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a b s t r a c t

In this simulation study, parametric bootstrap methods are in-
troduced to test for spatial non-stationarity in the coefficients of
regression models. Such a test can be rather simply conducted by
comparing a model such as geographically weighted regression
(GWR) as an alternative to a standard linear regression, the null
hypothesis. In this study however, three spatially autocorrelated
regressions are also used as null hypotheses: (i) a simultaneous
autoregressive error model; (ii) a moving average error model;
and (iii) a simultaneous autoregressive lag model. This expan-
sion of null hypotheses, allows an investigation as to whether the
spatial variation in the coefficients obtained using GWR could be
attributed to some other spatial process, rather than one depicting
non-stationary relationships. The new test is objectively assessed
via a simulation experiment that generates data and coefficients
with known multivariate spatial properties, all within the spatial
setting of the oft-studied Georgia educational attainment data set.
By applying the bootstrap test and associated contextual diagnos-
tics to pre-specified, area-based, geographical processes, our study
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provides a valuable steer to choosing a suitable regression model
for a given spatial process.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Often when fitting a regression model to spatial data, it is not clear what, if any, spatial effects
should be accounted for. Should we focus solely on spatial autocorrelation effects (e.g. Anselin,
1988; Cressie, 1993) or should we focus solely on spatial heterogeneity effects with respect to data
relationships (e.g. Fotheringham et al., 2002). Alternatively, should we try to capture both effects
(e.g. Haas, 1996; Brunsdon et al., 1998a; Mur et al., 2008; Cho et al., 2010; Harris et al., 2010a; Kim
et al., 2010), or investigate ways to link (e.g. Griffith, 2003, 2008; Murakami et al., 2017), or fuse
them together (e.g. Gelfand et al., 2003; Finley, 2011), and if so, which are more important? Further,
shouldwe ignore both effects altogether, and instead focus on a non-spatial model that is additionally
calibrated with key spatial predictor variables, such as the sample coordinates (e.g. Beale et al.,
2010)? Further still, should we consider that we are missing vital predictors and that any observed
spatial effects are attributable to this omission (e.g. Cressie and Chan, 1989)—and as such, focus
our attention on capturing these (likely elusive) missing variables? Unfortunately, such questions
are almost always difficult to answer with any objectively, and can involve problematic analytical
impasses and confounders (e.g. Anselin, 1990). For example, how to identify first- from second-order
effects (e.g. Armstrong, 1984), where relationship heterogeneity is commonlymodelled as the former,
whist autocorrelation ismodelled as the latter effect? These issues are particularly pertinent for spatial
data sets, as their collection are rarely part of a statistically-designed experiment—that by definition
should negate confounders.

Given such issues, it is commonplace to ignore them, and instead a regression for spatial data is
often chosen following a rather subjective exploratory analysis that is itself pre-defined according to
the given research hypothesis and/or sometimes biased towards the particular statistical expertise of
the analyst. Thus, our study aim is to provide objectivity to a particular aspect of this model selection
process, where we introduce parametric bootstrap methods to test for spatial non-stationarity in the
coefficients of regression models. The tests are general and can be used to compare any spatially-
varying coefficient (SVC) regression as an alternative to any set of constant coefficient regressions
(with or without spatial autocorrelation effects). As demonstration, we compare geographically
weighted regression (GWR) (Brunsdon et al., 1996, 1998b) as an alternative to the following four
null hypotheses: (i) a multiple linear regressionmodel (MLR), (ii) a simultaneous autoregressive error
model (ERR); (iii) a moving average error model (SMA); and (iv) a simultaneous autoregressive lag
model (LAG). This set of null hypotheses, allows an investigation as to whether the spatial variation
in the coefficients obtained using GWR could be attributed to some other spatial process (in this case,
some autocorrelation effect), rather than one depicting non-stationary relationships.

To achieve this, a bootstrapping methodology (Efron, 1979, 1981, 1982) is proposed that assesses
the variability of the local coefficient estimates found from GWR under the model assumptions for
each of the four null hypotheses (i.e. the MLR, ERR, SMA and LAG models). The observed values of
coefficient variability are then compared against these as reference distributions. Our bootstrapping
methodology complements the bootstrap methods to test for zero coefficients in a mixed GWR
model (Mei et al., 2006) and constant coefficients in a basic GWR model in order to specify a mixed
GWR model (Mei et al., 2016). Neither studies however, compare GWR with alternative (spatially-
autocorrelated) regressions, as we do here. Our paper is structured as follows. Firstly, the study
regressions are formally stated; the concept of bootstrapping is reviewed; and our spatial application
of bootstrapping is outlined. Secondly, the described methodology is objectively assessed via a
simulation experiment based on cokriging (Matheron, 1970) that generates data and regression
coefficients, each with known multivariate spatial properties, and all within the spatial setting of the
Georgia educational attainment data set (Fotheringham et al., 2002; Griffith, 2008). We complement
and contextualise the bootstrap results with associated diagnostics. Thirdly, we discuss and conclude
this research.
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2. Methods

2.1. Study regression models

For the case where there are several predictor variables xn1, xn2, . . . , xnm and observations indexed
by i = 1, . . . , n, MLR has this form for response variable yi:

yi = β0 +

m∑
j=1

βjxij + εi, (1)

where the coefficients βj, are commonly estimated by ordinary least squares (OLS). MLR only models
stationary relationships between the response and predictor variables. Where these relationships are
expected to change across space, MLR can be adapted to form the GWR model as follows:

yi = β0 (ui, vi) +

m∑
j=1

βj (ui, vi) xij + εi, (2)

where (ui, vi) is the spatial location of the ith observation and βj (ui, vi) is a realisation of the
continuous function βj (u, v) at point i. As with (OLS) MLR, the εi’s in GWR are random error terms
which are independently normally distributed with zero mean and common variance σ 2. For GWR, a
local regression is calibrated at any location i with observations near to i given more influence than
observations further away by weighting them according to some kernel weighting function.

