anion receptor 19 and selected anions.38 The presence of electron withdrawing 

subsitituents -NO2 was expected to increase the acidity therefore enhance the H-bond 

donor properties of the receptor. The optical properties of the chromogenic nitrophenyl 

may also provide a pathway for monitoring the receptor-anion interaction through optical 

sensing method. The addition of CH3COO- led to a color change of 19 from light yellow 

to bright yellow. The 1H NMR titration, UV/Vis and IR study revealed that the color 

change is due to the formation of H-bond between CH3COO- and amide binding site of 

the receptor (Figure 1.10). However, the addition of other oxoanions such as H2PO4
-, 

NO3
-, NO2

-, HSO4
-, and C6H5COO- caused no color change which could be attributed to 

less basicity of these anions. Interestingly, the addition of F- ion caused dramatic color 

change of the receptor from light yellow to orange then to red. The authors demonstrated 

that this result is due to a two-step deprotonation of the N-Hs of the urea group. 

 



14 

 

Figure 1.10: H-bond motif in the {[19‚HCO3]
-}2 dimer. H-bonds have been drawn in 

light blue. Image taken from J. Am. Chem. Soc. 2004;126(50):16507-14. 

 

Recently, Matsumoto et al. developed an anthracene-diurea based fluorescence sensor 

with a new ON1-OFF-ON2 switching mechanism using the excited state intermolecular 

proton transfer (ESIPT) reaction.39 9,10BtDSPUA(compound 20) showed maximum 

fluorescence in the presence of 0 mM of TBAAc (ON1). Then the fluorescence was 

quenched by adding 0.30mM of TBAAc (OFF). However, with the addition of more 

TBAAc, intrinsic and enhanced fluorescence was observed again in the presence of 11.8 

mM of TBAAc (ON2) (Figure 1.11). The red-shifted fluorescence peak of ON2 relative to 

that of ON1 suggested that different electronic structures were formed in the emission 

state depending on the absence and presence of TBAAc. This demonstrates that 

fluorescence quenching and enhancement depend on the concentration of TBAAc. 

Therefore, the addition of TBAAc to 20 gives rise to an ON1–OFF–ON2 switching 

response. 
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Figure 1.11: Emission spectra of 20 in the presence of 0, 0.30, and 11.8 mM of TBAAc 

for ON1, OFF, and ON2, respectively. Inset: photographs of samples taken in the dark 

under illumination by UV light. Image taken from Photochem. Photobiol. 

2017;93(5):1187-92. 

Noroozi-Shad et al. reported a series of the neutral N-phenylthiourea substituents (p-

OC2H5, p-CH3, m-CH3, H, p-Cl, p-Br, m-Cl, and p-NO2) as potential sensors for acetate 

and fluoride anions.40 A theoretical DFT study (M062X and ωB97XD functionals) was 

used to investigate the sensing activity of the N-diphenylthiourea derivatives through the 

hydrogen bond formation between the anions and the N-H fragment of the thiourea 

functional group. ωB97XD functional showed a more reasonable correlation than M062X. 

p-nitro derivative 21 showed a stronger complex formation than the other derivatives with 

F- (complex formation constants Kf = 3 × 107). Therefore, p-nitro derivative 21 was 

supposed to be the best candidate for fluoride sensing. 

 

 

Singh et al. reported a thiourea based dipodal receptor for Br- ion in an aqueous medium.41 

Receptor 22 reasonable selectivity to Br- with detection limit of 3.79 nM. Moreover, 

receptor 22 showed reasonable stability under various conditions of pH, salt effect and 

chronoamperometric tests thus declared receptor 22 as potential sensor for Br- ions. 
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In 2015, Pfeffer and co-workers synthesized a series of peptidomimetic norbornene-based 

anion receptors 23-29 which mimic vancomycin as potential D-alanine hosts.42 These 

receptors were found to bind to acetate or D-alanine in 1:1 anion:receptor stoichiometry 

by formation of H-bonds through urea or thiourea binding site. The amide N-H of receptor 

29 was also found to assist the binding of anions. However, receptor 25 which contained 

a isopropyl side chain was demonstrated to have no tendency forming desired tridentate 

binding conformation. Although only modest binding affinity (average Log Ka = 1.9) of 

these receptors to acetyl-D-alanine was observed, the authors found a promising method 

for designing highly functionalized fused [n]polynorbornene-based vancomycin mimics. 

 

Recently, Pfeffer’s group reported another group of fused [3]polynorbornanes 

functionalized terephthalate and isophthalate receptors 30-32 with two flexible 

ethylenethiourea “arms” and different electron withdrawing groups at the end of each 

arm.43 All receptors showed efficient binding towards terephthalate (Log Ka =3.0 to 3.3) 

in d6-DMSO. The binding of isophthalate was much higher than that of terephthalate but 

with low accuracy. The authors undertook the titrations in more competitive solvent 5% 

H2O:d6-DMSO again to ensure the accuracy. The binding strength increased along with 
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the increasing electron withdrawing power of the aryl substituent (F < CF3 <NO2). 

MMFF94 force field calculations were used to determine the energy minimized binding 

conformations of receptor 30 with terephthalate and isophthalate in gas phase (Figure 

1.12). The predicted structure of 30:isophthalate complex showed that each N-H of the 

two thiourea binding site bind to each carboxylate oxygen atom through H-bond. 

However, in the presence of terephthalate, one thiourea arm formed two H-bonds toward 

a single oxygen atom which led to the weaker binding affinity. Thus, the large energetic 

penalty for the binding of guests revealed that these receptors designed with flexible arms 

are far more selective than intuitively predicted and only tolerate very small changes. 

 

 

Figure 1.12: Molecular modelling of 30 with isophthalate (left) and terephthalate (right). 

Image taken from ChemistrySelect. 2017;2(17):4605-8. 

 

1.6 Squaramide Based Anion Receptors 

Secondary squaramide, as one of the various derivatives of squaric acid, is used widely 

in the design of effective anion receptors,44 self-assembly motifs45 and organocatalysts.46 
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Frontera, Deya and co-workers revealed that the NH groups of squaramide can act as H-

bond donors while its carbonyl groups can act as H-bond acceptors thus squaramide was 

recognized to form H-bond to acceptors, donors and to mixed acceptor-donor groups 

(Figure 1.13).18, 47 One of its most striking properties arises from the delocalization of a 

nitrogen lone pair into the cyclo-butenedione ring system conferring the four membered 

ring with aromatic character (Hückel’s rule:(4n + 2) p electrons, n = 0). It was reported 

that the predicted aromaticity of delocalized squaramide via NICS (Nucleus Independent 

Chemical Shift) is -8.7 ppm, which is similar to the aromaticity of benzene (NICS = -10.1 

ppm).18 In addition, the capacity of squaramides to form strong hydrogen bonds that 

simultaneously increase the aromatic character of the four membered ring is highly 

advantageous where self-assembly and molecular recognition processes can benefit from 

favourable thermodynamic stability brought about by aromatic gain.48, 49 This fact, along 

with other advantages of squaramides such as synthetic versatility, conformational 

rigidity and relative stability has encouraged an increasing research effort over the past 

few decades towards exploiting this most useful of scaffolds. 

 

Figure 1.13: Hydrogen bonding donor-acceptor ability of squaramides.18, 47 

The early pioneering study of squaramide facilitated anion recognition was reported by 

Costa’s group in 1998.50 The authors investigated the H-bonding ability of squaramide-

based receptors 33-41. Only moderate to good association constants of Neutral 

compounds 33-35 was obtained. However, the positively charged group containing 

receptor 36 showed an eight- to ten-fold increase in binding. Molecular modeling study 

of receptors 37-40 showed significant binding towards dicarboxylates derived from 

glutaric or glutaconic diacids. Although the association constants of the complexes 

formed between the TBA glutarate and receptors 37-40 in pure DMSO solution are too 

large to be measured by NMR, the addition of water lowered the association constants 
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into a measurable range. Receptor 41, with an extra squaramide unit, was reported to have 

higher association constant comparing to receptors 37-40. 

 

Costa’s group also developed a family of positively charged squamide-based receptors 

42-47 for sensing SO4
2- and HPO4

2-.51 In this case, it was the first time to use Cresol Red 

for signaling the presence of SO4
2- or HPO4

2-. The authors demonstrated that the charged 

squaramide receptors change the acid-base equilibrium of Cresol Red by complexation 

with the dianionic form of the indicator. 
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Fabbrizzi’s group latterly undertook a direct comparison of the anion recognition ability 

between urea-based receptor 48 and squaramide based receptor 49.52 A combination of 

NMR spectroscopy, UV/Vis analysis, X-ray crystal structure analysis and theoretical 

calculations were used to show that both 48 and 49 were able to form 1:1 receptor : anion 

complexes with Cl- via hydrogen bonding interactions but with the squaramide derivative 

49 exhibiting a higher binding affinity in comparison to urea derivative 48 when measured 

by spectrophotometric titration (logK = 4.55 for 48 vs. logK = 6.05 for 49 when measured 

in MeCN at 25°C). This group also reported a subsequent study showing another 

squaramide derivative 51 has superior binding ability when compared to urea 50 and 

sulfonamide-based receptor 52.52 The results of spectrophotometric titrations, isothermal 

calorimetry (ITC) and 1H NMR spectroscopic titrations in acetonitrile again suggested 

that squaramide based receptor 51 was capable of forming stable 1:1 receptor:anion 

complexes with Cl- and with other oxoanions such as AcO- and H2PO4
-. 
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Piatek and co-workers designed ion pair receptors 53 and 54 containing a sodium-

selective N-acyl aza-18-crown-6 binding domain and two anion-binding domains.53 

Single-crystal X-ray diffraction analysis of squaramide-based receptor 54 showed that the 

methyl group of the molecular platform brings all three binding domains point in one 

direction, thus providing an effective binding cavity for ion-pair (Figure 1.14). The 

authors demonstrated that the strength of sodium complexation was increased by 23 times 

upon binding of chloride to urea-based anion receptor 53. Receptor 54 showed similar 

binding strength but with lower cooperativity. However, the strong binding between this 

receptor and NaCl (log Ka = 6.52 M-1) revealed receptor 54 to be a more effective ion-

pair receptor. 

(a)  
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(b) 

 

Figure 1.14: (a) The chemical structures of 53 and 54. (b) X-ray crystal structure of 54 

showing the alignment of both squaramide binding domains in one direction. Image taken 

from Dalton. Trans. 2016;45(39):15557-64. 

A relative work from Zdanowski et al. demonstrated the use of 55 capable of extracting 

and transporting chloride salts from aqueous to organic phase.54 UV/Vis and 1H NMR 

studies showed strong complexation of receptor 55 and tested salts. They also reported 

that the presence of two anion binding sites are essential for the cooperativity of anion 

binding. The authors performed the extraction of chloride from aqueous organic solvent, 

toluidine blue was used to monitor the process (Figure 1.15). However, the transport of 

Cl- only took place when soft countercations were used whereas hard countercations 

resulted in an unsatisfactory performance. 

  

Figure 1.15: The chemical structure of 55 and extraction of aqueous solution of toluidine 

blue (top layers) with: (a) 20% n-butanol in chloroform, (b) 1 equiv. of receptor 55 in the 

organic phase, (c) 10 equiv. of receptor 55 in the organic phase, (d) 100 equiv. of receptor 

55 in the organic phase (bottom layers). Image taken from New. J. Chem. 

2016;40(8):7190-6. 
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Elmes et al. have synthesized a small family of amino acid and dipeptide-based anion 

receptors 56-61 with larger constructs using solid-phase synthetic strategy.55 It was 

demonstrated that these anion receptors, particularly those containing squaramides 

displayed a significantly higher affinity for SO4
2- over various other anions (AcO-, 

BzO-,H2PO4
- and Cl-) where 1H NMR titrations exhibited large modulations in chemical 

shift upon titration with SO4
2-. Interestingly, the stereochemistry of the amino acid 

backbone showed little influence on the binding affinity of the receptors towards their 

target anions. However, the presence of the backbone amide NH protons was shown to 

be particularly important to the receptor : anion interaction where dipeptide receptors 58-

61 displayed significantly higher binding affinities for SO4
2- when compared with their 

single amino acid analogues 56 and 57. 
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A subsequent article from Elmes et al. investigated the anion binding ability of L-lysine-

based squaramide anion receptors 62-69 by using 1H NMR spectroscopic titrations.56 All 

these receptors again demonstrated the selective binding ability towards SO4
2- over other 

anions such as Cl-, AcO- and BzO- in aqueous DMSO solution. The also demonstrated 

that fine-tuning of the lipophilicity of the receptors at the C- and N- termini had no 

influence on their anion-binding capabilities. 

 

Recently, Qin et al. reported a family of macrocyclic squaramides 70-75 containing either 

two or three squaramide units.57 1H NMR titration studies revealed that the macrocyclic 

squaramide (MSC) receptors 70, 71, 74 and 75 displayed very high selectivity for SO4
2- 

in aqueous DMSO-d6 solution. Upon complexation to SO4
2-, The 1H NMR spectrum of 

70 showed large chemical shift and the signal for methylene protons was split into two 

distinct signals. The authors suggested that upon complexation to SO4
2-, the receptor fixed 

in a single conformation instead of adopting several conformations in solutions at room 

temperature. Indeed, X-ray crystal structure analysis showed that 70 preferred to form a 

bowl-like conformation with SO4
2- in 1:1 receptor/anion complex instead of forming the 

chair-like conformation found for free macrocycle(Figure 1.16). Additionally, receptor 
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71 and 75 containing three squaramide units were found to better match the size and shape 

of the SO4
2- ion than smaller compounds 70 and 74 and demonstrated high affinity and 

selectivity for SO4
2- even in mixtures of anions stimulating the composition of nuclear 

waste or blood plasma. 
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(A)        (B)  

 

Figure 1.16: Single crystal X-ray diffraction structures of (A) 70 and (B) the complex 

formed between 70 and SO4
2- clearly showing the interaction of SO4

2- with the squaramide 

NH protons inside the macrocyclic cavity. Image taken from Chem. Sci. 2016;7(7):4563-

72. 

Elmes et al. synthesized a group of squaramide-based colorimetric and luminescent anion 

sensors 76-79 by introducing an anthracene moiety to the squaramide scaffold.58 Little 

interaction of the sensors with non-basic anions such as Br-, I- and NO2
- was reported, 

however, upon addition of Cl- to 76 and 77, their absorption spectra underwent 

hyperchromic shifts at 393 nm, with a hypochromic shift at 355 nm. A naked eye color 

change from colorless to yellow was also observed (Figure 1.17). 
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Figure 1.17: Changes observed in the absorption spectrum of 78 upon addition of TBACl 

in DMSO. (Inset): The corresponding changes seen by the naked eye with various halide 

anions. Image taken from Org. Lett. 2013;15(22):5638-41. 

This chapter has given a detailed discussion of the crucial role anions play in biology and 

the environment and has tried to highlight some examples of anion recognition motifs 

based on H-bonding scaffolds. Particular emphasis has been placed on squaramide based 

receptors where can selectively bind to anions via H-bonding with high affinity. Several 

anion receptors which can selectively bind to anions via H-bonding were also introduced 

in this chapter. Below we will outline the aims and objectives set out in this thesis. 

 

1.7 Aims and Objectives 

Squaramide, as an emerging binding motif, has been reported to show superiority binding 

affinity comparied to similar structure such as urea/thiourea motifs owing to the stronger 

formation of H-bond.53, 55, 59 These advantages have attracted increasing research interest 

over the past number of years. Inspired by recent research within the Elmes group, the 

aim of this project is to synthesize two families of squaramide-based anion receptors. The 

first family of compounds that will be discussed is based on the squaramidoquinoxaline 
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scaffold where compound 80-85 will be synthesized to investigate the effect of various 

functional group substitution on the SQX structure and its effect on anion recognition. 

