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RIP kinases: key decision makers in cell death
and innate immunity

F Humphries1, S Yang1, B Wang1 and PN Moynagh*,1,2

Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that
recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within
host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes.
However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further
countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of
the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor
signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by
apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and
as keymediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special
attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.
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Facts

� RIP1 mediates the signalling switch between inflammatory
gene expression and apoptosis.

� RIP1 and RIP3 form amyloid filaments to trigger
necroptosis.

� RIP1/RIP3-mediated necroptosis is a defence mechanism
but can cause inflammatory disease.

� RIP1 and RIP3 are important mediators of pattern-
recognition receptor (PRR) signalling.

� RIP2 is a critical mediator of NOD signalling and mucosal
immunity.

Open Questions

� How are the kinase activities of RIP1 and RIP3 regulated to
control formation of the necrosome complex?

� How is RIP3 activated in those pathways that use RIP3 but
not RIP1 to induce necroptosis?

� Apart from virally encoded caspase inhibitors, how is
caspase 8 inhibited to promote RIP3-mediated necroptosis
and inflammation?

� How does RIP3 regulate the NLRP3 inflammasome?
� Can RIP1/RIP3-mediated necroptosis and RIP2 signalling

be targeted to treat inflammatory diseases?

The innate immune system is equipped with PRRs that act as
the primary sensing systems for invading pathogens by
recognizing molecular structures known as pathogen-asso-
ciated molecular patterns (PAMPs). PRRs include transmem-
brane Toll-like receptors (TLRs),1 cytosolic NOD-like
receptors (NLRs),2 RIG-I-like receptors3 and DNA sensors.4

When engaged by relevant PAMPs, PRRs trigger signal
transduction cascades resulting in activation of transcription
factors such as NFkB and induction of a plethora of
pro-inflammatory genes. Tumour necrosis factor (TNF)
and interleukin-1b (IL-1b) are two of the most critical
pro-inflammatory cytokines, and their receptors can also
activate NFkB to promote further expression of inflammatory
genes. This facilitates infiltration of leukocytes into the infected
tissue resulting in removal of the pathogen. Cell death can also
be an important part of host defence by destroying the
replication niche for some invadingmicrobes. Indeed cell killing
can integrate closely with inflammation by acting as a potent
driving force behind the inflammatory response.5 Although
programmed cell death by apoptosis is generally regarded as
silent in an inflammatory sense, regulated forms of necrosis
result in membrane rupture and release of endogenous danger
signals that can act like foreign PAMPS to amplify the
inflammatory response.6 It is vitally important that the pathways
underlying these inflammatory responses and different types
of cell death are tightly controlled and balanced as an
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exaggerated inflammatory response forms the basis to many
inflammatory diseases, and excessive cell death can lead to
depletion of protective immune cells and tissue damage. Given
the close interplay of inflammation and cell death, it is not
surprising that the signalling pathways controlling both pro-
cesses are highly interconnected and co-ordinated. These
pathways can dictate the magnitude and duration of the
inflammatory response while also controlling cell fate and
deciding on whether cells survive or die. In the latter case, the
form of cell death is a critical decision. Significant progress has
been made in delineating the components of signalling path-
ways that underpin the interplay of inflammation and cell death.
This reviewwill focus on the emerging importance of the kinase
family of receptor interacting proteins (RIPs) as especially
critical players in these signalling networks.

The RIP Kinase Family

The RIP kinase family contains seven members with each
containing a homologous kinase domain (KD) that is the
signature of the family (Figure 1).7 In addition to its N-terminal
KD, RIP1 contains a C-terminal death domain (DD) and a
bridging intermediate domain (ID) that also harbours a RIP
homotypic interaction motif (RHIM). RIP2 also contains the
N-terminal KD, an ID (lacking a RHIM) and a C-terminal
caspase activation and recruitment domain (CARD). Although
RIP3 contains the N-terminal KD, it lacks the ID and instead
has a uniqueC-terminal sequence that contains aRHIM. RIP4
and RIP5 have the KD and ID with both also sharing
C-terminal ankyrin domains. RIP6 and RIP7 are less related
in structure to the other members, and although both contain
the homologous KD, they contain a number of additional and
diverse domain structures, such as leucine-rich repeat
regions. The functions of RIP 4–7 are poorly understood
and are well reviewed elsewhere.7 Briefly, RIP4 was initially
identified as a PKCd-interacting protein8 and was subse-
quently shown to activate NFkB.9 It has a key role in
keratinocyte differentiation10 and cutaneous inflammation.11