In addition to GWR, there are a number of spatial models in which the y-variable or the error term
exhibits spatial autocorrelation, although the regression coefficients remain fixed over space (Anselin,
1988; Schabenberger and Gotway, 2005). Among these models is the ERR model:

yi = β0 +

m∑
j=1

βjxij + γi

where γi = λ

n∑
j=1

cijγj + εi

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (3)

where cij is the ijth element of a row-normalised connectivity matrix. The parameter λ controls the
degree of autocorrelation in the error term γi. Alternatively, the correlation between the γi’s could be
confined to near neighbours as defined by the connectivity matrix, as in the SMA model:

yi = β0 +

m∑
j=1

βjxij + γi

where γi = λ

n∑
j=1

cijεj + εi

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (4)

As before, λ governs the degree of spatial association. A further alternative is the LAG model:

yi = β0 +

m∑
j=1

βjxij + λ

n∑
j=1

cijyj + εi. (5)

In this case, each yi depends on theneighbouring y-values directly through the connectivitymatrix and
λ. Although λ plays a qualitatively different role than in the previousmodels (since it directly connects
the predictor variable rather than the error terms), it still governs the degree of autocorrelation.

2.2. The parametric bootstrap

The parametric bootstrap is a statistical technique for estimating characteristics of the sampling
distribution of a wide range of test statistics when the underlying data distribution is known. As
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an introduction, the univariate case is explained. Suppose we have a set of independent, identically
distributed observations {x1, x2, . . . , xn}, which can be written as a column vector x. A general test
statistic (such as a median, or interquartile range) is a function of these data, and may be written
as S (x). Knowing the probability distribution of the individual xi’s sometimes makes it possible to
derive the distribution of S theoretically. For example,when S is the t-statistic and the xi’s are normally
distributed. However, in general it is not possible to adopt a theoretical approach.When theory cannot
help, one way forward is to use simulation. If we knew the distribution of the xi’s, we could simulate a
large number of samples

{
x∗

1
, x∗

2
, . . . , x∗

n

}
, where the starred variates are generated randomly, and for

each sample compute S∗
= S (x∗). Repeating this for R random samples gives a set

{
S∗

1
, S∗

2
, . . . , S∗

R

}
,

and finding descriptive statistics for this set provides approximate information about the sampling
distribution of S. For example, the standard error of S may be estimated by the sample standard
deviation of

{
S∗

1
, S∗

2
, . . . , S∗

R

}
:

SEbs =
1
R

∑
i=1...R

(
S∗

i − Ŝ∗

)2
(6)

where Ŝ∗ is the sample mean of
{
S∗

1
, S∗

2
, . . . , S∗

R

}
. Now, suppose the data x are distributed with a

probability distribution function f (x, θ), where θ is a vector of parameters for f , then θ is estimated
from the sample using, say, maximum likelihood (ML), giving an estimate θ̂ and then a number of
‘pseudo-samples’ are drawn by simulating random x∗’s from f

(
x, θ̂

)
. From these we build up a series

of R simulated S∗ values, as set out above. The idea is that as n increases, the simulation distribution
f
(
x, θ̂

)
gets closer to the ’true’ distribution of the xi’s since θ̂ gets closer to θ and so, asymptotically,

the approximation converges to the true distribution. This implies that there are two kinds of error
in a bootstrap analysis—firstly we approximate θ with θ̂, and secondly, we approximate the ‘true’
sampling distribution of Swith a large number (R) of simulated values. The first kind of error is reduced
by increasing n, the second by increasing R. Typically, it is easier to increase R (i.e. by running more
simulations) than n. However, given the constraints on accuracy that a finite n imposes, there is often
a ‘diminishing returns’ effect when increasing R. For most empirical studies, a value of R = 999 is
recommended. However, given the computational burden that this study’s simulation experiment
imposes, and given that two competing bootstrap tests are evaluated, a value of R = 99 is used here.

Bootstrapping and regression
In regression, the situation is similar. Assume a model such as (1) holds. The xij’s are not random

as the random variables are the ei’s and by implication the yi’s, as they are a function of these. An
MLR therefore considers the statistical distribution of yi conditional on the values of the xij’s. Each
yi is independently normally distributed with mean β0 +

∑m
j=1βjxij and standard deviation σ . The

approach to the bootstrap here, is then to fix the xij values and simulate the yi’s in each sample
by generating bootstrap y∗

i values, based on ML estimates of the coefficients
{
β̂j

}
and the standard

deviation σ . Although the underlying bootstrap principal here is the same as above, the multivariate
and conditional dependence nature of MLRmodelling implies two notable practical differences: (i) in
a univariate bootstrap the entire data set is simulated, whereas the bootstrap sample of aMLR data set
is only simulated in the yi values—the xij’s are fixed at the actual sample values, so the bootstrap data
set is

{
xij, y∗

i

}
; and (ii) in a univariate bootstrap, each xi is identically distributed, so ordering does not

matter, whereas in MLR, each yi has a different distribution, depending on xij so if i1 ̸= i2 then y∗

i1 is
independent of y∗

i2, but not necessarily identically distributed. As before, provided the distributional
parameters are estimated consistently (usingML, say), then asymptotically the bootstrap distribution
will approach the true distribution (Efron and Tibshirani, 1986).

Up until now, we have assumed that a given MLR model holds—and is fully specified except for
the values of the βi’s and the variance of the yi’s, and also that the motivation for computing S (X, y)
is to estimate some descriptive statistic related to this model (where X is a matrix composed of the
predictor variables and y is the vector of response variables). However, S (X, y) could also be a test
statistic to assess the hypothesis that the model holds. Thus, the data model used is treated as a
null hypothesis—and the sampling distribution of the test statistic is found by bootstrap simulation.
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Following Davison and Hinkley (1997), it is then possible to compute bootstrap-based p-values. If R
values of S∗ were generated, under the null hypothesis the actual value S would be a further sample
from the same distribution. This can then be added to the bootstrap sample. For example, for a one-
tailed test, the significance of S is Pr {S ≥ S∗}, which is just:

p =
# (S∗

≥ S)
R + 1

. (7)

Bootstrapping the ERR, SMA and LAG models
Bootstrapping theMLRmodel in (1) has been described. For bootstrapping the ERRmodel in (3), the

residuals (the difference between the predicted and observed yi values) correspond to the estimated γi
values—in vector form γ̂i, where the individual elements of this vector are not independent. However,
if λ is known (or at least estimated reliably by a ML estimate, λ̂), we can express γ in terms of ε− a
random vector whose elements are independent:

γ =

(
I − λ̂C

)−1
ε (8)

assuming I − λ̂C is invertible, where C is the connectivity matrix. The mean of each εi is zero, and if
an estimate of the standard deviation of the εi’s, σ̂ can be obtained, one can create bootstrap samples