 

We envisaged that the incorporation of electron withdrawing or donating group on the 

SQX motif will modulate the binding/recognition ability of the receptors which should 

influence anion selectivity and sensitivity. 

The second aim will be the synthesis of another family of macrocyclic squaramide (MSQ) 

based macrocyclic compounds 70 and 86-90 (Figure 1.18). It has previously been shown 

that 70 is capable of strong and selective sulfate recognition where X-ray crystal structure 

analysis has revealed that the anion is bound in the macrocyclic cavity. X-ray analysis 

also revealed that sulfate recognition stimulates a conformational change in the molecule 

from a chair- to a bowl-like conformation.57 We proposed that this effect may be exploited 

to develop fluorescent anion sensors based on a FRET mechanism. Compound 70 and 

86-90 are proposed as target compounds and Chapter 3 will outline in detail for this choice 

of structures proposed as novel fluorescent sulfate sensors. 
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Figure 1.18: Structure of compound 70 and 86-90. 
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Chapter 2 Squaramidoquinoxaline (SQX) Moiety Based 

Chemosensors 

2.1 Introduction 

Squaramides with their inherent rigidity and strong hydrogen bond donor ability have 

garnered great research interest in the design of anion receptors,44, 51, 60-62 self-

complementary molecular recognition motifs,63 and many organocatalysts.46 Elmes group 

and others have focused on the development of a characteristically different family of 

receptors based around the squaramide motif.57, 58, 64-69 For instance, as discussed in 

chapter 1, Elmes et al. reported a group of squaramide-based colorimetric and 

luminescent anion sensors 76-79 with an anthracene moiety connected to the squaramide 

scaffold (Figure 2.1).58 Upon the addition of basic anion Cl- towards the receptors, the 

absorption spectra change of 76 and 77 together with a naked eye color change from 

colorless to yellow revealed that these compounds to be good anion sensors. 

 

Figure 2.1: Structure of squaramide-based anion sensors 76-79. 

Encouraged by the previous work, we wished to develop a novel squaramide motif 

cyclobuta[b]quinoxaline-1,2(3H,8H)-dione or ‘squaramidoquinoxaline’ which has two 

amines connected to one aryl ring with various functional groups (Figure 2.2).  
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Figure 2.2: Structure of squaramidoquinoxaline-based anion sensors 76-79. 

We expected that by modification of a parent squaramidoquinoxaline scaffold with either 

electron withdrawing or electron donating groups we could modulate the acidities of the 

NHs of the squaramide thereby provide a level of control over the selectivity of any anion 

binding that may occur. The electron withdrawing group (EWG) which connected to the 

benzene of the squaramidoquinoxaline scaffold is supposed to pull the electron density 

of the NHs all the way back thereby making the increasing of the acidity of NHs. 

Conversely, electron donating group (EDG) is supposed to cause the reduction of acidity 

of the NHs (Figure 2.3). 

 

Figure 2.3 Charge transfer within the molecule when binds to EWG and EDG. 

The aim of this chapter is to synthesis and characterise a group of compounds 80-85 based 

on the squaramide motif and identify their potential as possible anion sensors using a 

range of physical and theoretical techniques such as UV/Vis titration, NMR titration, 

computational study and test strip study. 

 

2.2 Synthesis of Compounds 80-85 

The Retrosynthetic analysis of the target molecules showed that by breaking the C-N 

bonds which connect the secondary amine and the cyclobutene ring resulted in diethyl 

squarate and respective phenylenediamine (Scheme 2.1). The diethyl squarate could be 
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easily synthesized from squaric acid and all the functionalized phenylenediamines were 

commercially available compounds. 

 

Scheme 2.1: Retrosynthetic analysis of the target molecules. 

Thus, novel anion sensors could be synthesized by two simple steps with mild conditions. 

For instance, the synthesis of compound 80 was achieved by the condensation of diethyl 

squarate 97 and o-phenylenediamine 91. Diethyl squarate 97 was synthesized as outlined 

in scheme 2.2, by refluxing the solution of commercially available squaric acid 98 (3,4-

dihydroxycyclobut-3-ene-1,2-dione) and triethyl orthoformate in EtOH. Removal of 

solvent followed by purification using silica gel column chromatography yielded yellow 

oily product 97 in 95% yield. 

 

Scheme 2.2: Synthetic pathway of compound 97. (i) Triethyl orthoformate, EtOH, reflux, 

95%. 

Compound 80 was synthesized via nucleophilic substitution by stirring the solution of 

diethyl squarate 97 with o-phenylenediamine 91 and zinc triflate in EtOH at room 

temperature (scheme 2.3). Removal of solvent by filtration yielded the orange solid target 

molecule 80 in 64% yield. 
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Scheme 2.3: Synthetic pathway of compound 80. (i) Zinc triflate, EtOH, rt, 64%. 

Same method was applied in the synthesis of compound 81-85 using diaminobenzene 91-

97, respectively. The products yielded as purple, brown, orange, orange and orange solids 

respectively in 73%, 97%, 77%, 87% and 84% yield. Compounds 81-85 were fully 

characterized by 1H NMR, 13C NMR, HRMS and FTIR spectroscopy. As a representative 

example the 1H NMR of compound 80 is presented in Figure 2.4. The singlet at 10.0 ppm 

is attributed to the two NH protons. The doublets at 6.66 and 6.36 ppm assigned to the 

aromatic protons of the aryl ring. Successful formation of compound 80 was also 

supported by accurate mass spectrometry, where 80 displayed a peak at 186.0429 

corresponding to the [M + H] ion. The 1H NMR and 13C NMR spectra of compounds 80-

85 are shown in the Appendix section. All other compounds were similarly characterized 

as outlined before. 

 

Figure 2.4: The 1H NMR spectrum of compound 80 (500.13 MHz, DMSO-d6). 

In figure 2.5, the broad signal at 10.45 ppm assigned to two NH protons. The doublet of 

doublet at 7.5t ppm assigned to aromatic proton H4, the doublet signal at 7.01 ppm 

1 
3 2 
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assigned to aromatic proton H5 and the doublet at 6.41 ppm assigned to aromatic proton 

H3. Comparing the 1H NMR spectrum of compound 81 to 80, a distinct split of the NH 

signal peak and three peaks of aromatic protons were observed which were attributed to 

the asymmetric structure of compound 81. Moreover, due to the existence of strong 

electron withdrawing -NO2 group, all the signal peaks showed a downfield shift in 

comparison to the 1H NMR spectrum of 80.  

Figure 2.5: The 1H NMR spectrum of compound 81 (500.13 MHz, DMSO-d6). 

 

While not completely pure, compound 82 was sufficiently pure for further evaluation. As 

shown in the 1H NMR spectrum of another asymmetric compound 82 (Figure 2.6), the 

split signal peak at 10.0 ppm assigned to the two NH protons peak was observed again, 

the doublet at 6.34 ppm assigned to aromatic proton H5, the doublet of doublet at 6.24 

ppm assigned to aromatic proton H4 and the doublet at 6.02 ppm assigned to aromatic 

proton H3. The peak centred at 3.63 ppm assigned to protons H6. A distinct upfield shift 

of the aromatic proton signals were observed in comparison to 80 which was ascribed to 

the electron donating ability of the -OCH3 group. To provide a more visualized view of 

how the functional groups prompted the signal shifts of compound 80-82, an overlap of 

their 1H NMR spectrum is shown in Figure 2.7. 
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Figure 2.6: The 1H NMR spectrum of compound 82 (500.13 MHz, DMSO-d6). 

 

Figure 2.7: The multiple display 1H NMR spectrum of compound 80-82 (500.13 MHz, 

DMSO-d6). 
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2.3 UV/Vis Absorption Properties 

Photophysical properties of compound 80-85 were characterised using UV/Vis 

absorption spectrometer with the aim to better understand the photophysical behaviour of 

receptors upon interaction with anions. 

As a representative example, the UV/Vis absorption spectrum of compound 80 is shown 

in Figure 2.8. Absorbance values at 306 and 337nm were plotted as a function of 

concentration, the slope was obtained as the extinction coefficient with values of  3821 

and 4490 M-1cm-1, respectively. 

 

Figure 2.8: Changes in UV/Vis spectrum upon increasing concentration of 80 in PBS 

buffer solution. Inset: Plots of absorbance at 337 nm as a function of increasing 

concentration of 80. 

All the other compounds were similarly tested as outlined above and the spectra are 

shown in Appendix section. The extinction coefficient of 80-85 at is shown in Table 2.1 

below. 
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Compound λmax (nm) ε (M-1cm-1) λmax (nm) ε (M-1cm-1) 

80 337 4490 306 3821 

81 374 11036 307 27047 

82 349 10519 312 11373 

83 347 16678 309 17101 

84 351 20388 297 20517 

85 345 14573 309 11531 

Table 2.1: The extinction coefficient of 80-85. For each compound, two λmax values and 
their corresponding extinction coefficient are shown in this table. 

 

In 0.5% H2O in DMSO solution the absorption spectrum of 81 showed strong π – π* 

absorption bands at 310 nm and 390 nm respectively with an additional broad shoulder 

centered at 532 nm ascribed to a charge transfer within the molecule owing to  the 

presence of the electron withdrawing nitro group.52 An additional long wavelength 

shoulder at 715 nm was also observed. However, for compounds 80 and 82-85 only broad 

bands (312 nm and 347 nm for 80, 320 nm and 354 nm for 82, 305 nm and 344 nm for 

83, 338 nm and 388 nm for 84) owing to to π – π* transitions were observed from their 

UV spectra whereas only one significant peak was observed at 339 nm for 85. Inspired 

by the specific UV/Vis absorption property of 81, we assumed that the electron 

withdrawing nitro group causes the poor electron density of the NHs of 81, thus may 

induce the reactivity of the NHs towards acids or bases. The acid/base test was undertaken 

by adding 1% acetic acid or triethylamine to a dilute solution of 81 (10µM) in 0.5% H2O 

in DMSO. The addition of acetic acid caused the disappearance of the absorption band at 

715 nm and an increase in absorbance of the bands at 310 nm, 390 nm and 532 nm but 

did not result in any observable colour change. Interestingly, addition of 1% triethylamine 

caused an increase in the absorbance of the bands at 715 nm and 450 nm and was 

concomitant with a dramatic colour change from pink to green clearly visible to the naked 

eye (Figure 2.9).  
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Figure 2.9: The absorption spectra of 81 (0.5 x 10-5 M) in DMSO (grey), 1% Et3N in 

DMSO (orange) and 1% acetic acid in DMSO (blue). Inset: The appearance of the 

corresponding solutions to the naked eye. 

 

In order to investigate the observed UV spectral changes, a computational study was 

conducted in collaboration with Dr.Tobias Krämer at Maynooth University. TD-DFT 

calculations at the SMD-PCM/B3LYP/6-311G+(2p,d) level of theory was used to 

investigate the observed UV/Vis spectral changes. The calculated absorption spectrum of 

81 is in coincident with experiment, with three peaks predicted at 301 nm, 382 nm and 

549 nm. The π-π* type character of these transitions is revealed by analysis of the 

associated Natural Transition Orbitals (NTO). In contrast to analysis of excitation 

amplitudes in the canonical molecular orbital basis, NTOs provide an easy means to 

interpret the character of electronic transitions. The low-energy peak at 549 nm 

corresponds to the HOMO-LUMO transition, which is dominated by an intramolecular 

charge-transfer process between the squaramide ring system and the nitro group (Figure 

2.10). The nature of the other two transitions can be readily identified from the NTO plots. 

Single deprotonation of 81 causes a red-shift of the peak at 549 nm, irrespective of which 

tautomeric form of [81-H]– is considered (see Appendix section). Calculated peaks at 653 

and 730 nm for tautomer N1 and N2, respectively, are consistent with a reduced HOMO-

LUMO gap for these anionic species. Likewise, the peak at 382 nm in 81 is shifted to 

around 420 nm in both tautomers. In summary, the calculations further indicate that the 
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characteristic red-shift in the presence of base is due to single deprotonation of 81. It 

should be noted that a linear energy scale for comparison between experimental and 

theoretical excitation energies is more convenient, and in the present case the deviation 

is 0.03-0.20 eV. Since these values fall into the common error range for TD–DFT,70 it is 

not possible to discriminate between the two tautomeric forms of [81-H]– based on their 

calculated UV/Vis spectra.   

 

Figure 2.10: Plots of NTOs (isovalue = 0.05) for key electronic transitions in 81. 

Excitation energies are given along with oscillator strengths and weights of NTO pairs.   

 

Combined, the above results suggest that in solution a proportion of 81 may exist in its 

mono-deprotonated form (Scheme 3.4) even in the absence of base. This effect has 

previously been reported by Taylor and co-workers for squaramide systems containing 

strongly electron withdrawing aryl substituents and is thought to be favoured due to the 

possibility of delocalisation of the formal negative charge in to the cyclobutenedione 

ring.44 A pH-spectrophotometric titration in a mixture of acetonitrile/water (9/1 v/v; in 

the presence of 0.1 M TBAPF6) was undertaken to further investigate the observed 

UV/Vis spectral and colour changes as reported by Elmes et al.65, 67 The significant shift 

of the UV/Vis absorption spectrum, where a hypochromism centered at 375 nm and 500 

nm and a concomitant hyperchromism at 415 nm and 615 nm between pH ≈ 6 – 9.5 

revealed that 81 undergo two distinct deprotonation events. This was followed by a 

second spectral change between pH ≈ 10.3 - 12 in which hypochromism across the entire 
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spectrum was observed. The colour changes to the naked eye from pink to green to yellow 

was observed simultaneously with the spectral change. We also found that the  pink – 

green colour change (1st deprotonation step) is reversible by addition a protic solvent, 

while the green – yellow (2nd deprotonation step) cannot be reversed and it appears that 

the di-deprotonated derivative undergoes a time dependent fragmentation. The pKa 

titration profile is shown in Figure 2.11. The obtained pKa value for the first 

deprotonation was determined as 8.25 ± 0.03 (this value was determined by the four 

parameter sigmoid curve fit with the point of inflexion corresponding to the pKa value),  

however a pKa value for the di-deprotonated derivative could not be determined due to 

its instability at pH values below 12 evidenced by further time dependent spectral changes 

occurring at high pH values.  

Scheme 3.4: Proposed acid-base behaviour and corresponding colorimetric response of 

81. 

81                           [81-H]-                                [81-2H]2- 
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Figure 2.11: (a) Absorption spectra taken over the course of the pH-spectrophotometric 

titration of 81 (1 × 10-5 M) from pH ≈ 6 – 9 in an acetonitrile–water mixture (9/1 v/v; in 

presence of 0.1 M TBAPF6). (Inset): Four parameter sigmoid curve fit with the point of 

inflexion corresponding to the pKa value (b) Plots of absorbance vs. pH at 375 nm and 

615 nm showing two distinct deprotonation events from pH 2 – pH 13. 

 

2.4 Anion Binding Study 

2.4.1 UV/Vis Absorption Anion Titrations 

It has been observed that compound 81 underwent a distinct colour changes in the 

presence of base. We next wished to investigate its potential as a colorimetric anion sensor 

where, with the enhanced acidity afforded by the nitro group. We expected that this 

compound may give rise to a selective sensor for F- as the most basic of the halides. The 

halide sensing ability of 80-85 were tested in 0.5% H2O in DMSO solution (1×10-5 M of 

each compound) by titration of F- in the form of tetrabutylammonium salt (TBA+), 

observing any changes in their ground state properties (See Appendix). As expected, the 

most dramatic colour change of the solution of 81 from pink to green was observed upon 
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addition of F- (similar to that observed upon addition of Et3N), while other compounds 

showed no significant colour change towards the addition of F-. The UV/Vis sprectrum 

of 81 showed that the absorption at 310 nm underwent a red shift to 324 nm and, along 

with the bands at 390 nm and 532 nm, experienced a strong hypochromic effect. However, 

the formation of a new band centred at 450 nm and a strong increase in the shoulder at 

715 nm were also observed at the same time (Figure 2.12). Formation of four isosbestic 

points at 364 nm, 416 nm, 484 nm and 597 nm were also clearly observed suggesting that 

only two species coexist at this equilibrium. However, further addition of F- resulted in 

the intensity of the bands centred at 324 nm, 540 nm and 715 nm to rapidly decrease, 

which suggested that the interaction of F- with 81 underwent two well-defined steps. 