Overexpression of RIP5 drives cell apoptosis,12 but its
physiological role remains to be delineated. Similarly, the
functions of RIP6 and RIP7 (also known as leucine-rich repeat
kinases 1 and 2) are unknown although both have been
associated with the pathogenesis of Parkinson’s disease.13,14

Although our understanding of the biology of RIP4–7 is still in
its infancy, intensive research has clarified important mole-
cular and physiological roles of RIP1–3 in inflammation and
cell death, the core focus of the remainder of this review.

RIP1 and TNF Signalling: Inflammation Versus
Apoptosis

Although RIP1 mediates the activation of NFkB in response
to a number of death receptors, including TNF-receptor 1
(TNF-R1),15,16 TNF-related apoptosis-inducing ligand recep-
tor 1 (TRAIL1)17 and Fas,18 the greatest appreciation of the
function of RIP1 has emerged from exploring its role in
TNF-mediated inflammation and cell death. The stimulation of
TNF-R1 with TNF leads to the interaction of TNF-R1-
associated death domain protein (TRADD)19 and RIP120 with
the TNF-R1 signalling complex (Figure 2). This is followed by
the recruitment of a number of E3 ubiquitin ligases to RIP1,
including TNF receptor-associated factor 2 (TRAF2) or
TRAF5 and the cellular inhibitor of apoptosis proteins (cIAPs)
cIAP1 and cIAP2 resulting in the formation of Complex I.21–24

TRAF225,26 and cIAPs27–30 catalyse the polyubiquitination of
RIP1. The ubiquitin-decorated RIP1 is recognized by ubiqui-
tin-binding domain containing proteins in the IkB kinase
(IKK)31 and TAK1 kinase complexes32–34 thus facilitating
TAK-1-mediated phosphorylation and activation of IKKs. The
latter subsequently phosphorylate the IkB proteins, which
normally sequester NFkB in an inactive state in the cytoplasm,
resulting in ubiquitination and proteasomal degradation of IkB
and allowing for nuclear translocation of the liberated
NFkB.35–37 NFkB then drives the transcription of many pro-
inflammatory genes that will mediate the inflammatory
response. NFkB can also induce anti-apoptotic genes such
as cellular FLICE inhibitory protein (c-FLIP) and cIAPs that
prevent cell death.38–40 RIP1 can also mediate TNF-induced
activation of the mitogen-activated protein kinases (MAPKs)
ERK, p38 and JNK and, interestingly, although the kinase
activity of RIP1 is dispensable for activating NFkB, p38 and
JNK, it is required to stimulate ERK activity.41

Although ubiquitinated RIP1 serves to promote down-
stream activation of NFkB and gene expression that drives
inflammation and protects cells from death by apoptosis,42

NFkB can also induce the deubiquitinating enzymes CYLD
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Figure 1 The RIP kinase family. The domain structures of members of the RIP kinase family are indicated. Roc, Ras of complex proteins; COR, C-terminal of Roc;
WD, WD40 repeats; and ARM, Armadillo
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and A20 that can remove the ubiquitin chains from RIP1 and
terminate its ability to activate NFkB.43–46 In this unmodified
form, RIP can leave the TNF-R1 complex to associate with
Fas-associated death domain (FADD) and procaspase 8 and
form death-inducing signalling complex also known as
Complex II.27,43,47–49 The use of IAP antagonists or loss of
cIAP proteins generates a similar ripoptosome complex
consisting of RIP1, FADD and caspase 8, with components
of this complex being subject to ubiquitination and inactivation
by cIAPs.49–51 Complex II and the ripoptosome can promote
processing of procaspase 8 to its active form resulting in
triggering of the caspase cascade that culminates in cell death
by apoptosis.45 Recently, we have demonstrated that a
member of the Pellino E3 ubiquitin ligase family, Pellino3,
targets RIP1 and impairs Complex II formation in the TNF
signalling pathway to suppress cell apoptosis.52 The kinase
activity of RIP1 is required for ripoptosome assembly and its
downstream triggering of apoptosis.49,51 Thus the ubiquitina-
tion and kinase activity status of RIP1 dictates whether TNF