ε∗ and from these, create simulated residual samples γ∗ =

(
I − λ̂C

)−1
ε∗. From these, simulated y

vectors, y∗ can be created by:

y∗
= Xβ̂+ γ∗ (9)

so that bootstrap data sets (X, y∗) can be generated. In turn, bootstrap samples of test statistics can be
simulated. In the simulations,ML estimates for λ and β, and a bias corrected estimate of σ are used. For
the SMA model in (4), the assumption of independence of residuals again does not hold. However, a
similar approach to the ERRmodel may be used. As before, assume we have an estimate of λ, then we
can express γ in terms of ε- again a random vector with independent, identically normally distributed
elements:

γ =

(
I − λ̂C

)−1
ε. (10)

As before, σ̂ can be obtained, and bootstrap samples ε∗ and γ∗ =

(
I − λ̂C

)−1
ε∗ are created. From

these, simulated y vectors, y∗ can be created by:

y∗
= Xβ̂+ γ∗ (11)

to generate (X, y∗) and as usual, bootstrap samples of test statistics are created. As for the ERRmodel,
we again compute ML estimates for λ and β, and a bias corrected estimate of σ . For the LAG model
in (5), the εi’s are independently normally distributed with zero mean and common variance σ 2. This
can be expressed in matrix notation as:

y = Xβ+ λCy + ε (12)

which may be re-arranged to:

y = (I − λC)−1 (Xβ+ ε) (13)

which provides an approach to the bootstrap simulation, where in this case, ML estimates of λ and
β, and a bias corrected estimate of σ are estimated, and bootstrap samples ε∗ are created from these.
This in turn gives bootstrap samples of y:

y∗
=

(
I − λ̂C

)−1 (
Xβ̂+ ε∗

)
(14)

and as before, thesemaybe used as a basis for bootstrap estimation of standard errors of the parameter
estimates, significance tests and so on.
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2.3. Bootstrap test statistics for coefficient non-stationarity

For this study, it is intended to create a test statistic for spatial non-stationarity, as characterised
for example by the GWR model (2) and to use this to test against a number of null hypotheses with
globally-fixed regression coefficients, such as models (1)–(5). In previous work, GWR models have
been considered as alternative hypotheses to null models of type (1), but here further null models of
type (3)–(5) are considered, that each have some kind of spatial structure, although the regression
coefficients still do not vary spatially. Thus, a key study aim is to check whether the observed spatial
variation when calibrating a GWR model could be attributed to the spatial structure contained in
the autoregressive models. In this respect, a test statistic is defined with the intention of detecting
non-stationarity in regression coefficients. The GWR model assumes that the vector of regression
coefficients, β, varies geographically, but that is not the case for any of the null models considered.
Therefore, a test statistic measuring spatial variability of regression coefficients is proposed.

A basic test statistic
One such statistic is the standard deviation of a number of local estimates of a given regression

coefficient over a number of distinct sampling points. Here, GWR is used to obtain the local coefficient
estimates. If a point has coordinates, (uk, vk) then the GWR estimate of β (uk, vk) is given by solving:

XTW(uk,vk)Xβ̂ (uk, vk) = XTW(uk,vk)y (15)

where W(uk,vk) is a diagonal matrix whose diagonal entries are the geographical weighting of each
observation for the regression point k. In this study, we specify an adaptive (by distance) bi-square
kernel function, so that the ith elements of the diagonal ofW(uk,vk) is:

wik =
(
1 − (dik/rk)2

)2
if dik ≤ rk wik = 0 otherwise, (16)

where dik is the distance between the location of observation i and (uk, vk); and rk is a bandwidth
parameter controlling the size of the local window used to calibrate β (uk, vk). In this study, rk is
chosen ‘automatically’ from the data using a corrected AIC approach (Fotheringham et al., 2002). Each
coefficient βj (uk, vk) is calibrated for a number of different locations comprising the set L = {(uk, vk)},
and the standard deviation of these values gives a test statistic qj for each coefficient:

q2j =

∑
k=1...L

(
βj (uk, vk) −

⌣

β j

)2

L
(17)

where
⌣

β j =

∑
k=1...L βj (uk, vk)

L
. (18)

A bootstrap approach, as outlined above, will be used to test a hypothesis of stationarity for each
coefficient. Typically, L is simply the set of locations of the observations. Our approach is similar to that
used in Brunsdon et al. (1996, 1998b) and Leung et al. (2000) for testing for spatial non-stationarity
against a MLR null. In Brunsdon et al. (1996, 1998b) the approach is again simulation-based, but uses
a randomisation test in which random permutations of the predictor and response variable list for
each individual are assigned to the locations. The bootstrap approach here, differs in that it does not
condition on the exact values of the variables observed in the data.

A modified test statistic
One issue when considering the estimation of coefficients in GWR is that of local collinearity

amongst the predictor variables (Wheeler and Tiefelsdorf, 2005; Wheeler, 2007). For the global
regression case, if there is a high degree of correlation between X variables, then problems calibrating
the regression model can follow. In particular, if a pair of predictors are exactly related by a linear
equation, say x1 = ax2 + b for some a and b, then the determinant of XTX is zero and equations such
as (15) in their global form, cannot be solved. A similar problem occurs if any of the predictors are
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constant, and there is an intercept term. In practice, such exact linear relationships rarely occur, but
situations in which they very nearly occur are more frequent. In this case, the above equation may be
solved, but in the words of Farrar and Glauber (1967) ‘the elements of

(
XTX

)−1 explode’. This issue can
be particularly important in GWR, since a near-linear relationship between predictors need only hold
in a particular geographical region, rather than in the data set as a whole, to cause such problems.

In Eq. (17), the qj test statistic for non-stationarity is based on the standard deviation of lo-
cal coefficient estimates. If some individual local coefficients behave erratically due to say, local
collinearity, they could affect the reliability of the test statistic. Thus, we modify qj by working with
standard deviations of the local normalised coefficient estimates, which down-weights the effects of
any outlying coefficient estimates. That is, estimates of βi (uk, vk) divided by their estimated standard
errors are used instead of just the estimates of βi (uk, vk), alone. Call this modified statistic q#j , then:

(
q#j

)2
=

∑
k=1...L

(
β#
j (uk, vk) −

⌣

β#
j

)2

L
(19)

where

β#
j (uk, vk) =

βj (uk, vk)

SE
(
βj (uk, vk)

) (20)

and
⌣

β#
j =

∑
k=1...L β#

j (uk, vk)

L
(21)

where q#j is assumed more robust to the effects of local collinearity than the basic test statistic qj.
Observe that local coefficients and local standard errors can vary over space not only for the effects
of local collinearity, but for other reasons as well. For example, if we use a fixed bandwidth for the
geographicalweighting function, the local estimates around the edge of the geographical extent under
study are obtained from a relatively small number of samples compared to those located in the centre
of the study area, and this can cause unusually high local standard errors. Outlying observations can
have a similar effect on the local estimates, where such observations need only be locally-outlying
(Harris et al., 2010b). For these reasons, the use of q#j is preferred to qj, in general.