Given these results, we assumed that upon addition of low concentrations of F-, a distinct 

redshift of the charge-transfer bands results from the first deprotonation of 81 [81 – H]-, 

however, subsequent addition of excess F- leads to a second deprotonation of the 

squaramide NH proton [81 – 2H]2- and a second colour change from green to yellow was 

observed at the same time. Such behaviour has previously been observed with urea38 and 

squaramide derivatives containing electron-withdrawing substituents.44, 58 Moreover, the 

results obtained in the pH-spectrophotometric titration above clearly support these 

observations. Treatment of 81 (1×10-5 M in 0.5% H2O in DMSO solution) with Cl-, Br- 

and I- resulted in comparatively minor changes, however, the addition of each of these 

anions did result in absorbance increases at 715 nm and 450 nm suggesting that the 

presence of Cl-, Br- and I- may promote the mono-deprotonation of 81 in DMSO solution 

(Figure 2.13). Interestingly, the addition of these anions did not result in any observable 

colour change of the solution. Addition of more basic oxoanions (H2PO4
-, SO4

2-, 

CH3COO-) gave similar results to that of F- where a colour change from pink to green 

was observed further confirming the propensity of basic anions to deprotonate sensor 81 

(Figure 2.14). From the observed changes in the UV−vis absorption studies, the 

association constants of 81 with the different halides were estimated using global curve 

fitting analysis (BindFit software).71, 72 Curves were fitted to the absorption data at 715 

nm, 532 nm, 450 nm and 390 nm in each case according to a 1:1 binding model. From 

these titrations we estimated association constants for 81 to be 23262 M-1 (error = 3.67%), 

5835 M-1 (error = 3.67%), 4323 M-1 (error = 12%), and 2257 M-1 (error = 4.86%) for F-, 

Br-, I- and Cl-, respectively (See Appendix). 
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Figure 2.12: Changes observed in the absorption spectrum of 81 (1 x 10-5 M) upon 

addition of TBAF (0 – 0.07 mM) in 0.5% H2O in DMSO solution. (Inset): Absorbance 

changes observed at 715 nm, 532 nm, 450 nm and 390 nm. 

(a)  

 

(b)  

 

Figure 2.13: (a) Comparison of the absorbance changes observed at 715 nm upon 

addition of TBAF (0 – 0.37 mM), TBAI (0 – 1.1 mM), TBACl (0 – 1.2 mM) and TBABr 

(0 – 1.1 mM) to a solution of 81 (1 x 10-5 M) in 0.5% H2O in DMSO solution. (b) 

Colourimetric changes observed for 81 (1 x 10-3 M) under acidic conditions, basic 

conditions and in the presence of various halides in DMSO at 25 °C.  
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Figure 2.14: Colourimetric changes observed for 81 (1 x 10-3 M) upon addition of 

H2PO4
-(10 eq.), CH3OCO-(10 eq.), SO4

2-(10 eq.) in DMSO at 25 °C. 

When these measurements were repeated using 82, the changes in the absorption 

spectrum were comparably minor upon addition of F-, Cl-, Br- and I- (see appendix). As a 

representative example, the addition of F- towards compound 82 did give rise to an 

additional absorption centred at 387 nm which upon subsequent additions disappeared 

(Figure 2.15). This culminated in a change in colour of the solution from a pale orange to 

a slightly darker orange. Compound 83-84 also showed the disappearance of absorption 

centre upon the addition of F- and concomitant minor colour change (see Appendix). 

Similarly, 80 showed comparatively minor changes in colour upon addition of F-, going 

from yellow to a darker shade of yellow. Given that the spectroscopic behaviour of 80 

has recently been studied by Niu et. al. we did not pursue this line of experiments.73 

However, the bromo-substituted compound 85 did not show significant change in its 

absorption spectrum (see Appendix). 

 

Figure 2.15: Changes observed in the absorption spectrum of 82 (1 x 10-5 M) upon 

addition of TBAF (0 – 1 mM) in 0.5% H2O in DMSO solution. 
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2.4.2 1H NMR Anion Titrations 

1H NMR anion titration study was another useful tool we used to further support our 

observations in the UV/Vis titrations. 2.5 x 10-3 M of compound 81 in 0.5% H2O in 

DMSO-d6 solution was tested with increasing equivalent of different halide anions in 

their tetrabutylammonium salt (TBA+) from 0 eq. to 2.0 eq. (0.2 eq. was added each time). 

Interestingly, no obvious changes were observed in the presence of Cl-, Br- and I- 

suggesting that little interaction of these anions is occurring with 81 and that the observed 

UV/Vis spectroscopic changes must be related to a small increase in the propensity of 81 

to become mono-deprotonated. It was expected that the acidity of the squaramide NH 

protons may have yielded a strong hydrogen bond donating group to interact with the 

halides, in particular with Cl- which is known to bind to the conventional squaramide 

moiety containing electron withdrawing aryl substituents.58 However, in this case, only a 

very minor downfield shift of the NH signal, coupled with some peak broadening was 

observed, suggesting that Cl-, Br- and I- are not binding to 81 to any meaningful extent. 

In the presence of F- a considerably more complicated behaviour was observed whereby 

initial additions of F- (0 – 0.6 eq.) resulted in a large degree of peak broadening observed 

for the NH signals and a significant upfield shift of all three aromatic signals. Combined 

with results obtained in the previous section we ascribe this initial behaviour to acid–base 

interactions with F-. Subsequent additions of F- again resulted in a second distinct process 

occurring where three new peaks evolved at 8.3 ppm, 8.5 ppm and 8.9 ppm at the same 

time as the original aromatic peaks disappeared. Again, this process was concomitant 

with an original colour change from pink to green followed by a second change from 

green to yellow. We suggest again that this behaviour can be explained by the occurrence 

of a second deprotonation event being triggered by the presence of excess F-. The 

representative spectra for titration of 81 with F- is shown in Figure 2.16, illustrating the 

significant broadening of the squaramide proton signals and the subsequent spectral 

changes upon addition of increasing F-.  
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Figure 2.16: Stack plot of 1 H NMR spectra of 81 (2.5 x 10-3 M) upon addition of TBAF 

(0 - 2 equiv.) in DMSO-d6 at 25 °C.  

Furthermore, upon the addition of 5 equivalents of TBAF to a solution of 81 in DMSO-

d6, the formation of a triplet at 16.2 ppm in the 1H spectrum was also clearly observed 

confirming the formation of HF2
-; a product of the acid/base reaction between 81 and 

TBAF (Figure 2.17).74
 

 

Figure 2.17: 1H NMR stackplot of 81 (a) before and (b) after addition of TBAF (5 eq.) 

in DMSO-d6 clearly showing the disappearance of the squaramide NH peaks and the  

appearance of a characteristic triplet at ≈ 16.2 ppm. 
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2.5 Crystal Structure Study 

Additionally, in collaboration with Dr. Jonathan Kitchen at Southampton University, we 

investigated the crystal structure of compound 81 in DMSO solution. Small red block-

like crystals of 81·DMSO were grown by slow evaporation of a DMSO solution and the 

low temperature (100 K) molecular structure determined (Figure 2.18). 81·DMSO 

crystallised in the triclinic space group P-1 and contained two crystallographically 

independent molecules of 81 in the asymmetric unit as well as two interstitial DMSO 

molecules (Figure 2.18) that form strong hydrogen bonds to one of the NH groups of each 

independent molecule [N2···O100 = 2.742(4) Å and <(NH···O) = 171°; N21···O200 = 

2.728(4) Å and <(NH···O) = 176°]. 

 

Figure 2.18: Molecular structure of 81·DMSO with thermal elipsoids set at 50%. 

The structure exhibits some interesting packing interactions that involve classic hydrogen 

bonding, weaker non-classical CH-based hydrogen bonding and ··· stacking.  NH and 

CH-based hydrogen bonding between neighbouring molecules of 81 results in a hydrogen 

bonded zig-zag chain (Figure 2.19) where the squaramide oxygen atoms form H-bonding 

interactions to the NH and CH groups on a neighbouring molecule [N1···O21 = 2.783(4) 

Å and <(NH···O) = 170°; C4···O22 = 3.248(5) Å and <(CH···O) = 171°; N22···O2 = 

2.806 Å and <(NH···O) = 161°; C27···O1 = 3.240(5) Å and <(CH···O) = 173°] (Figure 

2.199). This propagates throughout the structure to give the overall H-bonded zig-zag 

chain. These chains are further linked into sheets via weaker CH-based hydrogen bonds 
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between the oxygen atoms of the nitro group and neighbouring CH group [C25···O3 = 

3.360(5) Å and < (CH···O) = 165°] (Figure 2.20).  The sheets of 81 are finally arranged 

into layers through ··· stacking interactions [inter centroid distances ~3.5 Å] between 

adjacent aromatic groups to give an overall layered topology (Figure 2.20). 

 

Figure 2.19: Hydrogen bonding interactions in 81·DMSO that result in the formation of 

the zig-zag chain (A) – [N1···O21 = 2.783(4) Å and <(NH···O) = 170°; C4···O22 = 

3.248(5) Å and <(CH···O) = 171°; N22···O2 = 2.806 Å and <(NH···O) = 161°; C27···O1 

= 3.240(5) Å and <(CH···O) = 173°]; and space filling representation showing the long 

range ordering of the zig-zag H-bonded chain (B) 

 

 

Figure 2.20: All H-bonding interactions present in the formation of the 2D sheets of 81 

(A) - purple dashed lines are NH-based H-bonds and orange dashed lines are CH-based 

H-bonds.  View of the -stacked layers formed between the 2D sheets (B) of 81 (in blue) 

and the dispersion of interstitial DMSO molecules (in orange) throughout the layered 

structure. 
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2.6 Application of Compound 81 towards F- Test Strips 

Since the anion sensing mechanism of compound 81 has been studied, we next wished to 

evaluate its potential as a sensor for F- with real life application. Test strips of 81 were 

prepared by immersing filter papers into a DMSO solution of 81 (40.7 mM) before 

allowing the strips to dry fully in an oven (60°C for 12 hrs). The test strips containing 81 

were then used to demonstrate the applicability of this molecule towards halide sensing. 

Figure 2.23 shows photographs of the test strips after additions of 2 µL of DMSO 

solutions of TBAF, TBACl, TBABr and TBAI (0.445 M). Upon addition of TBAF the 

colour was observed to change instantly from pink to green while the areas of the filter 

paper treated with the other halides were shown to remain unchanged (Figure 2.21(a)). 

Additionally, when an aqueous solution of TBAF (0.445 M) was also added, followed by 

gentle heating, the colour was again observed to change instantly from pink to green 

clearly demonstrating the practical use of this very simple sensor molecule to the analysis 

of aqueous solutions containing F- (Figure 2.21(b)). Compound  81 was also tested to 

show capability of sensing the presence of F at different pH values ranging from pH 5 to 

pH 8 (Figure 2.22). 

(a)        (b) 

  

Figure 2.21: Photograph of filter paper impregrated with 81 (40.7 mM) and the 

colorimetric response observed upon addition of 2 µL of (a) TBAF, TBACl, TBABr and 

TBAI (0.445 M) in DMSO and (b) TBAF (0.445 M) in H2O after gentle drying. 
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Figure 2.22: Photograph of filter paper impregrated with 81 (41 mM) and the colorimetric 

response observed upon addition of 2 µL of  TBAF (0.45 M) at various pH values as 

indicated. 

 

2.7 Conclusion 

In conclusion, we have successfully synthesized a family of compounds 80-85 based on 

the ‘squaramidoquinoxaline’ moiety where the new structures have been characterized by 

a combination of NMR spectroscopy, mass spectrometry and FT-IR spectroscopy. 

Moreover, we also got the X-ray crystallography for compound 81. UV/Vis absorption 

properties of compound 81 was shown to display a characteristic long wavelength 

absorption at 715 nm. The halide recognition abilities of the receptors were also 

investigated where 81 was shown to undergo drastic colorimetric changes from pink to 

green upon titration with F− which culminated in a large increase in absorption at 715 nm 

suggesting the existence of a deprotonation event. Further addition of F− led to a second 

colour change from green to yellow and a concomitant reduction of all absorption bands 

in the UV/Vis absorption spectrum. The NO2 derivative 81 was also found to be a 

selective colourimetric sensor for F− where no such changes were observed in the 

presence of the other halides Cl−, Br− or I−. Using UV/Vis, NMR and TD-DFT analysis 

we conclude that the observed colour changes are likely to be due to a two-step process 

involving two NH deprotonation steps. Colour changes of the other compounds 80 and 

82-85 were not as apparent in the presence of F− owing to the reduced acidity of the NH 

functionality of the squaramidoquinoxaline and the apparent lack of a relative strong 
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electron withdrawing group that allows for charge transfer within the molecule. We also 

demonstrated application of F− sensing using a test strip method of 81 where addition of 

TBAF caused the colour of a filter paper impregnated with 81 to change instantly from 

pink to green while areas treated with the other halides were shown to remain unchanged. 

The results of this study again demonstrate the use of squaramide derivatives as valuable 

building blocks in the field of anion recognition and sensing and demonstrate that the 

electron withdrawing aryl substituent is directly related to the sensing ability/acidity of 

the squaramide protons and can be used to tune their anion recognition behavior. 

Moreover, we envisaged that squaramidoquinoxalines might be useful building blocks 

for anion-responsive supramolecular self-assembly formations according to the 

interesting packing interactions observed in the crystal structure of 81 that involve classic 

hydrogen bonding, weaker non-classical CH-based hydrogen bonding and π- π stacking 

interactions.  
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Chapter 3 Macrocyclic Squaramide (MSQ) Moiety Based Anion 

Sensors 

3.1 Introduction  

The higher degree of preorganization in size, shape, orientation and rigidity of their 

binding sites enable macrocycles to have superior binding capacity in comparison to their 

acyclic counterparts.6 For instance, Calix[4]pyrrole as expanded pyrrole-containing 

macrocycles that lack conjugation between the pyrrole units are particularly effective for 

anion binding and sensing.75 Calix[4]pyrroles also show good anion-binding capability 

both in the solution phase and in the solid phase.76, 77 The macrocyclic squaramide 70 

which has been outlined in Chapter 1.6 is another molecule of interest. It was reported 

that 70 showed excellent binding affinity towards SO4
2- in which the SO4

2-  was bound to 

the macrocyclic cavity of 70 via hydrogen bonding.57 Furthermore, this work also 

revealed that the binding of 70 toward sulfate anion in the macrocyclic cavity allowed the 

crystal structure to transform from chair- to bowl-like conformation which forced the two 

benzenes to get closer to each other in space (Figure 3.1).  

 

(a)                                                            (b) 

Figure 3.1: Single crystal X-ray diffraction structures of (a) 70 and (b) the complex 

formed between 70 and SO4
2- clearly showing the interaction of SO4

2- with the squaramide 

NH protons inside the macrocyclic cavity. Image taken from Chem. Sci. 2016;7(7):4563-

72. 
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Based on this fact, we envisaged that incorporation of fluorophores on the periphery of 

aryl ring may result in FRET (Förster Resonance Energy Transfer) within the macrocycle 

system when bound to anions due to the bowl-like conformation having a closer distance 

between the fluorophores. To understand the proposed concept, below will detail a short 

section describing FRET. 