signalling goes down the road of inflammatory gene expres-
sion or the terminal path to cell death. Intriguingly, the two
pathways counter-regulate each other with NFkB driving anti-
apoptotic gene expression, whereas caspase 8 can cleave
RIP1 to suppress its ability to activate NFkB,53,54 with one of
the processed forms of RIP1 enhancing the interaction of
TRADD and FADD to sensitize cells to the pro-apoptotic
effects of TNF.54

RIP1 and RIP3 as Drivers of Necroptosis

Although the induction of apoptosis in virally infected cells
represents an important defense system to curtail viral
replication and dissemination, cytomegaloviruses are exam-
ples of microbes that have evolved evasive strategies to this
defense system by encoding inhibitors of caspase 8-mediated
apoptosis.55 However, the host has developed further
countermeasures to this escape mechanism, including a form
of cell death known as necroptosis that is triggered by death

Figure 2 Regulatory roles of RIP1 and RIP3 in TNF signalling. Stimulation of cells with TNF leads to recruitment of TRADD and RIP1 to TNF-R1. RIP1 is ubiquitinated in a
complex I containing TRAF2, TRAF5, cIAP1 and cIAP2 leading to TAK1/IKK-mediated activation of NFkB. The latter induces inflammation (by pro-inflammatory gene
expression (e.g., IL-1b, TNF)) and anti-apoptotic proteins such as cFLIP. De-ubiquitination of RIP1 results in the formation of Complex II (or ‘ripoptosome’ in the presence of
IAP antagonists) with FADD and procaspase 8. Auto-processing of caspase 8 triggers a downstream caspase cascade and cell death by apoptosis. Pellino3 targets RIP1 to
block formation of Complex II and apoptosis. Under the conditions of caspase 8 inhibition, RIP interacts with RIP3 (via their RHIM motifs, indicated in yellow) followed by RIP1/
RIP3 phosphorylation (P) and formation of an amyloid filamentous structure known as the necrosome. RIP3 then interacts with MLKL, PYGEL, GLUL and GLUD1 resulting in
mitochondrial ROS production. PGAM5 can also be stimulated to interact with the mitochondrial fission factor Drp1 leading to mitochondrial fragmentation and necroptosis, but
this may be cell and species dependent. MLKL can also form oligomers that bind to membrane phospholipids resulting in membrane rupture. A FADD/cFLIP/caspase 8
complex can cleave RIP1 and RIP3 to prevent RIP1/RIP3-mediated necroptosis
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receptors under conditions of caspase inhibition. This form of
cell death was initially observed when caspase 8 inhibition
increased the sensitivity of cells to TNF-induced necrosis.56,57

Furthermore, targeted deletion of the murine caspase 8 gene
resulted in prenatal lethality due to impaired heart muscle
development.58 Other death receptor ligands, such as TRAIL
and Fas ligand, were also shown to induce caspase-
independent cell death.59 This necrotic form of cell death that
is induced by death receptors is mediated by RIP1 and is
dependent on its kinase activity.59 RIP3 was subsequently
shown to be also required for RIP1-induced necrosis,60–62 with
the kinase activity of RIP3 being essential for mediating cell
necrosis.61 Interestingly, RIP3 and its catalytic activity facilitate
a switch between TNF-induced apoptosis and necrosis,60 with
embryonic fibroblasts fromRIP3-deficient mice being resistant
to TNF-induced necrosis61 and RIP3 kinase dead knock-in
mice displaying developmental lethality due to RIP1- and
caspase 8-driven apoptosis.63 RIP3 deficiency also rescues
the prenatal lethality of caspase 8 knockout mice with double
knockouts lacking both caspase 8 and RIP3 surviving and
reaching maturity,64,65 indicating that RIP3 mediates lethality
in the absence of caspase 8. This is consistent with the ability
of caspase 8 to cleave RIP3 resulting in loss of the kinase
domain of RIP3 and abrogation of its ability to trigger caspase-
independent cell death.66 Caspase 8 has also been shown to
repress necrosis by processing CYLD.67 Interestingly, cas-
pase 8 appears to act in a proteolytically active complex with
FADD and cFLIP to block RIP1- and RIP3-mediated necro-
sis,65,68 with c-FLIP-69 and FADD-70,71 deficient cells being
highly sensitive to death by necrosis. This is consistent with the
developmental lethality, due to cardiac failure, in FADD-
deficient embryos,72 with RIP1 deficiency rescuing the
embryonic lethality associated with FADD deficiency.71 These
studies support amodel inwhich theFADD–caspase 8–c-FLIP
complex negatively regulates RIP-kinase-mediated necrosis.
This raises the apparent paradox of c-FLIP interacting with
caspase 8 to facilitate caspase-mediated processing of RIP
kinases while c-FLIP also serves to inhibit caspase 8 in the
apoptotic pathway. However, this may relate to auto-proces-
sing of caspase 8 being required to trigger apoptosis but not to
repress necrosis.73,74