Remarks and interpretation
Thus, each of the four fixed coefficient regressions are calibrated in the usual way and associated

bootstrap data sets are generated (where only the response varies, whilst the predictors are always
fixed). For each bootstrap data set, GWR estimates of the local coefficients are generated, where
the S∗ values from before, will be one of qj or q#j computed accordingly. The MLR null acts as the
benchmark, whilst the other nulls are spatial. As qj or q#j are measures of variability of the local
estimates, the tests are easy to interpret. Since each null regression model is a random process, even
when coefficients donot vary geographically onewould not expect the local coefficient estimates to be
identical in different locations. The aim of the bootstrap analysis is to determine howmuch variability
in coefficient estimates one might expect to encounter due to the random variation in a model, and
to compare the level of variability in the observed data set against this. In particular, if the null model
is geographically fixed in the regression coefficients, but exhibits spatial autocorrelation in either the
response variable or the error term, onemight expect the degree of variation in local calibrations to be
greater. For example, if one of the predictor variables takes on a higher value in a certain region, and
autocorrelation in the response values gives rise to a cluster of relatively high levels in the same region,
this could lead to a higher local estimate of the regression coefficient associated with the predictor,
if the regression window contains this region. This variability should be entirely explained by factors
other than geographical variation in regression coefficients. The aim in this study is to test whether
the degree of variability in local estimates exceeds the amount expected due to situations such as that
described.
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Table 1
Summary of the six spatial processes generated, each with their different spatial characteristics.

Spatial
process
no.

Intercept
β0

Coefficient
β1

Coefficient
β2

Coefficient
β3

Predictor data
collinearity for
x2, x3

Error term εi Mean to
error ratio
(%)

SP1 Stationary Stationary Stationary Stationary Weak Random 99.9:0.01
SP2 Stationary Stationary Stationary Stationary Strong Random 99.9:0.01
SP3 Stationary Stationary Stationary Stationary Weak Autocorrelated 90:10
SP4 Stationary Stationary Stationary Stationary Strong Autocorrelated 90:10
SP5 Non-

stationary
Non-
stationary

Non-
stationary

Non-
stationary

Weak Random 99.9:0.01

SP6 Non-
stationary

Non-
stationary

Non-
stationary

Non-
stationary

Strong Random 99.9:0.01

2.4. The simulation experiment

The geostatistical-based simulation experiment generates realisations to exhibit one of three core
scenarios: (i) stationary data relationships with random (or independent) error effects, (ii) stationary
data relationships with spatially-autocorrelated (or dependent) error effects, and (iii) non-stationary
data relationships with random (or independent) error effects. Intuitively, the spatial processes that
result should strongly favour: MLR for scenario (i), ERR/SMA/LAG for scenario (ii), and GWR for
scenario (iii). The experiment provides useful stochasticity, enabling nuanced differences to each
realisation, generated from the same initial specifications. Six spatial processes are specified, two for
each scenario, see Table 1.

As an overview, the experiment generates three predictors, x1, x2, x3, with two levels of collinear-
ity (weak and strong) between x2, x3 only; and then independently, the regression coefficients,
β0, β1, β2, β3 are simulated. The predictor and coefficient realisations are then directly used to
generate the response variable yi, and the error data εi, where 90% or 99.9% of the variation in the
response is explained by the mean component of the spatial process. Thus, respective ratios of 90:10
and 99.9:0.01 are specified for the mean to error components of the spatial process. The error itself, is
specified as either a random or spatially-autocorrelated process. The resultant response to predictor
variable correlations would range from moderately weak to moderately strong.

The mean to error ratio strongly controls the outcomes of the experiment, where as it tends
to 0:100, worthwhile insights on model behaviour reduce. The chosen ratios reflect this tendency.
The 99.9:0.01 ratio is used for processes generated with non-stationary relationships, as a non-
stationary intercept term is also representative of the errors. This commonality leads to a difficult
identification problem,which is further complicated in that a non-stationary intercept tends to reflect
autocorrelated errors. With these issues in mind, the random errors generated for these particular
processes are relatively small; and clearly, the consideration of autocorrelated error effectswould only
further complicate. The same ratio of 99.9:0.01 is also used for stationary relationship processes with
random errors, whilst for stationary relationship processes with autocorrelated errors, the narrower
90:10 ratio is used.

For each of the six different processes (SP1 to SP6), 30 data realisations are generated and the
bootstrapping methodology applied, together with contextual model fits and diagnostics. Thus 6 ×

30 = 180 realisations are generated in total. The steps of the simulation algorithm are such, thatmany
realisations will have common elements. For example, for the first realisations for processes SP1 and
SP3 in Table 1, they will share the same predictor data and regression coefficients, but differ in their
error and response data; and this type of commonality pervades for all 30 realisations. Realisations
are generated to the centroids of the Georgia counties educational attainment data set for the United
States. Area-based simulations are considered a realistic improvement to grid-based ones (e.g. Wang
et al., 2008. The Georgia counties are similarly used in the GWR simulation study of Paez et al. (2011),
where its sample size (n = 159) is considered too small to reliably use GWR. This is not viewed as
a concern and instead, presents a critical challenge to the bootstrap tests. Details of the simulation
experiment are given in supporting information, section S1.
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Basic and modified bootstrap tests are applied (with R = 99), to each of the 30 data realisations,
stemming from each of the six different spatial processes. The bootstrap outputs will only consist of
p-values, testing each of the four null hypotheses. Hence for each test statistic, a sequence of p-value
distributions is found (each of size 30) and these are summarised with boxplots, where instances
of p ≤ 0.05 (as a one-tailed test) would indicate significant coefficient non-stationarity at the 95%
level. It is also useful to place in context the bootstrap results, with an existing alternative. In this
respect, we find p-values from the permutation test (described before) for significant variation in
each GWR coefficient, with MLR as the null hypothesis. Here R = 99 random permutations are
specified for this test; and the resulting p-value distributions are summarised with boxplots, where
instances of p ≤ 0.05 (as also one-tailed) would indicate significant coefficient non-stationarity at
the 95% level. Further contextual information is found via various regression diagnostics, for all 180
realisations, where we report: (i) spatial autocorrelation tests for the response and residual data from
a MLR fit; (ii) GWR bandwidths for spatial heterogeneity effects; (iii) global design matrix condition
numbers (CNs) for collinearity effects; (iv) ranked (corrected) AIC values for relative model fit;
(v) coefficient estimation accuracy; and (vi) coefficient estimation confidence interval (ECI) accuracy.
These diagnostics are detailed in supporting information, section S2. On a medium specs laptop
(Intel R⃝ core TM i7-4600U CPU @ 2.10 GHz to 2.70 GHz with 16.0 GB using a 64-bit OS), the full
simulation experiment took 3 days, 1 h and 30 min to run.