FRET is an energy transfer process occurs from an excited donor (D) fluorophore to a 

suitable acceptor (A) protein or fluorophore via long-range dipole–dipole coupling 

mechanism.78 The donor absorbs energy at shorter wavelength whereas the acceptor has 

energy absorption at longer wavelength. FRET is collision-free, but distance-dependent 

photophysical process. Collision between donor and acceptor would prevail at distance 

below 1 nm, whereas photon emission by donor would be dominant at distances higher 

than 10 nm. Thus, FRET occurs only when two fluorophores are in the distance within 1-

10 nm. FRET can take place not only between two spectroscopically different 

fluorophores which is termed heteroFRET, but also between spectroscopically identical 

fluorophores with small excitation-emission separation of the spectral peaks. Energy 

transfer between like fluorophores is known as homoFRET. The sensitivity of FRET 

towards molecular distance enables various applications in the determination of dynamic 

molecular events such as conformational change in macromolecules, cis- or trans- 

association/or assembly in macromolecules etc. The Jablonski diagram gives the simplest 

explanation of how FRET occurs in terms of donor/acceptor excitation and emission 

(Figure 3.2).78 

 

Figure 3.2：(a) The figure shows the Jablonski diagram demonstrating mechanism of 

Förster Resonance Energy Transfer (FRET). On absorption of energy, electrons in both 

donor and acceptor are excited from the ground state to an excited state, and they lose 

energy as fluorescence with rate constant kf(D) for donor or kf(A) for acceptor and non-

fluorescence mechanisms with rate constant knf(D) for donor or knf(A) for acceptor. On 
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the occurrence of FRET, excited energy of the donor is also lost via FRET to an acceptor 

with rate constant kFRET; and (b) Spectral overlap: The absolute requirement of FRET is 

illustrated in this figure. The symbols “λ
D 

ex  ” and “λ
D 

em ” or “λ
A 

ex  ” and “λ
A 

em ” indicate 

excitation (λex) and emission spectra (λem) of donor and acceptor fluorophores 

respectively with upper index letters denoting fluorophores. Essential spectral overlap in 

the case of heteroFRET (yellow) and homoFRET (blue) is also highlighted in the figure. 

Image taken from Int. J. Mol. Sci. 2015;16(4):6718-56. 

In our hypothesis, the pyrene fluorophore absorbs energy at shorter wavelength and could 

act as a FRET donor whereas the 4-nitro-1,8-naphthalimide probe absorbs energy at 

higher wavelength could act as FRET acceptor. Thus, compound 90 with FRET donor 

and acceptor on the opposite sides could undergo FRET upon binding with anions due to 

the bowl-like conformation allowing the two fluorescent probes to get closer within the 

range of 1-10 nm. As a result, FRET process of compound 90 provides a pathway to 

detect anions by fluorogenic methods. A diagram below gives a more concise explanation 

of how FRET might take place within 90 upon the binding with SO4
2- anion (Figure 3.3). 

(a) 
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(b) 

 

Figure 3.3: (a) Structure of target molecule 88-90. (b) FRET ‘switched on’ due to 

conformational change from chair- to bowl-like of the MSQ upon binding with SO4
2-. 

 

3.2 Synthesis of Model Compounds 

Initially we resynthesized compound 70 in order to compare with model compounds 

(Scheme 3.1).57 The intermediate compound 99 was achieved by stirring the solution of 

diethyl squarate with m-xylylenediamine and triethylamine in EtOH at room temperature. 

Removal of solvent by filtration yielded the light-yellow solid intermediate 99 in 12% 

yield. Then the macrocycle squaramide 70 was achieved by refluxing the very diluted 

solution of 99 and triethylamine with slow addition of m-xylylenediamine in EtOH at 

90 ℃. Removal of solvent by filtration yielded the light-yellow target molecule 70 in 67% 

yield. 

 

Scheme 3.1: Synthetic pathway of compound 70. (i) m-xylylenediamine, triethylamine 

and EtOH, rt, 12%. (ii) m-xylylenediamine, triethylamine and EtOH, 90 ℃, 67%. 
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We also wished to synthesize 86 and 87 to verify that functionalisation of the MSQ did 

not affect SO4
2- binding. The key point to synthesize compound 86 and 87 is getting the 

-NO2 substituted m-xylylenediamine 104 as shown in scheme 3.2. The amine group could 

be synthesized from bromine using Gabriel Synthesis while the bromine could be easily 

converted from alcohol using phosphorus tribromide. The alcohol substituted 

intermediate 101 can be achieved by reduction of commercially available 5-

nitroisophthalic acid 100. 

 

 

Scheme 3.2: Retrosynthetic analysis of the target molecule 86. 

As shown in Scheme 3.3, compound 101 was achieved by stirring the solution of 5-

nitroisophthalic acid 100 and borane dimethyl sulphide complex in DCM at 0 ℃ for 1 

hour, the at room temperature for 48 hours. Work up with MeOH and washed with 

NaHCO3 and Brine to yield a beige solid 101 in 41% yield. Then the reaction of 

compound 101 with phosphorus tribromide in DCM yielded intermediate 102 as off-

https://www.sigmaaldrich.com/catalog/substance/5nitroisophthalicacid2111361888211
https://www.sigmaaldrich.com/catalog/substance/5nitroisophthalicacid2111361888211
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white solid in 78% yield. In the next step, compound 103 was achieved by refluxing of 

compound 102 with phthalimide potassium salt in EtOH, refluxing of 103 with hydrazine 

in EtOH then removal of solvent and followed by dissolving in water, adjusting pH to 13, 

extracting with DCM and removal of solvent again yielded compound 104 as brown solid 

in 58% yield. 

 

Scheme 3.3: synthetic pathway of the compound 104. (i) BH3, DCM, 0 ℃ to rt, 41%. (ii) 

PBr3, DCM, rt, 78%. (iii) Potassium phthalimide, EtOH, reflux, 97%. (iv) Hydrazine, 

EtOH, reflux, 58%. 

 

At this stage, all the reaction intermediates 101-104 were successfully synthesized and 

characterized by 1H NMR, 13C NMR, HRMS and IR-ATR spectroscopy. The 1H NMR 

of compound 101 showed that the signal peak at 8.06 ppm assigns to two aromatic protons 

H1, the peak at 7.72 ppm assigns to the aromatic proton H2, the triplet at 5.53 ppm are 

two -OH protons and doublet with chemical shift at 4.63 ppm assigns to four aliphatic 

protons H3 (Figure 3.4). 
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 Figure 3.4: The 1H NMR spectrum of compound 101 (500.13 MHz, DMSO-d6). 

 

1H NMR spectrum of intermediate compound 102 and 103 is shown in Appendix section. 

Comparing the 1H NMR spectrum of compound 104 to 101, the signal of aromatic protons 

have similar chemical shifts. However, the aliphatic protons H3 moved upfield (Δδ= 0.8 

ppm) due to the more shielded H3 affected by the electron donating -NH2 group 

(Figure3.5). 

 

Figure 3.5: The 1H NMR spectrum of compound 104 (500.13 MHz, DMSO-d6). 
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The plotted 1H NMR spectrum of compound 101 and 104 below gives a more visualized 

view of how the functional groups prompted the signal shifts of from 101 to 104 (Figure 

3.6). 

 

Figure 3.6: The multiple display 1H NMR spectrum of compound 101 and 104 (500.13 

MHz, DMSO-d6). 

 

Since the successful synthesis of (5-nitro-1,3-phenylene)dimethanamine 104, compound 

105 could be achieved using the same method as the synthesis of compound 99 (scheme 

3.4). Compound 105 was isolated as an orange solid in 63% yield. Then, the reaction of 

105 with m-xylylenediamine or 104 resulted in macrocycle 86 and 87, respectively. 

1 

1 

2 

3 

2 

3 

4 
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Scheme 3.4: synthetic pathway of the compound 86 and 87. (i) diethyl squarate, EtOH, 

rt, 63%. (ii) m-xylylenediamine, EtOH, 90 ℃, 88%. (iii) 104, EtOH, 90 ℃, 71%. 

 

The 1H NMR spectrum of compound 105 is shown in Figure 3.7, all protons were labelled 

by numbers. The two singlets were observed at 9.33 and 9.13 ppm for two NH protons, 

the singlets at 8.13 and 7.68 ppm were attributed to aromatic protons H2 and H3. Peaks 

from 4.61-4.82 ppm were observed for eight CH2 protons H4 and H5, a pair of triplets 

was observed 1.37 ppm for six CH3 protons H6, this may suggest some degree of 

aggregation or conformational exchange in this molecule. 
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Figure 3.7: The 1H NMR spectrum of compound 105 (500.13 MHz, DMSO-d6). 

Compounds 86 and 87 were fully characterized by 1H NMR, 13C NMR, HRMS and FTIR 

spectroscopy. The 1H NMR spectrum of compound 86 and 87 could not be accurately 

characterized due to significant peak broading. However, addition of TBASO4 into the 

NMR samples of 86 and 87 resulted in better resolution. This phenomenon is possibly 

ascribed to the flexible structure conformations of compound 86 and 87, binding of 

compound 86 or 87 towards SO4
- anions stabilized the conformational changes. The 1H 

NMR spectrum of compound 86 is shown in Figure 3.8, the broad peak at 9.21 ppm was 

observed for four NH protons H1 and H2. Peaks from 7.10 to 8.25 ppm assigned to seven 

aromatic protons H3-H7. HRMS of [86+Na]+ was observed at 496.1219 m/z (PPM:-1.8). 

 

(a) 

1 

2 

3 

4,5 
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Figure 3.8: The 1H NMR spectrum of compound 86 (500.13 MHz, DMSO-d6). (a) 

Absence of SO4
2-. (b) Presence of SO4

2-. 

As is shown in Figure 3.9, the 1H NMR spectrum of compound 87 with TBASO4 also 

showed better resolution comparing to the spectrum without TBASO4. The singlet at 9.74 

ppm was observed for four NH protons H1. Singlets at 7.99 and 8.41 ppm assigned to 

aromatic protons H2 and H3, respectively. The peak at 4.89 ppm was observed for eight 

CH2 protons H4. HRMS of [87+Na]+ was observed at 541.1081 m/z (PPM: 0.5). 

 

(b) 
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Figure 3.9: The 1H NMR spectrum of compound 87 (500.13 MHz, DMSO-d6). (a) 

Absence of SO4
2-. (b) Presence of SO4

2-. 

 

This observation of changes and simplification of the 1H NMR spectra gave us an early 

indication of SO4
2- binding and suggested that substitution at the periphery of the benzene 

can yield receptors capable of binding anions. With this important observation we next 

set out to synthesize compound 88 where a fluorophore was conjugated at this position.  

In order to introduce pyrene group into the macrocyclic squaramide, the initial strategy 

was using amide as a linkage between pyrene and the periphery of the benzene of 70. As 

shown in the retrosynthetic analysis of compound 88 (Scheme 3.5), two -NH2 groups 

could be achieved using Gabriel Synthesis as described previously. The amide linkage 

could be achieved by condensation of compound 106 and commercially available 1-

pyrenecarboxylic acid 107. Compound 106 could be achieved by reduction of compound 

103 which was successfully obtained in the synthetic process of compound 86 and 87. 

1 3 
2 4 

(b) 

TBA 
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Scheme 3.5: Retrosynthetic analysis of the compound 88. 

 

Compound 103 was synthesized as outlined in Scheme 3.3, then reduction of 103 under 

H2 gas atmosphere using Pd/C as catalyst in DMF resulted in compound 106 as a beige 

solid in 72% yield (Scheme 3.6). Compound 108 was synthesized by stirring the solution 

of 106 and 1-pyrenecarboxylic acid in DMF with 4-methylmorpholine as base and 

PyBOP as coupling reagent at room temperature. Removal of solvent by filtration yielded 

an off-white solid in 19% yield. 
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Scheme 3.6: Synthetic pathway of compound 109. (i) H2, Pd/C, DMF, rt, 72%. (ii) 1-

Pyrenecarboxylic acid, 4-methylmorpholine, PyBOP, DMF, rt, 19%. (iii) Hydrazine, 

DMF, reflux. 

 

At this stage, intermediate compound 106 and 108 were successfully synthesized and 

characterized by 1H NMR, 13C NMR, HRMS and IR-ATR spectroscopy. The 1H NMR 

spectrum of compound 106 is shown in Figure 3.10, a multiplet signal was observed with 

chemical shift at 7.88 ppm for the aromatic protons H1 and H2 of the phthalimide group, 

whereas the peaks at 6.39 and 6.33 ppm was observed for the aromatic protons H3 and 

H4. The broad peak at 5.15 ppm assigned to two NH protons H5 and peak at 4.59 ppm 

assigned to the protons H6 of CH2 group. 
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Figure 3.10: The 1H NMR spectrum of compound 106 (500.13 MHz, DMSO-d6). 

In comparison to compound 106, the 1H NMR spectrum of compound 108 showed 

downfield shift of NH signal from 5.15 to 10.72 ppm due to the formation of amide and 

extra peaks were observed from 8.12 to 8.41 ppm for the aromatic protons of pyrene 

group (Figure 3.11). Downfield shifts of aromatic protons H3, H4 and CH2 protons H6 

were also observed (ΔδH3 = 0.71 ppm, ΔδH4 = 1.41 ppm, ΔδH6 = 0.22 ppm). 

 

Figure 3.11: The 1H NMR spectrum of compound 108 (500.13 MHz, DMSO-d6). 

An attempt was made to deprotect compound 108 by refluxing with hydrazine in DMF 

overnight. Removal of solvent under reduced pressure and re-dissolved in DCM resulted 

in precipitate which was then washed with sat. NaHCO3 and 1M HCl. The precipitate was 
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filtered and washed with small amount of water. However, the 1H NMR spectrum of the 

precipitate showed that although there was no signal peak of aromatic protons of 

phthalimide groups, the integration of aromatic region was much higher than expected 

which suggested that compound 108 might underwent a hydrolysis reaction of the amide 

linkage (Figure 3.12). In addition, in order to verify the phthalimide deprotection, an 

attempt was made to reprotect the free amines with Boc2O. This reaction failed thus 

supporting the conclusion that target compound 109 was not successfully formed. 

 

Figure 3.12: The 1H NMR spectrum of potential product 109 (500.13 MHz, DMSO-d6). 

Moreover, in LCMS spectrum of the precipitate, no signal of the target molecule ([M+H]+ 

= 380.5, [M+Na]+ = 402.5) was observed further revealed that this deprotection was not 

successful (Figure 3.13). After several attempts to identify the product that had been 

formed using NMR and MS techniques the structure of the reaction product remains 

unknown. 

 

Figure 3.13: LCMS spectrum of potential product 109. 
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Based on the failed attempt to deprotect 108 and to avoid the hydrolysis of the amide 

linkage, a C-C single bond which could be formed using Suzuki coupling reaction was 

considered to connect the pyrene probe and the macrocyclic squaramide. In this case, the 

coupling partners were pyrene-1-boronic acid 113 and bromo substituted compound 112 

(Scheme 3.7). Compound 112 could be synthesized from 1-bromo-3,5-

bis(bromomethyl)benzene 111 using Gabriel synthesis as described in Scheme 3.3. 

Compound 111 could be synthesized from commercially available 1-Bromo-3,5-

dimethylbenzene 110 using Wohl–Ziegler reaction.79 Wohl–Ziegler reaction is known as 

a radical reaction which enables the bromination of allylic or benzylic hydrocarbon using 

N-bomosuccinimide and a radical initiator. 

 

Scheme 3.7: Retrosynthetic analysis of the compound 114. 

The synthetic procedure of compound 115 is shown in Scheme 3.8, compound 111 was 

obtained by refluxing the solution of 1-Bromo-3,5-dimethylbenzene 110 and N-

bromosuccinimide in MeCN using AIBN as radical initiator under argon yielded a white 

crystalline product in 5.4% yield. The low yield of this radical bromination reaction 

brought difficulty to the subsequent synthesis steps. However, after several attempts to 

increase the yield including modification of solvent, temperature and reaction duration, 

the mono-brominated product was always found to be dominant in this reaction.  