Many studies have probed the complex functional interplay
between RIP1 and RIP3 in regulating cell necrosis. Under
resting conditions, RIP1 is proposed to bind to RIP3 to prevent
oligomerization of the latter and so prevent spontaneous RIP3
activation and necrosis.75 This may, at least partly, underlie
the perinatal lethality associated with RIP1 deficiency but
would require that any such protective effects of RIP1 are
independent of kinase activity as RIP1 kinase dead knockin
mice survive to adulthood.63,76,77 In addition, during develop-
ment the physiological role of RIP1 in regulating RIP3-driven
necroptosis appears to be highly dependent on the stage of
development with RIP1 being required for TNF-induced
necroptosis at E10.578 but inhibiting necroptosis and asso-
ciated inflammation at later stages of development.78,79

Although RIP3-driven necroptosis contributes to the perinatal
defects associated with RIP1 deficiency, it is not the sole
underlying mechanism.63 This is supported by recent studies
demonstrating an important role for RIP1 in protecting against
TNF- and caspase 8-driven apoptosis.76,79

Under conditions of TNF stimulation, or during virus
infection, that trigger RIP1-dependent necrosis, RIP3
promotes necrosis-specific phosphorylation of RIP1, thus
forming a pro-necrotic necrosome complex.62 Phosphoryla-
tion-induced activation of the necrosome is dependent on
prior de-ubiquitination of RIP1 by CYLD, a step that is
proposed to take place in the necrosome itself and not in
Complex I.80 De-ubiquitination of RIP1 is a prerequisite for
TNF-induced necrosis as NEMO, a regulatory subunit in the
IKK complex, can bind to ubiquitinated RIP1 and prevent its
engagement with the necrosome.81 Structural studies have
shown the RHIMs of RIP1 and RIP3 to mediate their
interaction82 and facilitate assembly of heterodimeric filamen-
tous structures, typical of beta-amyloids, and it is these
amyloid structures that form the active necrosome complex.83

The authors of the latter study propose that the RHIM
sequences may be hidden in resting cells but that these
cryptic motifs are revealed in response to RIP1-induced
phosphorylation of RIP3 thus relaxing the auto-inhibited state
and allowing for the formation of the RHIM-mediated amyloid
filaments. In this process, the initial formation of a RIP1-RIP3
heterodimer is insufficient to trigger necroptosis and instead
the RIP1-RIP3 amyloid structure must recruit more free RIP3
to the amyloid scaffold resulting in auto-phosphorylation of
RIP3 and recruitment of mixed lineage kinase domain-like
protein (MLKL) to trigger downstream necroptosis.84 The
recruitment of MLKL to the necrosome leads to RIP3-
mediated phosphorylation of MLKL with the RIP3 inhibitor,
necrosulfonamide, blocking necrosis downstream of RIP3
activation85 and MLKL-deficient mice being resistant to
necroptosis.86,87 Various downstream effector mechanisms
have been proposed to mediate necroptosis. Phosphorylation
of MLKL promotes its oligomerization and translocation to the
plasma membrane where it interacts with phospholipids and
compromises membrane integrity ultimately resulting in cell
rupture.88–91 MLKL also promotes the generation of reactive
oxygen species (ROS) and late phase activation of JNK.92