2.5. Local patterns

Having applied the described bootstrap tests, where some or all of the regression’s coefficients
are considered non-stationary, it is next useful to map each local coefficient set and determine in
which areas they differ significantly from zero, or some other quantity. Since we are assessing a non-
stationary hypothesis against several stationary null hypotheses, a test as to whether local regression
coefficients differ from the value of the hypothesised global coefficient is appropriate. This is a useful
map-based test, as it visually explores the geographical consequences of incorrectly using a stationary
model by mapping those places likely to have notably different regression coefficients.

For example, given a predictor variable shows strong signs of departure from coefficient station-
arity, it would be useful to find the sampling distribution of its local coefficient estimate (or a test
statistic based on this coefficient) in a number of locations, and measure its deviation from a global
coefficient. An approach based on the bootstrap analysis of the null hypotheses here, is now proposed.
Essentially, one estimates a local regression coefficient, as in Eq. (15), and then compute its standard
error according to:

SEh0

(
β̂
)

= diag
[
σ̂h0

(
XTW(uk,vk)X

)−1XTW2
(uk,vk)X

(
XTW(uk,vk)X

)−1
]

(22)

where SEh0

(
β̂
)
is a vector of coefficient standard errors based on the null hypothesis; and σ̂h0 is an

estimate of the error term standard deviation for the null model. The local estimate has the global
estimate subtracted, and the result is then divided by the standard error from Eq. (22), to obtain a
pseudo t-statistic at location (uk, vk):

tj,h0 (uk, vk) =
βj (uk, vk) − βj,h0

SEh0

(
βj (uk, vk)

) (23)

where βj,h0 denotes the global regression coefficient under the hypothesis h0. As this statistic is no
longer assumed to have a t-distribution, a more appropriate namemight be a local Wald statistic after
(Wald, 1943), which similarly down-weights the effects of extreme-valued local coefficients, as does
themodified test statistic, q#j frombefore. ThusRbootstrap samples can be created, based on one of the
four possible null hypotheses, and a number of local coefficient-based pseudo t-statistics can be com-
puted for each bootstrap sample. Thus for each local statistic, a bootstrap p-value is found and these
are mapped to identify where the local regression coefficients significantly differ from the global one.

3. Results

The bootstrap results of the simulation experiment are given in Figs. 1–4, where they can be placed
in context of: (i) the simulation specifications in Table 1 and Table S1 in supporting information, and
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Fig. 1. All 90 realisations for three spatial processes (SP1, SP3 and SP5): boxplots of permutation test and basic bootstrap test
p-values. Plots are shown with p-value thresholds at 0.05, 0.10 and 0.50.

example realisations in Figures S1 to S3 in supporting information; (ii) the model diagnostic outputs
in Figures S4 to S9 in supporting information; and (iii) the example single realisation outputs in
Tables 2–4 and Figs. 5 and 6, from Section 3.3. Clearly, it is quite a challenge to interpret the diversity
of the inputs and outputs created.

3.1. All 180 realisations: contextual diagnostics

A full presentation of the contextual results is given in supporting information (section S3), but the
following key observations are listed here, together with a critical commentary:

i. Autocorrelation tests: For all six processes, significant autocorrelation is always found in the
response variable. Significant autocorrelation is also found for the residual data sets from an
MLR fit, but only for processes SP3 to SP6. Thus for non-stationary coefficient processes (SP5,
SP6), inappropriate MLR fits will directly produce autocorrelated residuals.

ii. GWR bandwidths: For random error and stationary coefficient processes (SP1, SP2), band-
widths tend to the maximum of 100%, indicating GWR to be an inappropriate model choice, as
would be expected. Bandwidths with an average size of 41.7%, result for autocorrelated error
and stationary coefficient processes (SP3, SP4), indicating that GWRwill tend to inappropriately
suggest spatial pattern in data relationships, when the response and residual data exhibit
autocorrelation (as confirmed in (i)). Bandwidths with an average size of 15.9%, result for SP5
and SP6, providing the strongest evidence for choosingGWR.However, asGWRwith bandwidth
selection through minimum AIC criterion is known to over-fit (Jetz et al., 2005; Paez et al.,
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Fig. 2. All 90 realisations for three spatial processes (SP2, SP4 and SP6): boxplots of permutation test and basic bootstrap test
p-values. Plots are shown with p-value thresholds at 0.05, 0.10 and 0.50.

2011), it is likely that smaller bandwidths have been found than what is ideally required; see
also Loader (2004) for the local regression case.

iii. Ranked AIC-based model fits: In general, the model fit via AIC is found to be a poor discrim-
inating diagnostic across the three core process groups. Here GWR can often provide the best
fit to SP3 and SP4, while ERR can on occasion provide the best fit to SP5 and SP6.

iv. Regression coefficient accuracy: All models under-perform due to predictor variable collinear-
ity, for the processes they are designed to suit (i.e. MLR for SP2; ERR/SMA/LAG for SP4; and
GWR for SP6). For GWR, this re-affirms what has been widely reported (e.g. Paez et al., 2011),
together with remediation strategies to counter it (Wheeler, 2007, 2009; Gollini et al., 2015).
Results show however, that collinearity is a generic problem. On average, all models provide
similar levels of coefficient estimation accuracy, to SP1 and SP2, which is expected as all study
modelswill tend to theMLR calibration. Similarly, allmodels provide similar levels of coefficient
estimation accuracy to SP3 and SP4. This is because stationary coefficient estimation tends to
be robust to spatial effects, whereas coefficient estimation uncertainty commonly is not. GWR
does not provide the best results for SP5 and SP6 as ERR and SMA do. It is not unexpected
for GWR to perform relatively poorly in this respect, and results do not relay whether or
not the GWR coefficient surfaces broadly reflect the actual non-stationary coefficient patterns
simulated. This is the remit of GWR after all—that is the spatial exploration of relationship
heterogeneity via maps.

v. Regression coefficient ECI accuracy: Results are broadly as expected,with eachmodel perform-
ing well for the process group, it is designed to suit. Again, GWR can outperform ERR for SP3
and SP4, although it is not designed to do so. For SP5 and SP6, GWR and ERR perform the best,
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Fig. 3. All 90 realisations for three spatial processes (SP1, SP3 and SP5): boxplots of permutation test and modified bootstrap
test p-values. Plots are shown with p-value thresholds at 0.05, 0.10 and 0.50.

indicating that uncertainties in their coefficient estimation are, in general, accurately accounted
for in their coefficient standard errors. Thus for GWR, its relatively poor coefficient estimation
accuracy performance is off-set by its relatively strong performance here. Given these results,
it is evident that any GWR analysis should include an assessment of coefficient estimation
uncertainty, just as that routinely done in any stationary coefficient analysis. Fotheringham
and Oshan, 2016 similarly argue for such assessments, but in relation to poor GWR coefficient
estimation due to local collinearity.