69 

 

Scheme 3.8: Synthetic pathway of compound 115. (i) N-bromosuccinimide, AIBN, 

MeCN, reflux under Ar, 5.4%. (ii) Potassium phthalimide, EtOH, reflux, 92%. (iii) 

Pyrene-1-boronic acid, Pd(PPh3)4, Na2CO3, THF/H2O, reflux under N2, 8%. (iv) 

Hydrazine, DMF, reflux. 

As shown in the 1H NMR spectrum of compound 111 (Figure 3.14), peaks at 7.34 and 

7.47 ppm were observed for the aromatic protons H1 and H2, the peak at 4.41 ppm was 

observed for the CH2 proton H3. 

 

Figure 3.14: The 1H NMR spectrum of compound 111 (500.13 MHz, CDCl3). 
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Compound 112 was achieved as white solid in 92% yield by refluxing of compound 111 

with phthalimide potassium salt in EtOH. 

The signal peak of aromatic protons H1,2 and CH2 protons H3 were also observed with 

chemical shift at 7.24, 7.44 and 4.75 ppm, respectively (Figure 3.15). Comparing to the 

1H NMR spectrum of compound 111, an extra multipet was observed at 7.87 ppm for 

eight aromatic protons H4 and H5 of two phthalimide groups. 

 

Figure 3.15: The 1H NMR spectrum of compound 112 (500.13 MHz, DMSO-d6). 

Subsequent Suzuki coupling was undertaken for the synthesis of compound 114 by 

refluxing the solution of 112 and pyrene-1-boronic acid 113 with Na2CO3 in THF/H2O 

mixture using Pd(PPh3)4 under N2 atmosphere to yield the product as a brown solid in 8% 

yield. The low yield of this Suzuki reaction brought difficulty to the subsequent 

deprotection step again, although this Suzuki reaction was previously reported in some 

literature with 80% yield.80  

The 1H NMR spectrum of compound 114 is shown in Figure 3.16, peaks from 7.97 to 

8.22 ppm were observed for aromatic protons H6-14 of pyrene group, multiplet at 7.86 

ppm was observed for aromatic protons H4 and H5 of phthalimide groups. 

1 
2 

3 

4，5 



71 

 

Figure 3.16: The 1H NMR spectrum of compound 114 (500.13 MHz, DMSO-d6). 

Another attempt to deprotect compound 114 by refluxing with hydrazine in DMF 

overnight was carried out. Solvent was removed under reduced pressure and the residue 

was re-dissolved in water. The water solution was then adjusted to alkaline using 1 M 

NaOH and extracted by DCM to yielded yellow residue which was characterized by 1H 

NMR spectroscopy. However, only the signal peak of phthalimide was observed in the 

aromatic region. Then water solution was adjusted to acidic using 1M HCl and extracted 

by DCM, no signal peak of the target molecule was observed form the 1H NMR spectra 

(Figure 3.17). 

(a) 
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(b) 

 

Figure 3.17: (a) Multiple display of partial 1H NMR spectrum of 114 and the residue 

after base wash. (b)  1H NMR spectrum of the residue after acid wash. 

The extraction of phthalimide from base washed reaction mixture revealed that the 

deprotection might happen. However, due to the low yield of  intermediate 111 and 114, 

only 20mg 114 was used for the deprotection which brought difficulty to the purification 

of the reaction mixture. Although we failed to introduce the pyrene group into the MSQ, 

the successful synthesis of MSQ 86 and 87 enabled to investigate the effect of substitution 

on the periphery of MSQ in SO4
2- binding. 

 

3.3 1H NMR Titration Study of Compound 86 and 87 

Considering the difficulty in obtaining the proposed compounds we wished to further 

explore the SO4
2- binding ability of compounds 86 and 87 in order to fully understand the 

effect of substitution on the periphery of the macrocycle. The successful synthesis and 

characterization of compound 86 and 87 enabled us to investigate their anion binding 

ability in comparison to non -NO2 substituted macrocycle 70. In this 1H NMR titration 

study, 2.5 x 10-3 M of compound 86 and 87 in 0.5% H2O in DMSO-d6 solution was tested 

with increasing equivalent of SO4
2- anions in its tetrabutylammonium salt (TBA+) from 0 

eq. to 12.0 eq., respectively. As shown in Figure 3.18, addition of SO4
2- resulted in 

DCM 
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significant downfield shift of NH proton signals from 7.95 to 10.08 ppm (Δδ= 2.13 ppm). 

Downfield shift of aromatic proton C-Ha was observed from 7.62 to 8.64 ppm (Δδ= 1.02 

ppm) whereas upfield shift of aromatic proton C-Hb was observed from 8.15 to 7.96 ppm 

(Δδ= 0.19 ppm). 

(a) 

 

(b) 
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(c) 

 

Figure 3.18: (a) Stack plot of 1H NMR spectra of 86 (2.5 x 10-3 M) upon addition of 

(TBA)2SO4 (0 - 12 equiv.) in DMSO-d6 at 25 °C. (b) Comparison isotherms of 

squaramide NH, aromatic protons (Ar-Ha, Hb) for 86 in the presence of increasing 

concentrations of SO4
2-. (c) Comparison of host (H) and host-guest (H-G) molefractions 

in the presence of increasing concentrations of SO4
2-. 

As shown in Figure 3.19, addition of SO4
2- resulted in significant downfield shift of NH 

proton signals from 8.03 to 9.82 ppm (Δδ= 1.79 ppm). Downfield shift of aromatic proton 

C-Ha was observed from 7.60 to 8.43 ppm (Δδ= 0.83 ppm)  whereas upfield shift of 

aromatic proton C-Hb was observed from 8.15 to 8.0 ppm (Δδ= 0.15 ppm). 
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(b) 

 

(c) 

 

Figure 3.19: (a) Stack plot of 1H NMR spectra of 87 (2.5 x 10-3 M) upon addition of 

(TBA)2SO4 (0 - 12 equiv.) in DMSO-d6 at 25 °C. (b) Comparison isotherms of 

squaramide NH, aromatic protons (Ar-Ha, Hb) for 87 in the presence of increasing 

concentrations of SO4
2-. (c) Comparison of host (H) and host-guest (H-G) mole fractions 

in the presence of increasing concentrations of SO4
2-. 

The 1H NMR titration data of two MSQs 86 and 87 in the presence of increasing 

concentrations of SO4
2- fitted to a 1:1 binding mode using BindFit.81 The apparent 

stability constant (Ka) as summarized in Table 3.2 (Ka = 31.38 M-1 and 11.34 M-1 for 86 
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and 87, respectively (error < 2%)). In comparison to non-NO2 substituted MSQ 70 of 

which Ka > 104 M-1, MSQs 86 and 87 showed relatively low binding affinity towards 

SO4
2- anion. 

MSQ Ka (M-1) 

70 >104 

86 31.38 

87 11.34 

Table 3.1: Apparent stability constant (Ka) of the binding of MSQ 70, 86 and 87 towards 

SO4
2- anion. 

 

3.4 Conclusion 

In conclusion, we have successfully synthesized nitro substituted macrocyclic squaramide 

(MSQ) 86 and 87, both MSQs have been characterized by a combination of NMR 

spectroscopy, mass spectrometry and FT-IR spectroscopy. The 1H NMR spectra of 

compound 86 and 87 were poorly resolved until addition (TBA)2SO4 revealed clear 

binding interactions with SO4
2-. The 1H NMR titration study of 86 and 87 were performed 

by addition of SO4
2- with the resulting data fit to a 1:1 binding mode using BindFit. 

However, compound 86 and 87 showed quite low apparent stability constant (Ka 86 = 

31.38 M-1, Ka 87 = 11.34 M-1) comparing to non-nitro substituted compound 70 (Ka > 104 

M-1).  

The synthesis of pyrene-substituted MSQ 88 was also discussed in this chapter. In our 

initial work, the pyrene probe was planned to be introduced into the MSQ using an amide 

linkage. Unfortunately, in the deprotection step of compound 108, the amide linkage 

appeared to be hydrolyzed in the presence of hydrazine. To avoid this, the C-C bond was 

considered to connect pyrene probe and the MSQ using Suzuki coupling. However, the 

deprotection step of compound 114 again did not result in the target molecule 115. Thus, 

although the Gabriel synthesis showed good result in the synthesis of compound 86 and 

87, however, it was not suitable in the synthesis of compound 115. The low yield of 

intermediate 108, 111 and 114 (19%, 5.4% and 8%, respectively) also brought difficulty 

to the repeating attempt to synthesize the target molecule. 
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Chapter 4 Overall Conclusion and Future Work 

In this thesis, we aimed to prepare and study two families of novel squaramide-based 

anion sensors. The design, synthesis, characterization as well as anion binding study of 

novel squaramidoquinoxaline (SQX) based anion sensors 80-85 were discussed in 

Chapter 2. The design, synthesis, characterization as well as SO4
2- binding test of 

macrocyclic squaramide (MSQ) 86, 87 and the attempt to synthesize pyrene 

functionalized MSQ 88 were discussed in Chapter 3. 

In Chapter 2, compound 81 showed a characteristic long wavelength absorption at 715 

nm in its UV/Vis absorption spectrum. The investigation of halide recognition abilities of 

the receptors revealed that 81 underwent drastic colorimetric changes from pink to green 

along with a large increase in absorption at 715 nm upon titration with F− suggesting the 

existence of a deprotonation event. Further addition of F− led to a second colour change 

from green to yellow and a concomitant reduction of all absorption bands in the UV/Vis 

absorption spectrum. The NO2 derivative 81 was also found to be a selective 

colourimetric sensor for F− among the tested halides. Using UV/Vis, NMR and TD-DFT 

analysis we conclude that the observed colour changes are likely to be due to a two-step 

process involving two NH deprotonation steps. Colour changes of the other compounds 

80 and 82-85 were not as apparent in the presence of F− owing to the lack of a strong 

electron withdrawing group that allows for charge transfer within the molecule. Test 

strips study of compound 81 showed that this compound is capable of instant recognition 

of F- even under different pH conditions. The study of this chapter  demonstrated the use 

of squaramide-based molecules as useful building blocks in the field of anion recognition 

and sensing. It also demonstrated that the electron withdrawing aryl substituent is directly 

related to the sensing ability/acidity of the squaramide protons. Moreover, the crystal 

structure of 81 showed the packing interactions including  hydrogen bonding, weaker 

non-classical CH-based hydrogen bonding and π- π stacking interactions which could 

enable 81 to be useful building blocks for anion-responsive supramolecular self-assembly 

formations. 
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Figure 4.1: Chemical structure of compound 81. 

In Chapter 3, we have successfully synthesized and characterized the asymmetrically -

NO2 substituted MSQ 86 and symmetrically -NO2 substituted MSQ 87. We also outlined 

our attempts to synthesize pyrene-substituted MSQs. Two strategies were carried out to 

synthesize the target molecule, one strategy was using an amide linkage to connect the 

pyrene group and the MSQ, another strategy was using C-C single bond to connect two 

moieties. However, the attempt to synthesize the pyrene-substituted MSQ was 

unsuccessful. The deprotection of the phthalimide group failed for both strategies and 

suggested that the Gabriel synthesis was not suitable here although useful in the synthesis 

of compound 86 and 87. The 1H NMR titration study of 86 and 87 were demonstrated by 

addition of SO4
2- with the resulting data fit to a 1:1 binding mode using BindFit. However, 

compound 86 and 87 showed relatively low apparent stability constant (Ka 86 = 31.38 M-

1, Ka 87 = 11.34 M-1) comparing to their parent compound 70 (Ka > 104 M-1). This result 

suggests that substitution of the macrocycle in its periphery may be detrimental to anion 

recognition. 

We failed at the last step to introduce the pyrene group into the macrocyclic squaramide. 

However, we provided a preliminary idea of using FRET (Förster Resonance Energy 

Transfer) to monitor the anion binding process of fluorescent probe substituted MSQ and 

this work will continue in the Elmes lab. 

The future work to continue this project should look to improve the synthesis and increase 

the yield of some relevant steps as described in section 3.3, as many synthetic steps 

suffered from low reaction yields. An alternative method to obtain the key 

diaminomethyl-substituted intermediate could use azide chemistry as outlined below 

(Scheme 4.1). This reaction was originally avoided due to the safety issues of azide 
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chemistry and should be considered carefully as the diazide substituted intermediate may 

be an explosive risk due to its high N atom ratio. 

 

Scheme 4.1: synthesis of amine using azide chemistry. 

Once synthesized FRET based MSQs may yield an entirely new class of anion sensors 

and we expected will have broad applicability to rea world applications. 
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Chapter 5 Experimental 

5.1 Instrumentation and Reagents 

Commercial materials were supplied by Sigma Aldrich or TCI Europe and were used 

without further purification. HPLC grade solvents were used as received. 1H NMR spectra 

were recorded using a Bruker Avance III 500 spectrometer at a frequency of 500.13 MHz 

as parts per million (ppm) and calibrated to the residual protio-solvent preak in DMSO-

d6 (δ = 2.50 ppm) or CDCl3 (δ = 7.26 ppm). Stack plots were made using TopSpin 3.5. 

The data are reported as chemical shifts (δ), multiplicity (br = broad, s = singlet, d = 

doublet, t = triplet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), 

coupling constant (J, Hz) and relative integral. 13C NMR were recorded using a a Bruker 

Avance III 500 spectrometer at a frequency of 125.76 MHz as parts per million (ppm) 

and calibrated to the residual protio-solvent peak in DMSO-d6 (δ = 39.5 ppm) or CDCl3 

(δ = 77.1 ppm). High resolution ESI sprctra were recorded on an Agilent 63010 LCMS 

TOF. Analytical TLC was performed using pre-coated silica gel plates (Merck Kieselgel 

60 F254). Infrared absorption spectra were recorded on a Perkin Elmer Spectrum 100 FT-

IR/ATR spectrometer and reported in wavenumbers (cm-1). 

 

5.2 Photophysical Characterizations 

Photophysical characterizations were performed by diluting the PBS buffer solution of 

each receptor. The stock solution of the receptor in DMSO was used to make two PBS 

buffer solutions with concentration of 1×10-5 M and 2×10-5 M, respectively. For each 

sample, it was diluted by taking out 0.5 mL solution then adding 0.5 mL PBS buffer for 

four times. UV/Vis spectrum was recorded using a Varian Cary 50 UV/Vis 

spectrophotometer after each operation and plotted into one chart. Extinction coefficient 

of the receptor was obtained as the slope of the absorption spectrum in the unit M-1. 