The increased production of ROS, especially by the mito-
chondria, has been strongly linked with mediating TNF-
induced necrosis.93–95 Indeed cIAP1 and TAK1 has been
shown to block TNF-induced necrosis by inhibiting RIP1/
RIP3-mediated production of ROS.96 RIP3 also interacts with
and activates a number of metabolic enzymes, including
glycogen phosphorylase (PYGEL), glutamate–ammonia
ligase (GLUL) and glutamate dehydrogenase 1 (GLUD1) that
partly contribute to TNF-induced production of ROS and
necroptosis60,95 (Figure 2). In addition, the RIP1-RIP3
necrosome can interact with the mitochondrial protein
phosphatase PGAM5 to drive downstream necrosis.97 This
study demonstrated that PGAM5 recruits the mitochondrial
fission factor Drp1 to promote its GTPase activity by depho-
sphorylating serine residue 637 of Drp1. The activation of
Drp1 triggers mitochondrial fragmentation, an essential driver
of necrosis execution. However, a more recent study has
questioned the role of PGAM5 in mediating TNF-induced
necrosis, at least in murine fibroblasts.87 Knockdown of
PGAM5 expression in these cells failed to affect susceptibility
to TNF-driven necroptosis, suggesting alternative or addi-
tional mediatory pathways. Such discrepancies may reflect
varying effector mechanisms in different cells and species.98
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RIP Kinases and TLRs

Although RIP1 and RIP3 have key roles in controlling the
outcome of death receptor signalling pathways, they also
have important roles in PRR pathways especially TLR3 and
TLR4 (Figure 3). This is due to these pathways employing an
adaptor protein termed TRIF that contains a RHIM that allows
it to interact with and deploy RIP1 and RIP3. All TLRs, except
TLR3, uses the MyD88 adaptor protein to promote down-
stream activation of NFkB.99 TLR4 can also use TRIF to
activate NFkB by a MyD88-independent pathway.100,101

TLR3 is unique in the TLR family in that that it does not use
Myd88 but instead exclusively employs TRIF to activate
NFkB.102 In the case of both TLR3 and TLR4 signalling, the
RHIM motif of TRIF recruits RIP1 to mediate downstream
activation of NFkB.102,103 RIP3 is not required for activation of
NFkB in TLR signalling pathways.104 Similar to TNF-R1
signalling, RIP1 needs to be ubiquitinated in order to drive
TRIF-induced activation of NFkB, and Pellino1 is a key E3

ligase that ubiquitinates RIP1 in the TLR3 and TLR4
pathways.105

In addition to activation of NFkB, TRIF can also stimulate
the TBK1 and IKKi/IKKe kinases to activate interferon

regulatory factor (IRF) transcription factors that drive expres-

sion of anti-viral type I interferons (IFNs)99,106 (Figure 3).