3.2. All 180 realisations: bootstrap test results

On viewing the p-value boxplots in the top panels of Figs. 1–4, for SP1 and SP2, it is clear that all
tests (permutation, basic andmodified bootstrap) perform as they should do. On average, there is little
evidence for coefficient non-stationarity for all nulls and all response to predictor data relationships
are correctly viewed as fixed across space. There is also no evidence to indicate that the level of
collinearity compromises these results.

On viewing the p-value boxplots in themiddle panels of Figs. 1–4, for SP3 and SP4, it is clear that the
permutation tests rarely perform as they are expected to do. These tests consistently and erroneously
indicate significant coefficient non-stationarity, for its MLR null, for all four coefficients. This is a
direct reflection of GWR’s tendency to incorrectly find coefficient spatial pattern to these processes,
as observed above. For the bootstrap tests (basic and modified), the results are dependent on the
null hypothesis, where MLR and LAG nulls rarely perform as expected. Both will tend to erroneously
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Fig. 4. All 90 realisations for three spatial processes (SP2, SP4 and SP6): boxplots of permutation test and modified bootstrap
test p-values. Plots are shown with p-value thresholds at 0.05, 0.10 and 0.50.

indicate significant coefficient non-stationaritywhen none is present. This is again considered a direct
consequence of GWR erroneously finding pattern to these processes, but now coupled with relatively
small variability in the bootstrapped response variable with the MLR and LAG nulls. This has the
joint effect that the (false) variability seen in the GWR coefficients is viewed as significant for these
nulls. For ERR and SMA nulls, this is not the case and these models tend to provide bootstrapped
response variables that have sufficiently large enough variability, for the (same erroneous) level
of variability seen in the GWR coefficients to be perfectly acceptable considering a process that is
spatially-autocorrelatedwith stationary relationships. Thus, ERR and SMA nulls are accepted and data
relationships are correctly viewed as fixed across space. Again, there is little evidence to indicate that
the level of collinearity compromises these results.

On viewing the p-value boxplots in the bottom panels of Figs. 1–4, for SP5 and SP6, it is clear
that not all tests work as they are expected to, as they should all tend to low p-values indicating
significant coefficient non-stationarity, for all nulls and for all coefficients. Here the permutation tests
are consistently in error, possibly a consequence of the relatively low coefficient variability in the
generated processes (as deliberately specified by the LMC parameters, see section S1 in supporting
information). Conversely for the basic bootstrap test with the same MLR null, all tests perform
as they should. However for the same basic bootstrap test with ERR, SMA or LAG nulls, all tests
are again consistently in error. For the modified bootstrap tests, results clearly improve where all
tests tend to perform correctly for all four (MLR, ERR, SMA and LAG) nulls, except that is for the
intercept termwith ERR (and possibly, SMA) nulls (i.e. the intercept is themost likely to be incorrectly
viewed as stationary). The behaviour for intercept is not surprising given this term will directly
reflect poor estimation in any of the three predictor coefficients, and is also likely to relate to the
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Fig. 5. Example realisations for SP3 and SP4 with (a, c) actual versus GWR estimated coefficients; and (b, d) local bootstrap p-
values for MLR and ERR null model hypotheses. Results are given for β1, β2 only, and each using the same stationary coefficient
process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 6. Example realisations for SP5 and SP6 with (a, c) actual versus GWR estimated coefficients; and (b, d) local bootstrap
p-values for MLR and ERR null model hypotheses. Results are given for β1, β2 only, and each using the same non-stationary
coefficient process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Table 2
Results for modified bootstrap tests, for a single realisation—one from SP3 to SP6. Actual SD is the standard deviation of the
GWR coefficients divided by their standard errors, resulting from the GWR fit to the single realisation. Both SP3 and SP4 use
the same coefficient process, with actual correlations between predictors x2 and x3 of r = −0.24 for weak collinearity and
r = 0.94 for strong collinearity. Both SP5 and SP6 use the same coefficient process, with actual correlations between predictors
x2 and x3 of r = 0.15 for weak collinearity and r = 0.94 for strong collinearity.

β0 β1 β2 β3 β0 β1 β2 β3

Weak collinearity (SP3) Strong collinearity (SP4)

Modified bootstrap test

Actual SD 1.955 2.118 2.857 2.666 1.096 1.964 2.159 1.311
MLR 95% 0.861 2.956 2.726 2.328 0.974 2.103 1.073 0.993
MLR p-value 0 0.11 0.03 0.03 0.03 0.07 0 0.02
ERR 95% 2.216 3.066 3.419 3.872 2.055 3.097 2.638 1.999
ERR p-value 0.12 0.52 0.26 0.59 0.58 0.46 0.21 0.52
SMA 95% 2.082 2.802 3.338 3.917 1.632 2.993 2.314 1.911
SMA p-value 0.08 0.37 0.26 0.47 0.53 0.36 0.13 0.38
LAG 95% 1.264 2.962 2.618 2.838 1.066 2.813 1.418 1.147
LAG p-value 0 0.18 0.02 0.07 0.04 0.18 0 0.02

Weak collinearity (SP5) Strong collinearity (SP6)

Modified bootstrap test

Actual SD 2.866 3.525 9.103 10.688 3.236 2.719 4.909 2.777
MLR 95% 1.019 1.547 2.663 2.450 1.537 1.246 1.492 1.140
MLR p-value 0 0 0 0 0 0 0 0
ERR 95% 3.700 3.827 6.831 7.319 4.231 2.688 3.626 3.002
ERR p-value 0.19 0.13 0 0 0.35 0.04 0 0.13
SMA 95% 2.731 3.050 5.382 6.565 3.448 2.083 3.382 2.575
SMA p-value 0.03 0 0 0 0.14 0 0 0.02
LAG 95% 1.760 3.028 4.737 3.950 2.140 2.588 2.630 2.490
LAG p-value 0 0 0 0 0 0.03 0 0

Table 3
Exploratory diagnostics for a single realisation, one from SP3 to SP6: Moran’s I p-values for the response and for the residual
from MLR fit; GWR bandwidth and global CN from MLR fit.