 

5.3 Spectroscopic Binding Studies 

Spectroscopic titrations were performed by additions of aliquots of the putative anionic 

guest as the tetrabutylammonium (TBA) salt, in a solution of the receptor (1 × 10-5 M) in 
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DMSO to a 1 × 10-5 M solution of the receptor in DMSO. Typically, 0 up to 0.12 M of 

the anions were added to the solution. Both salt and receptor were dried under high 

vacuum prior to use. UV/Vis data was recorded using a Varian Cary 50 UV/Vis 

Spectrophotometer. The absorbance was recorded from 250 nm to 850 nm. To determine 

association constants for the receptor-anion complexes, global analysis of the absorbance 

data was carried out using the open access BindFit software program.71, 82 

 

5.4 1H NMR Binding Studies of Novel Receptors 

NMR titrations of novel receptors 81 were performed by additions of aliquots of the 

putative anionic guest as the tetrabutylammonium (TBA) salt (0.15 – 0.2 M), in a solution 

of the receptor (2.5 × 10-3 M) in DMSO-d6 to a 2.5 × 10-3 M solution of the receptor in 

DMSO-d6. Typically, up to 2 equivalents of the anion were added to the solution. NMR 

titrations of receptors 86 and 87 were performed by additions of SO4
- as the 

tetrabutylammonium (TBA) salt (0.125 M), in a solution of the receptor (2.5 × 10-3 M) in 

DMSO- d6. Typically, up to 12 equivalents of the anion were added to the solution. Both 

salt and receptor were dried under high vacuum prior to use. 1H NMR spectra were 

recorded on a Bruker Avance III 500 spectrometer at a frequency of 500.13 MHz and 

calibrated to the residual protio solvent peak in DMSO-d6 (δ = 2.50 ppm). Stack plots 

were made using TopSpin 3.2. 
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5.5 Experimental Procedure and Characterizations 

(80) cyclobuta[b]quinoxaline-1,2(3H,8H)-dione 

 

A solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (1 g, 5.88 mmol, 1 eq) and Zinc 

trifluoromethanesulfonate (0.427 g, 1.16 mmol, 0.2 eq) in EtOH (10 mL) was added 

slowly into the solution of benzene-1,2-diamine (0.76 g; 7.07 mmol, 1.2 eq) in EtOH (5 

mL). The reaction was left to stir at room temperature for 48 hours. The precipitate was 

collected by suction filtration and washed with EtOH and Et2O to yield the product as a 

beige solid. (0.708 g, 64%), m.p.≥300 ℃. 1H NMR (500 MHz, DMSO-d6) δ 10.0 (s, 2H,  

NH), 6.66 (dd, 2 H, J = 5.6/3.4 Hz, Ar), 6.36 (dd, 2 H, J = 5.6/3.6 Hz, Ar); 13C NMR 

(125 MHz, DMSO-d6): 178.7, 174.9, 132.2, 125.4, 116.9; HRMS (ESI): Calculated for 

C10H6O2N2  [M+H]+, expected: 187.0428, observed: 187.0501, PPM:-0.64; max 

(film)/cm-1: 3123 (N-H stretch, secondary amines), 2955, 2017, 1913, 1805, 1790, 1657 

(C=O stretch, ketones), 1614, 1558, 1478, 1458, 1358, 1304, 1245, 1213, 1180, 1129, 

1075, 1041, 930, 900, 806, 777, 743, 666. 

(81) 5-nitrocyclobuta[b]quinoxaline-1,2(3H,8H)-dione  

 

A solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (1 g, 5.88 mmol, 1 eq) and Zinc 

trifluoromethanesulfonate (0.427 g, 1.16 mmol, 0.2 eq) in EtOH (10 mL) was added 

slowly into the solution of 4-nitrobenzene-1,2-diamine (1.08 g; 7.05 mmol, 1.2 eq) in 

EtOH (5 mL). The reaction was left to stir at room temperature for 48 hours. The 

precipitate was collected by suction filtration and washed with EtOH and Et2O to yield 
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the product as a purple solid. (1.004 g, 74%), m.p.≥300 ℃. 1H NMR (500 MHz, DMSO-

d6) δ 10.55 (s, 1,H, NH), 10.39 (s, 1H, NH), 7.58 (dd, 1 H, J =8.6/2.5 Hz, Ar), 7.01 (d, 

1H, J = 2.5 Hz, Ar), 6.41 (d, 1 H, J = 8.6 Hz, Ar); 13C NMR (125 MHz, DMSO-d6): 

179.6, 178.5, 175.7, 174.8, 144.0, 139.8, 133.9, 122.7, 115.9, 110.4; HRMS (ESI): 

Calculated for C10H5O4N3  [M+H]+, expected: 232.0282, observed: 232.0354, PPM:0.71; 

max (film)/cm-1: 3572, 3141 (N-H stretch, secondary amines), 2974, 2020, 1870, 1794, 

1665 (C=O stretch, ketones), 1632, 1583 (N-O stretch, aromatic nitro), 1529, 1487, 1419, 

1322 (N-O stretch, aromatic nitro), 1267, 1247, 1218, 1202, 1092, 1073, 945, 883, 861, 

837, 803, 788, 745, 670, 646. 

(82) 5-methoxycyclobuta[b]quinoxaline-1,2(3H,8H)-dione  

 

A solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (0.51 g, 3 mmol, 1 eq) and Zinc 

trifluoromethanesulfonate (0.218 g, 0.6 mmol, 0.2 eq) in EtOH (8 mL) was added slowly 

into the solution of 4-methoxybenzene-1,2-diamine (0.76 g; 3.6 mmol, 1.2 eq) in EtOH 

(2 mL). The reaction was left to stir at room temperature for 48 hours. The precipitate 

was collected by suction filtration and washed with EtOH and Et2O to yield the productas 

a brown solid. (0.646 g, 97%), m.p.≥300 ℃. 1H NMR (500 MHz, DMSO-d6) δ 10.01 (s, 

1H, NH), 9.99 (s, 1H, NH), 6.34 (d, 1 H, J = 8.6 Hz, Ar), 6.24 (dd , 1 H, J = 8.6/2.7 Hz, 

Ar), 6.02 (d, 1 H, J = 2.7 Hz, Ar), 3.63 (s, 3H, CH3); 13C NMR (125 MHz, DMSO-d6): 

179.1, 178.2, 174.6, 173.7, 157.2, 133.1, 125.1, 117.2, 107.5, 104.9, 56.0. HRMS (ESI): 

Calculated for C11H8O3N2 [M+H]+, expected: 217.0535, observed: 217.0620, PPM:5.55; 

max (film)/cm-1: 3123 (N-H stretch, secondary amines), 2944, 1797, 1660 (C=O stretch, 

ketones), 1351, 1315, 1279, 1217 (C-O stretch, aromatic ether) , 1160, 1123, 1084, 1067, 

1032, 941, 854, 788, 718, 672. 
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(83) 5-Carboxylcyclobuta[b]quinoxaline-1,2(3H,8H)-dione 

 

A solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (1 g, 5.88 mmol, 1 eq) and Zinc 

trifluoromethanesulfonate (0.427 g, 1.16 mmol, 0.2 eq) in EtOH (10 mL) was added 

slowly into the solution of 4-nitrobenzene-1,2-diamine (1.07 g; 7.05 mmol, 1.2 eq) in 

EtOH (5 mL). The reaction was left to stir at room temperature for 48 hours. The 

precipitate was collected by suction filtration and washed with EtOH and Et2O to yield 

the product as an orange solid. (1.046 g, 77%), m.p.≥300 ℃. 1H NMR (500 MHz, 

DMSO-d6) δ 10.29 (s, 1H, NH), 10.15 (s, 1H, NH), 7.26 (dd, 1 H, J = 8.0/1.7 Hz, Ar), 

6.86 (d , 1 H, J = 1.7 Hz, Ar), 6.40 (d, 1 H, J = 8.0 Hz, Ar); 13C NMR (125 MHz, DMSO-

d6): 179.2, 178.4, 175.4, 174.7, 166.4, 136.7, 132.5, 127.8, 127.2, 116.8, 116.2. HRMS 

(ESI): Calculated for C11H6O4N2 [M+H]+, expected: 231.0328, observed: 231.0401, 

PPM:0.32; max (film)/cm-1: 3135 (N-H stretch, secondary amines), 2971 (O-H stretch, 

carboxylic acid), 1799, 1655 (C=O stretch, ketones and carboxylic acid), 1604, 1485, 

1408 (O-H bend, carboxylic acid), 1288 (C–O stretch, carboxylic acid), 1268, 1190, 1138, 

1102, 1028, 898 (O-H bend, carboxylic acid), 848, 763, 669. 

(84) 5-Carbonitrilecyclobuta[b]quinoxaline-1,2(3H,8H)-dione  

 

A solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (0.5 g, 2.94 mmol, 1 eq) and Zinc 

trifluoromethanesulfonate (0.214 g, 0.588 mmol, 0.2 eq) in EtOH (10 mL) was added 

slowly into the solution of 4-nitrobenzene-1,2-diamine (0.47 g; 3.53 mmol, 1.2 eq) in 

EtOH (2 mL). The reaction was left to stir at room temperature for 48 hours. The 
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precipitate was collected by suction filtration and washed with EtOH and Et2O to yield 

the product as an orange solid. (0.543 g, 87%), m.p.≥300 ℃. 1H NMR (500 MHz, 

DMSO-d6) δ 10.37 (s, 1H, NH), 10.26 (s, 1H, NH), 7.12 (dd, 1 H, J = 8.1/1.7 Hz, Ar), 

6.51 (d, 1 H, J = 1.7 Hz, Ar), 6.38 (d, 1 H, J = 8.1 Hz, Ar); 13C NMR (125 MHz, DMSO-

d6): 179.2, 178.6, 175.6, 174.8, 137.6, 133.8, 131.1, 118.6, 116.7, 106.7. HRMS (ESI): 

Calculated for C11H5O2N3 [M+H]+, expected: 221.0382, observed: 212.0462,  PPM:3.35; 

max (film)/cm-1: 3136 (N-H stretch, secondary amines), 2936, 2227 (C≡N stretch, 

nitrile), 1797, 1657 (C=O stretch, ketones), 1601, 1569, 1468, 1407,  1329, 1254, 1213, 

1155, 1125, 1078, 945, 878, 836, 725, 669. 

(85) 5-Bromocyclobuta[b]quinoxaline-1,2(3H,8H)-dione  

 

A solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (1 g, 5.88 mmol, 1 eq) and Zinc 

trifluoromethanesulfonate (0.427 g, 1.16 mmol, 0.2 eq) in EtOH (10 mL) was added 

slowly into the solution of 4-nitrobenzene-1,2-diamine (1.318 g; 7.05 mmol, 1.2 eq) in 

EtOH (5 mL). The reaction was left to stir at room temperature for 48 hours. The 

precipitate was collected by suction filtration and washed with EtOH and Et2O to yield 

the product as an orange solid. (1.323 g, 84%), m.p.≥300 ℃. 1H NMR (500 MHz, 

DMSO-d6) δ 10.08 (s, 2H, 2 x NH), 6.81 (dd, 1H, J = 8.3/2.2 Hz, Ar), 6.41 (d, 1H, J = 

2.2 Hz, Ar), 6.24 (d, 1H, J = 8.3 Hz, Ar); 13C NMR (125 MHz, DMSO-d6): 178.8, 178.5, 

175.0, 174.7, 134.1, 131.9, 127.5, 119.0, 118.0,116.4. HRMS (ESI): Calculated for 

C10H5O2N2Br [2M+Na]+, expected: 552.9534, observed: 552.8965, PPM:8.17; max 

(film)/cm-1: 3165 (N-H stretch, secondary amines), 2939, 1793, 1665 (C=O stretch, 

ketones), 1605, 1531, 1472, 1395, 1335, 1290, 1267, 1242, 1209, 1188, 1128, 1082, 1031, 

924, 909, 864, 812, 781, 714, 666. 
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(99) 4,4'-((1,3-phenylenebis(methylene))bis(azanediyl))bis(3-ethoxycyclobut-3-ene-1,2-

dione) 

 

A solution of 1,3-phenylenedimethanamine (0.484 mL, 3.67 mmol, 1 eq) in EtOH (5 mL) 

was added slowly into the solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (1.87 g; 

11.01 mmol, 3 eq) in EtOH (5 mL). Triethylamine (2.56 mL, 18.35 mmol, 5 eq) was then 

added into the mixture. The reaction was left to stir at room temperature overnight. 

Solvent was reduced to a small amount and the mixture was added into Et2O (20 mL) to 

yield the precipitate. The precipitate was collected by suction filtration and washed with 

Et2O to yield the product as a light-yellow solid. (0.169 g, 12%), m.p.: 120-125 ℃. 1H 

NMR (500 MHz, DMSO-d6) δ 9.29 (s, 1H, NH), 9.07 (s, 1H, NH), 7.38 (t, 1H, J = 2.2 

Hz, Ar), 7.24 (d, 3H, J = 8.3 Hz, Ar), 4.58 (m, 8H, 4 x CH2), 1.35 (m, 6H, 2 x CH3); 13C 

NMR (125 MHz, DMSO-d6): 189.8, 189.5, 182.9, 182.6, 177.7, 177.2, 173.1, 172.5, 

139.3, 139.0, 129.4, 127.1, 126.7, 69.4, 47.6, 17.2, 16.0. HRMS (ESI): Calculated for 

C10H5O2N2Br [M+Na]+, expected: 407.1214, observed: 407.1247, PPM:8.30; max 

(film)/cm-1: 3304, 3212 (N-H stretch, secondary amines), 2982, 2948, 1803, 1709, 1693 

(C=O stretch, ketones), 1638, 1587, 1509, 1449, 1423, 1408, 1378, 1346, 1335, 1294, 

1281, 1239, 1219 (C-O stretch, aliphatic ethers), 1201, 1145, 1113, 1091, 1059, 1012, 

988, 955, 904, 886, 866, 812, 783, 744, 703. 
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(70)3,5,9,11-tetraaza-1,7(1,3)-dibenzena-4,10(1,2)-dicyclobutanacyclododecaphane -

41,101-diene-43,44,103,104-tetraone 

 

A solution of 1,3-phenylenedimethanamine (0.034 mL, 0.26 mmol, 1 eq) in EtOH (10 

mL) was added dropwise into the solution of 4,4'-((1,3-

phenylenebis(methylene))bis(azanediyl))bis(3-ethoxycyclobut-3-ene-1,2-dione) (0.1 g, 

0.26 mmol, 1 eq) and triethylamine (0.181 mL, 1.3 mmol, 5 eq) in EtOH (150 mL) at the 

speed of 0.28mL/h using a syringe pump. The reaction was left to stir at 90 ℃ for 72 

hours. The precipitate was collected by suction filtration and washed with EtOH and Et2O 

to yield the product as a beige solid. (0.074 g, 67%), m.p.≥300 ℃. 1H NMR (500 MHz, 

DMSO-d6) δ 8.51 (s, 1H, NH), 8.0 (s, 3H, 3 x NH), 7.25 (m, 8H, Ar), 4.83 (s, 8H, 4 x 

CH2); 13C NMR (125 MHz, DMSO-d6): Not found due to the presence of TBA+ HRMS 

(ESI): Calculated for C10H5O2N2Br [M+H]+, expected: 429.1485, observed: 429.1600, 

PPM:9.98; max (film)/cm-1: 3267 (N-H stretch, secondary amines), 1799, 1664 (C=O 

stretch, ketones), 1593, 1557, 1464, 1452, 1417, 1355, 1342, 1272, 1233, 1152, 1132, 

1084, 998, 963, 880, 828, 786, 718, 690. 

 (101) (5-nitro-1,3-phenylene)dimethanol 

 

A solution of 5-nitroisophthalic acid (5 g, 23.68 mmol, 1 eq) in anhydrous THF (75 mL) 

was cooled to 0 ℃ in an ice bath before borane dimethyl sulfide complex (47.4 mL, 94.7 

mmol, 4 eq) was added dropwise using glass syringe. The reaction mixture was left to 

return to room temperature and stirred for 48 hours. MeOH (75 mL) was added slowly 

into the reaction mixture to dissolve the precipitate. Solvent was removed under reduced 
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pressure to yield an oily crude product. The crude product was dissolved in Ethyl acetate 

(100 mL) and washed with saturated NaHCO3 (150 mL) and Brine (150 mL) solution. 

Solvent was removed under reduced pressure to yield a beige solid. (1.762 g, 41%), m.p.: 

85-90 ℃.  1H NMR (500 MHz, DMSO-d6) δ 8.06 (m, 2H, Ar), 7.72 (m, 1H, Ar), 5.3 (t, 

2H, J = 6.7 Hz, 2 x OH), 4.63 (d, 4H, J = 5.7/0.6 Hz, 2 x CH2); 13C NMR (125 MHz, 

DMSO-d6):148.3, 145.3, 130.8, 119.4, 62.3. HRMS (ESI): Calculated for C8H9O4N 

[M+Na]+, expected: 206.0424, observed: 206.0428, PPM:2.00; max (film)/cm-1: 3186 

(O-H stretch, alcohols), 3070, 2912, 1530 (N-O stretch, aromatic nitro), 1455, 1339 (N-

O stretch, aromatic nitro), 1311, 1253, 1219, 1147, 1103 (C-O stretch, alcohols), 1062 

(C-O stretch, alcohols), 1032, 1000, 985, 929,  908, 874, 772, 745, 676. 