Interestingly, RIP1 is not used by TRIF in its activation of

IRFs.102,103 However, under circumstances of FADD deple-

tion or its phosphorylation on serine residue 191 (during cell

cycle arrest) or when caspases are inactivated (as occurs in

virus-infected cells), IFNs can feed back on virally infected

cells to activate the RNA-responsive protein kinase PKR,

which then interacts with RIP1 and triggers RIP1/RIP3-

mediated necroptosis.107 When caspases are inhibited,

TLR3 and TLR4 can also directly induce necroptosis by virtue

of the RHIM motif of TRIF engaging RIP3 and MLKL to trigger

downstream necrosis108,109 (Figure 3). Interestingly, whereas

RIP1 is required to mediate TNF-induced RIP3-dependent
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This leads to ubiquitination of TRAF6, TAK1/IKK-mediated activation of NFkB and induction of pro-inflammatory genes such as IL-1b and TNF. The TIR domains of TLR3 and
TLR4 can recruit another TIR adaptor TRIF, that contains a RHIM motif (in yellow), allowing TRIF to interact with RIP1. This is followed by Pellino1-mediated polyubiquitination
of RIP1 allowing for TAK/IKK-induced activation of NFkB. TRIF (in a RIP1-independent manner) can also activate the TBK1/IKKi kinases to phosphorylate IRF3 and induce
type I interferons (IFNs). Under conditions of caspase inhibition, the RHIM domain of TRIF can interact with the RHIM of RIP3 to trigger MLKL-mediated necroptosis. RIP1 can
also facilitate the direct recruitment of caspase 8 to TLR3 leading to apoptosis. Murine cytomegalovirus (MCMV) can stimulate the DNA sensor DAI (containing two RHIMs) to
interact with RIP1 and RIP3 to promote TAK/IKK-mediated activation of NFkB. DAI can also interact with RIP3 to promote MLKL-mediated necroptosis. The MCMV-encoded
protein M45 contains a RHIM that allows it to target RIP3 and inhibit DAI- and RIP3-mediated necroptosis. The RNA helicase RIG-I is recruited to the mitochondria by MAVS
followed by association with RIP1 and downstream activation of NFkB by TAK/IKK. RIG-1 also triggers TBK1/IKKi-mediated activation of IRF3 and induction of type I IFNs.
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necroptosis,78 a recent report has indicated that RIP1 blocks
TLR3-, TRIF- and IFN-driven necroptosis before birth.79 TLRs
that do not employ TRIF can also induce necroptosis in an
indirect manner by inducing TNF to trigger necrosis via
TNFR-1 as described above.109 In addition, some of these
pathways have been associated with cell apoptosis. Over-
expression of TRIF results in interaction with RIP1 and RIP3
and induction of apoptosis,110 and in the context of TLR3
signalling in lung cancer cells, the TLR3 ligand dsRNA can
induce apoptosis by recruiting caspase 8 to TLR3 in a RIP1-
dependent manner.111 The ability of RIP kinases to orchestrate
both apoptosis and necroptosis in response to triggering of
viral-sensing TLR3 provides a major survival advantage to the
host. Although TLR3-induced apoptosis can serve as the initial
effort to eliminate virus-infected cells, some viruses encode
caspase inhibitors to neutralize this defense system. However, in
the absence of caspase activity, necroptosis will be strongly
triggered as a contingency measure to deny the virus its home
of replication.

RIP Kinases and Nucleic Acid Sensing

DNA-dependent activator of IRFs (DAI, also known as ZBP1
or DLM-1) is a cytosolic DNA sensor that can respond to
immunostimulatory DNA to activate NFkB and IRFs and
induce pro-inflammatory cytokines and IFNs.112 DAI contains
two RHIM motifs that allows it to interact with RIP1 and RIP3
and trigger downstream activation of NFkB113,114 (Figure 3).
The interaction of DAI with RIP3 also sensitizes cells tomurine
cytomegalovirus (MCMV)-induced necrosis with DAI- and
RIP3-deficient cells being resistant to this form of death.115

Intriguingly, MCMV encodes a M45 protein, that also contains
a RHIM and targets the DAI–RIP3 interaction to suppress
premature killing of endothelial cells during MCMV infec-
tion.116,117 Such findings highlight the importance of RIP-
mediated necroptosis to anti-viral immunity.6,118

The RNA helicase RIG-I also serves as a cytoplasmic viral
sensor by recognizing viral RNA.119 Engagement of RIG-I by
RNA results in its recruitment by the MAVS adaptor protein to
the outer membrane of the mitochondria.3 The assembly of
this complex triggers downstream activation of NFkB and
IRF3 to induce pro-inflammatory cytokines and IFNs
(Figure 3). A recent study has shown RIP1 to be recruited to
the RIG-1 mitochondrial complex with ubiquitination of RIP1
serving to provide docking sites for key signalling molecules
such as the IKK complex that activates NFkB.120 However,
RIP1 can also facilitate recruitment of caspase 8 to the
complex, resulting in the cleavage of RIP1 and the generation
of an inhibitory RIP1 fragment that represses RIG-I-induced
activation of IRF3. Thus RIP1 is a key regulator of the
temporal expression of virus-responsive genes.