Spatial process Moran’s I for
response (p-value)

Moran’s I for MLR residual (p-value) GWR Bandwidth (%) Global CN

SP3 0 0 29.56 10.00
SP4 0 0 37.89 22.48
SP5 0 0 16.98 9.45
SP6 0 0 16.22 34.45

identification problem discussed before. Collinearity levels have a marginally adverse effect on these
tests, although themodified test is in part, designed to dealwith such issues. Observe frombefore, that
an inappropriateMLR fit to a non-stationary coefficient processeswill directly produce autocorrelated
residuals. Thus all unexpected results for the ERR, SMAand LAGnulls need to be viewed in this context.

3.3. Single realisations

In summary, the permutation test appears to have little to no value, the basic bootstrap test only
has value for MLR nulls, whilst the modified bootstrap has value for all four nulls (MLR, ERR, SMA and
LAG). To complete this demonstration of the bootstrapmethodology, relevant realisation-specific and
localised outputs are interrogated. Modified bootstrap test outputs are shown where in each case the
95% points of the bootstrap samples are computed and significance levels are found using Eq. (7)
for upper single-tailed hypothesis tests. Contextual diagnostics are given in Tables 3 and 4. Spatial
patterns of the simulated (actual) and estimated GWR coefficients are compared, and contextualised
by the local bootstrap p-values. Presenting outputs from a single realisation can be limiting given the
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Table 4
Model accuracy diagnostics for a single realisation, one from SP3 to SP6: model AIC, coefficient relRMSE, coefficient G-STAT
and coefficient M-ECI-W values.

Spatial process Statistic MLR ERR SMA LAG GWR

SP3

AIC 545.53 523.38 527.61 545.6 521.98
relRMSE 0.29 0.19 0.16 0.44 1.21
G-STAT 0.46 0.76 0.78 0.53 0.67
M-ECI-W 0.29 0.58 0.57 0.37 1.16

SP4

AIC 621.91 589.47 596.5 620.91 578.39
relRMSE 1.02 0.95 0.97 1.10 1.73
G-STAT 0.65 0.63 0.60 0.53 0.50
M-ECI-W 0.96 1.37 1.21 0.97 2.02

SP5

AIC 556.63 317.54 370.38 539.01 269.51
relRMSE 0.16 0.13 0.13 0.18 0.20
G-STAT 0.41 0.49 0.32 0.29 0.58
M-ECI-W 0.55 1.44 0.42 0.47 0.72

SP6

AIC 664.41 382.28 472.78 619.7 318.85
relRMSE 0.52 0.14 0.22 0.62 0.64
G-STAT −0.12 0.78 0.47 0.16 0.41
M-ECI-W 0.64 1.20 0.78 0.49 1.56

stochastic nature of the simulation experiment, but as will be seen, the results tend to reflect that
already observed for all realisations.

In the first instance, bootstrap results for example realisations from SP3 and SP4 are presented
where all coefficients should be viewed as stationary (Table 2). Here at the 95% level, evidence for
coefficient non-stationarity appears with respect to MLR and (less so for) LAG null hypotheses, for
both realisations, and for β0, β2, β3, only. However, given there is no evidence for coefficient non-
stationarity for ERR and SMA nulls, it is reasonable to assume that spatial variation in all coefficients
should be (correctly) considered a consequence of autocorrelation effects rather than relationship
non-stationarity. For all regression terms, the 95% point of the distribution of the test statistic tends
to increase in the following model order: MLR, LAG, SMA and ERR. Thus, the degree to which one
might expect local coefficients to vary when a regression with fixed coefficients holds, increases in
this order. In other words, ERR is the ‘best’ at addressing any perceived coefficient non-stationarity
by the specification of a spatial autocorrelation effect instead. Collinearity levels have not adversely
influenced these results. For the same realisations, surfaces are presented for β1, β2 only and the local
bootstrap p-values are only found for MLR and ERR nulls. It is evident how GWR can erroneously find
pattern in coefficients when none exist (Fig. 5(a)) and that such behaviour can be exacerbated in the
presence of collinearity (Fig. 5(c)). It is just such spatial patterns that the (unsuspecting) analyst can be
most struck with, and without conducting a fuller analysis as that suggested here, can lead to entirely
false interpretations. Thus, not only do the global bootstrap results rein in such false perceptions, but
the local bootstrap results do so too. In Fig. 5(b) and (d), localised coefficients that significantly differ
from the corresponding global coefficient of the MLR or ERR model are those with p-values > 0.95
or p-values < 0.05, say (i.e. sample units respectively coloured ‘dark blue’ or ‘dark red’). It is evident
that such areas decrease on viewing the ERR null in relation to the MLR null, resulting in only a few
areas considered to have a non-stationary relationship for the given regression term—areas which
incidentally are a direct reflection of the erroneous GWR fit in the first place.

In the second instance, bootstrap results for example realisations from SP5 and SP6 are presented
(Table 2). Here evidence for coefficient non-stationarity is strong with respect to MLR and LAG null
hypotheses, for both realisations, and for all coefficients. Although such evidence is marginally less
convincing for ERR and SMA nulls (as remember, non-stationary coefficient processes will tend to
have autocorrelated errors), the test results as a whole strongly (and correctly) indicate that all
coefficients should indeed be viewed as non-stationary. Again for the same realisations, surfaces are
presented for β1, β2 only, and the local bootstrap p-values are only found for MLR and ERR nulls.
It is now evident how GWR can over-fit (Fig. 6(a)) and that such behaviour can be exacerbated in
the presence of collinearity (Fig. 6(c)). Again, our fuller analysis helps rein in likely misconceptions
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about the true nature of relationship non-stationarity, where reassuringly the results of Table 2 do
not appear adversely influenced by collinearity. It is clear in Fig. 6(b) and (d), that although areas
of significant coefficient non-stationarity decrease on viewing the ERR null in relation to the MLR
null, they do not decrease to the extent that ERR would be favoured over GWR. Finally, note that
the bootstrap results are unable to discriminate true coefficient non-stationarity from that due to
collinearity, as the modified and local tests are only designed to be robust to such effects. In this
respect, it is recommended that a thorough analysis of collinearity is always conducted in practise
(e.g. Gollini et al., 2015).