(102) 1,3-bis(bromomethyl)-5-nitrobenzene 

 

A solution of phosphorus tribromide (2.57 mL, 27.3 mmol, 2.5 eq) in DCM (10 mL) was 

added dropwise into the solution of (5-nitro-1,3-phenylene)dimethanol (1.6 g, 10.92 

mmol, 1 eq) in DCM (20 ml) and stirred for 1 hour at 0 ℃ . The reaction was then left to 

stir at room temperature overnight. The reaction mixture was poured over crushed ice 

(100 g) and extracted by Et2O (150 mL). The organic layer was washed with saturated 

NaHCO3 (40 mL) and Brine (40 mL), solvent was removed under reduced pressure to 

yield an off-white solid. (3.71 g, 78%), m.p.: 95-100 ℃. 1H NMR (500 MHz, DMSO-d6) 

δ 8.3 (d, 2H, J = 1.6 Hz, Ar), 8.01 (t, 1H, J = 1.6 Hz, Ar), 4.87 (s, 4H, 2 x CH2); 13C NMR 

(125 MHz, DMSO-d6):148.4, 141.3, 136.8, 124.1, 32.4. HRMS (ESI): Not found; max 

(film)/cm-1:3067, 3038, 2976, 2287, 1821, 1526 (N-O stretch, aromatic nitro), 1462, 1443, 

1357 (N-O stretch, aromatic nitro), 1317, 1274, 1225, 1212, 1175, 1159, 1115, 1096, 

1000, 973, 941, 898, 883, 858, 777, 746, 684. 
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(103) 2,2'-((5-nitro-1,3-phenylene)bis(methylene))bis(isoindoline-1,3-dione) 

 

A solution of 1,3-bis(bromomethyl)-5-nitrobenzene (1 g, 3.2 mmol, 1 eq) in EtOH (40 

mL) was slowly added into the solution of phthalimide potassium salt (1.3 g, 7.04 mmol, 

2.2 eq) in EtOH (20 mL) at 78 ℃. The reaction was left to stir at 78 ℃ for 72 hours. The 

precipitate was collected by suction filtration and washed with EtOH and Et2O to yield 

the product as a white solid. (1.37 g, 97%), m.p.> 300 ℃.  1H NMR (500 MHz, DMSO-

d6) δ 8.09 (d, 2H, J = 1.4 Hz, Ar), 7.89 (m, 8H, Ar), 7.74 (s, 1H, Ar), 4.9 (s, 4H, 2 x CH2); 

13C NMR (125 MHz, DMSO-d6):168.1, 147.6, 139.7, 135.1, 133.3, 132.1, 123.8, 121.8. 

HRMS (ESI): Calculated for C24H15N3O6 [M+Na]+, expected: 464.0832, observed: 

464.0853, PPM: -4.5; max (film)/cm-1: 3096, 1770, 1714 (C=O stretch, amides), 1612, 

1543 (N-O stretch, aromatic nitro), 1469, 1417, 1394, 1368 (N-O stretch, aromatic nitro), 

1338, 1327, 1192 (C-N stretch, tertiary amine), 1169, 1117, 1085, 1065, 962, 939, 924, 

876, 825, 806, 781, 739, 723, 715, 693, 660. 

(104) (5-nitro-1,3-phenylene)dimethanamine 

 

Hydrazine monohydrate (0.84 mL, 11.34 mmol, 5 eq) was added slowly into Asolution 

of 2,2'-((5-nitro-1,3-phenylene)bis(methylene))bis(isoindoline-1,3-dione) (1 g, 2.27 

mmol, 1 eq) in EtOH (20 mL) at 78 ℃. The reaction was left to reflux at 78 ℃ overnight. 

The precipitate was removed using suction filtration, the solvent of filtrate was removed 

under reduced pressure to yield the crude product. The crude product was dissolved in 

water (20 mL) and the pH value of the solution was adjusted to 14 using 1M NaOH 

solution. The product was extracted by DCM (150 mL), solvent was removed under 

reduced pressure to yield a brown solid. (0.24 g, 58%), m.p.: Not found. 1H NMR (500 

MHz, DMSO-d6) δ 8.08 (s, 2H, Ar), 7.72 (s, 1H, Ar), 3.83 (s, 4H, 2 x CH2); 13C NMR 
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(125 MHz, DMSO-d6):148.4, 146.9, 132.9, 119.9, 45.3. HRMS (ESI): Not found; max 

(film)/cm-1: Not found 

 

(105) 4,4'-(((5-nitro-1,3-phenylene)bis(methylene))bis(azanediyl))bis(3-

ethoxycyclobut-3-ene-1,2-dione) 

 

A solution of (5-nitro-1,3-phenylene)dimethanamine (0.1 g, 0.55 mmol, 1 eq) in EtOH (5 

mL) was added dropwise into the solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (0.28 

g, 1.66 mmol, 3 eq) in EtOH (4 mL). Triethylamine (0.38 mL, 2.75 mmol, 5 eq) was then 

added into reaction mixture, the reaction was left to stir at room temperature for 2 hours. 

Solvent was evaporated to a small amount, the precipitate was filtered using suction 

filtration and washed with EtOH and Et2O to yield the product as an orange solid. (0.15 

g, 63%), m.p.: 205-210 ℃. 1H NMR (500 MHz, DMSO-d6) δ 9.33 (s, 1H, NH), 9.13 (s, 

1H, NH), 8.13 (s, 2H, Ar), 7.68 (s, 1H, Ar), 4.70 (m, 8H, 4 x CH2), 1.35 (m, 6H, 2 x CH3); 

13C NMR (125 MHz, DMSO-d6):189.8, 189.4, 183.1, 178.0, 177.5, 173.3, 172.5, 148.5, 

141.6, 133.3, 121.9, 69.5, 46.9, 46.4, 19.0, 16.0. HRMS (ESI): Calculated for 

C20H19N3O8 [M+Na]+, expected: 452.1064, observed: 452.1082, PPM: 3.9; max 

(film)/cm-1: 3238 (N-H stretch, secondary amines), 1801, 1707 (C=O stretch, ketones), 

1597, 1532 (N-O stretch, aromatic nitro), 1494, 1449, 1416, 1381, 1333 (N-O stretch, 

aromatic nitro), 1287 (C-O stretch, ethers), 1085, 1021, 987, 911, 863, 810, 777, 746, 699 
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(86) 15-nitro-3,5,9,11-tetraaza-1,7(1,3)-dibenzena-4,10(1,2)-

dicyclobutanacyclododecaphane-41,101-diene-43,44,103,104-tetraone 

 

A solution of 1,3-phenylenedimethanamine (0.0097 mL, 0.07 mmol, 1 eq) in EtOH (5 

mL) was added dropwise into the solution of 4,4'-(((5-nitro-1,3-

phenylene)bis(methylene))bis(azanediyl))bis(3-ethoxycyclobut-3-ene-1,2-dione) (0.03 g, 

0.07 mmol, 1 eq) and triethylamine (0.049 mL, 0.35 mmol, 5 eq) in EtOH (50 mL) at the 

speed of 0.24 mL/h using a syringe pump. The reaction was left to stir at 90 ℃ for 72 

hours. The precipitate was collected by suction filtration and washed with EtOH and Et2O 

to yield the product as a yellow solid. (0.029 g, 88%), m.p.: >300 ℃. 1H NMR (500 MHz, 

DMSO-d6) δ 9.24 (s, 2H, 2 x NH), 9.18 (s, 2H, 2 x NH), 8.25 (s, 1H, Ar), 8.03 (s, 2H, 

Ar), 7.72 (s, 1H, Ar), 7.25 (t, 2H, J = 7.3Hz, Ar), 7.11 (d, 1H, J = 7.3Hz, Ar), 4.90 (s, 4H, 

2 x CH2), 4.78 (s, 4H, 2 x CH2); 13C NMR (125 MHz, DMSO-d6): Not found due to the 

presence of TBA+. HRMS (ESI): Calculated for C24H19N5O6 [M+Na]+, expected: 

496.1233, observed: 496.1219, PPM: -1.8; max (film)/cm-1: 3161 (N-H stretch, 

secondary amines),2937, 1799, 1647 (C=O stretch, ketones), 1563, 1529 (N-O stretch, 

aromatic nitro), 1423, 1341 (N-O stretch, aromatic nitro), 1281, 1157, 1125, 1097, 959, 

908, 883, 831, 775, 745, 689. 
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(87) 15,75-dinitro-3,5,9,11-tetraaza-1,7(1,3)-dibenzena-4,10(1,2)-dicyclobutana-

cyclododecaphane-41,101-diene-43,44,103,104-tetraone 

 

A solution of (5-nitro-1,3-phenylene)dimethanamine (0.042 mL, 0.233 mmol, 1 eq) in 

EtOH (10 mL) was added dropwise into the solution of 4,4'-(((5-nitro-1,3-

phenylene)bis(methylene))bis(azanediyl))bis(3-ethoxycyclobut-3-ene-1,2-dione) (0.1 g, 

0.233 mmol, 1 eq) and triethylamine (0.16 mL, 1.165 mmol, 5 eq) in EtOH (150 mL) at 

the speed of 2.28 mL/h using a syringe pump. The reaction was left to stir at 90 ℃ for 72 

hours. The precipitate was collected by suction filtration and washed with EtOH and Et2O 

to yield the product as a yellow solid. (0.086 g, 71%), m.p.: >300 ℃. 1H NMR (500 MHz, 

DMSO-d6) δ 9.74 (s, 4H, 4 x NH), 8.41 (s, 2H, Ar), 7.99 (s, 4H, Ar), 4.89 (s, 8H, 4 x 

CH2); 13C NMR (125 MHz, DMSO-d6): Not found due to the presence of TBA+. HRMS 

(ESI): Calculated for C24H18N6O8 [M+Na]+, expected: 541.1083, observed: 541.1081, 

PPM: 0.5; max (film)/cm-1: 3156 (N-H stretch, secondary amines), 2938, 1800, 1650 

(C=O stretch, ketones), 1564, 1527 (N-O stretch, aromatic nitro), 1428, 1340 (N-O stretch, 

aromatic nitro), 1286, 1237, 1161, 1126, 1105, 957, 905, 881, 776, 747, 689. 
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(106) 2,2'-((5-amino-1,3-phenylene)bis(methylene))bis(isoindoline-1,3-dione) 

 

2,2'-((5-nitro-1,3-phenylene)bis(methylene))bis(isoindoline-1,3-dione) (0.1 g, 0.227 

mmol, 1 eq) was dissolved in DMF (5 mL) with palladium on carbon (0.01 g). Hydrogen 

gas was added to the reaction mixture using air balloon. The reaction was left to stir at 

room temperature overnight. The catalyst was filtered off using suction filtration through 

a pad of celite. Solvent of filtrate was removed under reduced pressure to yield the product 

as a beige solid. (0.336 g, 72%), m.p.: 265-270 ℃. 1H NMR (500 MHz, DMSO-d6) δ 

7.88 (m, 8H, Ar), 6.39 (s, 1H, Ar), 6.33 (s, 2H, Ar), 5.15 (s, 2H, 2 x NH), 4.59 (s, 4H, 2 

x CH2); 13C NMR (125 MHz, DMSO-d6):168.1, 149.7, 138.0, 135.1, 132.0, 123.7, 113.7, 

111.6, 41.3. HRMS (ESI): Calculated for C24H17N3O4 [M+Na]+, expected: 434.1111, 

observed: 434.1124, PPM: 3.00; max (film)/cm-1: 3436 (N-H stretch, primary amine), 

3358, 1767, 1696 (C=O stretch, amides), 1604, 1466,1428,1393, 1351, 1333, 1272, 1189 

(C-N stretch, tertiary amine), 1102, 1086, 1026, 1007, 946, 925, 863, 825, 800, 729, 711, 

701. 
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(108) N-(3,5-bis((1,3-dioxoisoindolin-2-yl)methyl)phenyl)pyrene-1-carboxamide 

 

2,2'-((5-nitro-1,3-phenylene)bis(methylene))bis(isoindoline-1,3-dione) (0.05 g, 0.12  

mmol, 1 eq) and 1-Pyrenecarboxylic acid (0.295 g, 0.12 mmol, 1 eq) was dissolved in 

DMF (3 mL) with 4-methylmorpholine (0.026 mL, 0.24 mmol, 2 eq) before PyBOP 

(0.936 g, 0.18 mmol, 1.5 eq) was added into the mixture. The reaction was left to stir at 

room temperature for 72 hours. The precipitate was filtered using suction filtrations and 

washed with small amount of toluene to yield the product as an off-white solid. (0.087 g, 

19%), m.p.: > 300 ℃. 1H NMR (500 MHz, DMSO-d6) δ 10.7 (s, 1H, NH), 8.27 (m, 9H, 

Ar), 7.89 (m, 8H, Ar), 7.74 (s, 2H, Ar), 7.1 (s, 1H, Ar), 4.81 (s, 4H, 2 x CH2); 13C NMR 

(125 MHz, DMSO-d6):168.1, 138.2, 135.1, 132.0, 128.9, 127.7, 123.8, 117.5. HRMS 

(ESI): Calculated for C41H25N3O5 [M+Na]+, expected: 662.1692, observed: 662.1686, 

PPM: 16.6; max (film)/cm-1: 3353 (N-H stretch, amide), 1770, 1704 (C=O stretch, 

amides), 1661 (C=O stretch, amides), 1602, 1552, 1539, 1466, 1438, 1418, 1389, 1350, 

1332, 1300, 1270, 1239, 1210, 1181, 1153, 1116, 1103, 1087, 1022, 1003, 952, 931, 909, 

886, 865, 835, 815, 792, 751, 738, 727, 710, 699, 685. 
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(111) 1-bromo-3,5-bis(bromomethyl)benzene 

 

AIBN (6.75 mL, 1.35 mmol, 0.05 eq) was added dropwise into the dolution of 1-Bromo-

3,5-dimethylbenzene (5 g, 27mmol, 1 eq) and N-bromosuccinimide (10.1 g, 56.7 mmol, 

2.1 eq) in MeCN (30 mL). The reaction was left to reflux at 70 ℃ overnight. Solvent was 

removed under reduced pressure, CCl4 (50 mL) was added dissolve the residue. The 

precipitate was filtered off and washed with CCl4, the solvent of filtrate was removed 

under reduced pressure. The resulting residue was purified by column chromatography 

eluting with petroleum ether to yield the product a white crystal. (0.262 g, 5.4%), m.p.: 

88-90 ℃. 1H NMR (500 MHz, CDCl3) δ 7.47 (d, 2H, J = 1.6 Hz, Ar), 7.34 (t, 1H, J = 1.6 

Hz, Ar), 4.41 (s, 4H, 2 x CH2); 13C NMR (125 MHz, DMSO-d6):140.3, 132.0, 128.3, 

122.7. HRMS (ESI): Not found; max (film)/cm-1: 2970, 1796, 1603, 1571, 1444, 1260, 

1210, 1162, 1128, 1114, 1103, 1031, 998, 972, 823, 879, 864, 819, 690. 

 

(112) 2,2'-((5-bromo-1,3-phenylene)bis(methylene))bis(isoindoline-1,3-dione) 

 

A solution of 1-bromo-3,5-bis(bromomethyl)benzene (0.3 g, 0.87 mmol, 1 eq) in EtOH 

(5 mL) was added dropwise into the solution of phthalimide potassium salt (0.41 g, 2.19 

mmol, 2.5 eq) in EtOH (5 mL) at 78 ℃. The reaction was left to reflux under Ar at 78 ℃ 

for 48 hours. The precipitate was filtered using suction filtration and washed with EtOH 

and Et2O to yield the product as a white solid. (0.38 g, 92%), m.p.: 255-260 ℃. 1H NMR 

(500 MHz, DMSO-d6) δ 7.87 (m, 8H, Ar), 7.44 (s, 2H, Ar), 7.24 (s, 1H, Ar), 4.75 (s, 4H, 

2 x CH2); 13C NMR (125 MHz, DMSO-d6):168.1, 140.1, 135.0, 132.0, 129.6, 125.7, 

123.7, 122.3. HRMS (ESI): Calculated for C24H15N2O4Br [M+Na]+, expected: 497.0107, 
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observed: 497.0102, PPM: -1.1;; max (film)/cm-1: 3460, 3055, 1768, 1703, 1607 (C=O 

stretch, amides), 1577, 1471, 1425, 1392, 1354, 1339, 1328, 1262, 1192 (C-N stretch, 

tertiary amine), 1174, 1111, 1101, 1089, 1072, 1033, 990, 955, 932, 897, 875, 861, 831, 

811, 791, 724, 709, 694, 686. 

 

(114) 2,2'-((5-(pyren-1-yl)-1,3-phenylene)bis(methylene))bis(isoindoline-1,3-dione) 

 

Tetrakis(triphenylphosphine)palladium(0) (0.024 g, 0.021 mmol, 0.05 eq) and sodium 

carbonate (0.067 g, 0.63 mmol, 1.5 eq) were added to A solution of 2,2'-((5-bromo-1,3-

phenylene)bis(methylene))bis(isoindoline-1,3-dione) (0.2 g, 0.42 mmol, 1 eq) and  

pyrene-1-boronic acid (0.123 g, 0.5 mmol, 1.2 eq) in THF (25 mL)/water (6 mL) mixture. 

The reaction was left to reflux under N2 at 80 ℃ overnight. The precipitate was filtered 

off, the filtrate was extracted with DCM (50 mL) and washed with Brine. Solvent was 

removed under reduced pressure and the resulting residue was purified using column 

chromatography eluting with MeOH/DCM (0% to 3%) to yield the product as a brown 

solid. (0.02 g, 8%), m.p.: Not found. 1H NMR (500 MHz, DMSO-d6) δ 8.09 (m, 9H, Ar), 

7.86 (m, 8H, Ar), 7.5 (s, 2H, Ar), 7.38 (s, 1H, Ar), 4.92 (s, 4H, 2 x CH2); 13C NMR (125 

MHz, DMSO-d6): Not found. HRMS (ESI): Not found; max (film)/cm-1: Not found. 

Due to the low yield of this compound, fully characterization was not possible. 
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Appendix 

Appendix 2 

Figure A2.1: The 1H NMR spectrum of compound 97 (500.13 MHz, CDCl3). 

 

Figure A2.2: The 13C NMR spectrum of compound 97 (500.13 MHz, CDCl3). 
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Figure A2.3: The 1H NMR spectrum of compound 80 (500.13 MHz, DMSO-d6). 

 

Figure A2.4: The 13C NMR spectrum of compound 80 (500.13 MHz, DMSO-d6). 
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Figure A2.5: The 1H NMR spectrum of compound 81 (500.13 MHz, DMSO-d6). 

 

Figure A2.6: The 13C NMR spectrum of compound 81 (500.13 MHz, DMSO-d6). 
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Figure A2.7: The 1H NMR spectrum of compound 82 (500.13 MHz, DMSO-d6). 

 

Figure A2.8: The 13C NMR spectrum of compound 82 (500.13 MHz, DMSO-d6). 
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Figure A2.9: The 1H NMR spectrum of compound 83 (500.13 MHz, DMSO-d6). 

 

Figure A2.10: The 13C NMR spectrum of compound 83 (500.13 MHz, DMSO-d6). 
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Figure A2.11: The 1H NMR spectrum of compound 84 (500.13 MHz, DMSO-d6). 

 

Figure A2.12: The 13C NMR spectrum of compound 84 (500.13 MHz, DMSO-d6). 
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Figure A2.13: The 1H NMR spectrum of compound 85 (500.13 MHz, DMSO-d6). 

 

FigureA2.14: The 13C NMR spectrum of compound 85 (500.13 MHz, DMSO-d6). 
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A2.15: Changes in UV/Vis spectrum upon increasing concentration of 81 in PBS buffer 

solution. Inset: Plots of absorbance at 374 nm as a function of increasing concentration 

of 81. 

Figure A2.16: Changes in UV/Vis spectrum upon increasing concentration of 82 in PBS 

buffer solution. Inset: Plots of absorbance at 349 nm as a function of increasing 

concentration of 82. 
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Figure A2.17: Changes in UV/Vis spectrum upon increasing concentration of 83 in PBS 

buffer solution. Inset: Plots of absorbance at 347 nm as a function of increasing 

concentration of 83. 

 

Figure A2.18: Changes in UV/Vis spectrum upon increasing concentration of 84 in PBS 

buffer solution. Inset: Plots of absorbance at 351 nm as a function of increasing 

concentration of 84. 
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Figure A2.19: Changes in UV/Vis spectrum upon increasing concentration of 85 in PBS 

buffer solution. Inset: Plots of absorbance at 345 nm as a function of increasing 

concentration of 85. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

220 270 320 370 420 470 520 570 620 670

A
b

so
rb

an
ce

Wavelength(nm)

y = 14573x

R² = 0.9311

0

0.05

0.1

0.15

0.2

0.25

0 0.000005 0.00001 0.000015

A
b

so
rb

an
ce

Concentration(M)



113 

(a) 

 
 

(b) 

 
Figure A2.20: (a) Changes observed in the absorption spectrum of 81 (1 x 10-5 M) upon 

addition of TBACl (0 – 1.2 mM) in 0.5% H2O in DMSO solution. (b) Absorbance changes 

observed at 715 nm, 532 nm, 450 nm and 390 nm. 
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(a) 

 
 

 

(b) 

 

 

 
Figure A2.21: (a) Changes observed in the absorption spectrum of 81 (1 x 10-5 M) upon 

addition of TBABr (0 – 1.1 mM) in 0.5% H2O in DMSO solution. (b) Absorbance 

changes observed at 715 nm, 532 nm, 450 nm and 390 nm.  
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(a) 

 
 

 

(b) 

 

 

 
 

 

Figure A2.22: (a) Changes observed in the absorption spectrum of 81 (1 x 10-5 M) upon 

addition of TBAI (0 – 1.2 mM) in 0.5% H2O in DMSO solution. (b) Absorbance changes 

observed at 715 nm, 532 nm, 450 nm and 390 nm.  
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(a) 

 
 

 

(b) 

 

 

 
 

Figure A2.23: (a) Changes observed in the absorption spectrum of 81 (1 x 10-5 M) upon 

addition of TBAF (0 – 0.37 mM) in 0.5% H2O in DMSO solution. (b) Absorbance 

changes observed at 715 nm, 532 nm, 450 nm and 390 nm.  
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Figure A2.24: Global fitting analysis of 81 (1 x 10-5 M) upon addition of TBAF (0 – 0.07 

mM) in 0.5% H2O in DMSO solution according to a 1 : 1 binding model of the absorbance 

changes observed at 715 nm, 532 nm, 450 nm and 390 nm. Ka = 23262 M-1, Error = 4%, 

Covariance of the fit = 0.009002 

 

 
 

Figure A2.25: Global fitting analysis of 81 (1 x 10-5 M) upon addition of TBACl (0 – 

0.12 mM) in 0.5% H2O in DMSO solution according to a 1 : 1 binding model of the 

absorbance changes observed at 715 nm, 532 nm, 450 nm and 390 nm. Ka = 2257 M-1, 

Error = 4.86%, Covariance of the fit = 0.009404 

 

 

 

 

 



118 

 
 

Figure A2.26: Global fitting analysis of 81 (1 x 10-5 M) upon addition of TBABr (0 – 

0.11 mM) in 0.5% H2O in DMSO solution according to a 1 : 1 binding model of the 

absorbance changes observed at 715 nm, 532 nm, 450 nm and 390 nm. Ka = 5835 M-1, 

Error = 3.67%, Covariance of the fit = 0.0031246 

 

 

 
 

Figure A2.27: Global fitting analysis of 81 (1 x 10-5 M) upon addition of TBAI (0 – 0.11 

mM) in 0.5% H2O in DMSO solution according to a 1 : 1 binding model of the absorbance 

changes observed at 715 nm, 532 nm, 450 nm and 390 nm. Ka = 4323 M-1, Error = 12%, 

Covariance of the fit = 0.038987 
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Figure A2.28: Changes observed in the absorption spectrum of 82 (1 x 10-5 M) upon 

addition of TBACl (0 – 1 mM) in 0.5% H2O in DMSO solution 

 

 

 
Figure A2.29: Changes observed in the absorption spectrum of 82 (1 x 10-5 M) upon 

addition of TBABr (0 – 1 mM) in 0.5% H2O in DMSO solution. 
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Figure A2.30: Changes observed in the absorption spectrum of 82 (1 x 10-5 M) upon 

addition of TBAI (0 – 1 mM) in 0.5% H2O in DMSO solution. 

 

 

Figure A2.31: Changes observed in the absorption spectrum of 83 (1 x 10-5 M) upon 

addition of TBAF (0 – 1 mM) in 0.5% H2O in DMSO solution. 
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Figure A2.32: Changes observed in the absorption spectrum of 84 (1 x 10-5 M) upon 

addition of TBAF (0 – 1 mM) in 0.5% H2O in DMSO solution. 

 

 

 

Figure A2.33: Changes observed in the absorption spectrum of 85 (1 x 10-5 M) upon 

addition of TBAF (0 – 1 mM) in 0.5% H2O in DMSO solution. 
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Figure A2.34: DFT-optimized geometries of compound 81, and the tautomers of [81-H]–

. Bond distances are given in Å. [SMD-PCM(DMSO)/M06-2X/aug-cc-pVDZ]. 

 

 

Figure A2.35: NTO plots (isovalue = 0.05) for key electronic transitions in tautomer N1 

of [81-H]–. Excitation energies are given along with oscillator strengths and weight of 

contributing NTO pair to each transition. [PCM(DMSO)/B3LYP/6-311+G(2d,p)]. 

81                        [81-H]- (tautomer N1)             [81-H]- (tautomer N2) 



123 

 

Figure A2.36: NTO plots (isovalue = 0.05) for key electronic transitions in tautomer N2 

of [81-H]–. Excitation energies are given along with oscillator strengths and weight of 

contributing NTO pair to each transition. [SMD-PCM(DMSO)/B3LYP/6-311+G(2d,p)].  

Figure A2.37: NTO plots (isovalue = 0.05) for key electronic transitions in 81. Excitation 

energies are given along with oscillator strengths and weight of contributing NTO pair to 

each transition. [PCM(DMSO)/B3LYP/6-311+G(2d,p)].  
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 State Excitation energy (λmax) Oscillator strength CI coefficient  

2 

S0 549.34 nm f = 0.1129 
59 → 60    0.69394 
59 → 61    0.12507 

S1 382.17 nm f = 0.1533 
57 → 60  –0.11150 
59 → 60  –0.11783 
59 → 61    0.68207 

S6 301.12 nm f = 0.6980 
57 → 60  –0.45023 
59 → 62  –0.51865 

[2–H]– (N1) 

S0 653.39 nm f = 0.2166 
59 → 60    0.69131 
59 → 61    0.14918 

S1 420.47 nm f = 0.2059 
57 → 60  –0.10056 
59 → 60  –0.14309 
59 → 61    0.67947 

S3 337.87 nm f = 0.0420 
57 → 60  –0.20556 
59 → 62    0.60175 
59 → 63    0.27915 

S6 319.12 nm f = 0.4906 
57 → 60    0.64438 
59 → 62    0.24626 

[2–H]– (N2) 

S0 730.03 nm f = 0.0996 
59 → 60    0.69670 
59 → 61  –0.11807 

S2 425.41 nm f = 0.1488 
57 → 60    0.10548 
59 → 60    0.11092 
59 → 61    0.68481 

S7 319.15 nm f = 0.5079 
57 → 60    0.66816 
59 → 62    0.16912 

S8 301.14 nm f = 0.2546 
56 → 60    0.18108 
59 → 62  –0.16284 
59 → 63    0.64857 

Table A2.1: Calculated excited state energies, oscillator strengths and largest coefficients 

of the CI expansion (MO contribution to particular state). [SMD-

PCM(DMSO)/B3LYP/6-311G+(2d,p). 
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Appendix 3 

Figure A3.1: The 1H NMR spectrum of compound 99 (500.13 MHz, DMSO-d6). 

 

Figure A3.2: The 13C NMR spectrum of compound 99 (500.13 MHz, DMSO-d6). 
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Figure A3.3: The 1H NMR spectrum of compound 70 in the presence of (TBA)2SO4 

(500.13 MHz, DMSO-d6). 

 

Figure A3.4: The 13C NMR spectrum of compound 70 in the presence of (TBA)2SO4 

(500.13 MHz, DMSO-d6). 
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Figure A3.5: The 1H NMR spectrum of compound 101 (500.13 MHz, DMSO-d6). 

 

Figure A3.6: The 13C NMR spectrum of compound 101 (500.13 MHz, DMSO-d6). 
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Figure A3.7: The 1H NMR spectrum of compound 102 (500.13 MHz, DMSO-d6). 

 

Figure A3.8: The 13C NMR spectrum of compound 102 (500.13 MHz, DMSO-d6). 
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Figure A3.9: The 1H NMR spectrum of compound 103 (500.13 MHz, DMSO-d6). 

 

 

Figure A3.10: The 13C NMR spectrum of compound 103 (500.13 MHz, DMSO-d6). 

 

DMSO 

H2O 

DMSO 



130 

Figure A3.11: The 1H NMR spectrum of compound 104 (500.13 MHz, DMSO-d6). 

 

 

Figure A3.12: The 13C NMR spectrum of compound 104 (500.13 MHz, DMSO-d6). 
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Figure A3.13: The 1H NMR spectrum of compound 105(500.13 MHz, DMSO-d6). 

 

 

Figure A3.14: The 13C NMR spectrum of compound 105 (500.13 MHz, DMSO-d6). 
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Figure A3.15: The 1H NMR spectrum of compound 86 (500.13 MHz, DMSO-d6). 

 

 

Figure A3.16: The 13C NMR spectrum of compound 86 (500.13 MHz, DMSO-d6). 
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Figure A3.17: The 1H NMR spectrum of compound 87 (500.13 MHz, DMSO-d6). 

 

 

Figure A3.18: The 13C NMR spectrum of compound 87 (500.13 MHz, DMSO-d6). 
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Figure A3.19: The 1H NMR spectrum of compound 106 (500.13 MHz, DMSO-d6). 

 

 

Figure A3.20: The 13C NMR spectrum of compound 106 (500.13 MHz, DMSO-d6). 
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Figure A3.21: The 1H NMR spectrum of compound 108 (500.13 MHz, DMSO-d6). 

 

 

Figure A3.22: The 13C NMR spectrum of compound 108 (500.13 MHz, DMSO-d6). 
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Figure A3.23: The 1H NMR spectrum of compound 111 (500.13 MHz, CDCl3). 

 

 

Figure A3.24: The 13C NMR spectrum of compound 111 (500.13 MHz, CDCl3). 
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Figure A3.25: The 1H NMR spectrum of compound 112 (500.13 MHz, DMSO-d6). 

 

 

Figure A3.26: The 13C NMR spectrum of compound 112 (500.13 MHz, DMSO-d6). 
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Figure A3.27: The 1H NMR spectrum of compound 114 (500.13 MHz, DMSO-d6). 
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