4. Discussion and concluding remarks

This study has set out a bootstrap methodology to test for coefficient non-stationarity in a
regressionmodel against four models with globally-fixed coefficients—themost basic of these having
no spatial component, the others involving spatial autocorrelation effects. In particular, we tested
for coefficient non-stationarity for GWR against four nulls: MLR, ERR, SMA and LAG models. The
methodology provides three test statistics: (i) a basic test statistic; (ii) a modified test statistic, that
is robust to unusual local coefficients and local standard errors; and (iii) a localised test statistic that
is similarly robust to that defined in (ii). The methodology was objectively assessed via a simulation
experiment and was not assessed in isolation, as it was important to provide contextual analyses. We
found the basic bootstrap test statistic to only have value for MLR nulls, whilst the superior, modified
bootstrap test statistic was found to have value for all four study nulls—MLR, ERR, SMA and LAG.

There are however caveats to this research, especially considering that an MLR fit to a non-
stationary coefficient process will directly produce autocorrelated residuals, whilst GWR will com-
monly find spatial pattern in the coefficients when none exists provided the response/error is
autocorrelated. Little can be done to address these unwanted (identification) artefacts,where it should
also be noted that ERR will on occasion appear a good model choice to a non-stationary coefficient
process. Although ensuring a broad range of stationary coefficient null models are used, as done here,
is one way of mitigating against these confounders. Study results are also inter-dependent on: (a) the
characteristics of the simulated data; (b) the properties and assumptions of the chosen non-stationary
coefficient model; and (c) the properties and assumptions of the chosen null models. These caveats
and dependencies are considered tolerable given the study’s core aim is to introduce the bootstrap
methodology and demonstrate its potential.

The six spatial processes specified were kept as simple as possible, so not to detract from the
bootstrap methodology, but to also provide a level of objectivity so that the new methodology could
be meaningfully assessed (something not viable in any empirical setting, see section S4 in supporting
information). Furthermore, only basic GWR has been studied using a standard calibration procedure
(adaptive bi-square kernel with AIC-defined bandwidth), and the results only relate to this use,
together with the use of basic null models with standard spatial weights structures. However, as
the bootstrap tests are general the next logical steps would be a conduct a regression specification
sensitivity analysis for their effects on the bootstrap results, whilst keeping the simulation design the
same as that used here.

The simulation experiment does however have the potential to be highly involved by varying the
many parameters of the LMC. This flexibility of design is key to why a second-order effects simulation
approach was taken in preference to other, more deterministic approaches found in the literature
(e.g. Wang et al., 2008). Thus, by extending the simulated experiment to generate a more varied
set of spatial processes, say with different mean to error ratios, graded levels of coefficient non-
stationarity, different scales of coefficient non-stationarity, different levels of residual autocorrelation,
different levels of predictor variable autocorrelation (e.g. Hughes and Haran, 2013), different levels
of collinearity, the introduction of anomalies—the full spectrum of extended GWR models could be
assessed together with nulls that are similarly extended. Many early GWRmodels spring to mind, for
example, robust and heteroskedastic GWR (Fotheringham et al., 2002).

In a similar vein, the Bayesian SVC model of Gelfand et al. (2003) could be trialled, as this is
commonly viewed as a more accurate alternative to GWR (Wheeler and Calder, 2007; Finley, 2011).
Interestingly, coefficient estimation with the Bayesian SVC model is directly based on a LMC, as are
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the simulated coefficients generated here. Although a difficulty arises, in that (unlike this study) it is
not ideal to assess a statistical model using a simulation experiment that the model itself is based on.
Furthermore, as a direct result of using a LMC, the Bayesian SVC model suffers computationally and
as such, is not commonly applied. In this respect, a revised eigenvector spatial filtering (ESF) based
SVC model (Griffith, 2008) that provides a variant of the Bayesian SVC model (Murakami et al., 2017),
holds much promise as it does not suffer computationally.

Given that basic GWR can over-fit the coefficient processes generated in this study, spatial
processes may also exist when GWR is likely to under-fit, respectively giving rise to unduly high
and unduly low levels of coefficient variability, which in turn would compromise the validity of
the bootstrap tests. Such issues warrant further study and directly relate to bandwidth selection in
GWR. Different approaches to bandwidth selection can be investigated via the simulation experiment,
such as the robust cross-validation procedure of Farber and Paez (2007), the procedure of Cho et al.
(2010) that provides a bandwidth which ensures GWR residuals display random variation, or the dual
bandwidths of an anisotropic GWRmodel (Paez, 2004). Scale GWRmodels should also be considered.
For example, mixed GWRwhere some coefficients are fixed whilst others vary (Brunsdon et al., 1999)
or flexible bandwidth GWR (FB-GWR) where each coefficient varies at its own spatial scale (Yang et
al., 2012; Lu et al., 2017). For these models, a hierarchical testing strategy could be employed where
MLR, basic GWR and mixed GWR are viewed as subsets of FB-GWR—effectively the strategy used in
Nakaya et al. (2005) but with the testing being achieved via a bootstrap approach. FB-GWR counters a
problemwith most GWRmodels, in that they assume the same degree of spatial smoothness for each
coefficient, which is unrealistic. Here Bayesian SVC and ESF-based SVC models provide comparison
to FB-GWR, as they are also not so constrained. Furthermore, mixed GWR with only the intercept
term varying, provides a route to better understand the behaviour of this term, with respect to its
relationship to other coefficients and to associated first- and second-order identification issues.

Alternative stationary coefficient nulls can also be considered, such conditional autoregressive
nulls, in which the random part of the model is specified in terms of conditional probability distri-
butions (Cliff and Ord, 1973). Here, advances on the bootstrap method itself may be useful, such that
found in Fingleton and Legallo (2008), Lahiri (2010), Burridge and Fingleton (2010), Monchuk et al.
(2011), Han and Lee (2012), Herrera et al. (2013). Finally moving forward to empirical studies, where
the true value of this bootstrap method will be realised, the results from this study (and possible
extensions) can help guide the selection of a given SVCmodel over an associated stationary coefficient
null, that suits the properties of the real study data and the analytical questions being posed.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.
spasta.2017.07.006. This material includes: (i) details of the simulation experiment, (ii) details of the
contextual model diagnostics for the simulation experiment, (iii) simulation results for the contextual
model diagnostics, (iv) empirical case study and (v) code.
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