RIP Kinases and the Inflammasome

IL-1b is one of the key pro-inflammatory cytokines that drives
inflammation.121 The secretion of mature IL-1b requires two
signals. First, innate receptors, like TLR4, promote increased
transcription of the gene encoding IL-1b, resulting in expres-
sion of an inactive pro-IL-1b precursor. A second signal
requires the generation of a signalling platform termed the

inflammasome consisting of a NLR protein such as NLRP3
that recruits the adaptor protein ASC and caspase 1 into a
complex. Caspase 1 in this inflammasome complex will
process pro-IL-1b precursor into the mature secreted form
of IL-1b and will also effect an inflammatory form of cell death
termed pyroptosis. A recent report has suggested that the
inflammasome can be regulated by RIP1 and RIP3. Caspase
8 deficiency in dendritic cells enhanced TLR-4 induced
formation and activation of the NLRP3 inflammasome by a
mechanism that was dependent on RIP1, RIP3, MLKL and
PGAM5.122 This resulted in augmented LPS-induced expres-
sion of mature IL-1b and exacerbation of LPS-induced septic
shock in mice with dendritic cell-specific deletion of the
caspase 8 gene. Interestingly, these effects were proposed to
be independent of necroptosis. Such findings suggest that
caspase 8 has dualist roles in targeting RIP kinases to control
inflammation. Caspase 8 acts to suppress RIP1/RIP3-driven
necroptosis and the ensuing inflammatory fall-out from cell
necrosis while also controlling RIP1/RIP3-mediated activation
of the NLRP3 inflammasome and production of IL-1b.
However, the role of caspase 8 is complex and context
dependent as the causative agent of plague Yersinia pestis
and its outer protein YopJ employs caspase 8, RIP1 and RIP3
to trigger cell death and caspase 1 activation.123,124

Interestingly, another study demonstrated that pharmaco-
logical or genetic depletion of the cIAP proteins in macro-
phages, in conjunction with TLR stimulation, resulted in
augmented processing of pro-IL-1b into its mature form.125

The processing of IL-1b was driven by two independent
pathways involving NLRP3/caspase 1 and caspase 8. Both
pathways were dependent on RIP3 and ROS. Thus under
conditions of ripoptosome formation, as occurs with cIAP
depletion, RIP3 can strongly drive IL-1b production further
extending the pro-inflammatory potential of RIP3 beyond its
ability to drive inflammatory cell death by necroptosis.
However, the physiological circumstances under which cIAP
proteins are depleted or inhibited in the presence of TLR
stimuli remain to be characterized. These findings suggest
that IAP proteins serve important regulatory roles in tempering
the pro-inflammatory potential of RIP3. This is further
supported by recent reports demonstrating that XIAP limits
RIP3-dependent cell death and IL-1b expression in response
to TNF126 while cIAPs and XIAP control RIP1 and RIP3-
dependent pro-inflammatory cytokine production in myeloid
cells.127

RIP1 and RIP3 in a Pathophysiological Context

Given that necroptosis results in plasma membrane rupture
and the release of endogenous danger signals that can
activate PRRs, this form of cell death is regarded as being
strongly pro-inflammatory in nature. Consequently, many
studies have explored the potential contribution of RIP1/RIP3-
mediated necroptosis to inflammatory diseases. To this end,
necrostatins, inhibitors of the kinase activity of RIP1 and of
necroptosis, have been evaluated in various disease
models.128 Necrostatins ameliorate pathology in a number
of inflammatory diseasemodels, including brain ischaemia,129

mycocardial infarction130 and head trauma.131 Inhibition
of RIP1 or RIP3 deficiency reduces mortality during
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TNF-induced systemic inflammatory response syndrome and
pathology in the caecal ligation and puncture model of
polymicrobial sepsis highlighting the potential value of
targeting RIP1/RIP3 in sepsis.132 RIP3-deficient mice are
also free of inflammation in an acute pancreatitis model61 and
show reduced macrophage necroptosis to ameliorate athero-
sclerosis development.133 Keratinocyte-specific deletion of
FADD results in serious inflammatory skin lesions via RIP3-
mediated necroptosis.134 Furthermore, conditional deletion of
caspase 8 in the intestinal epithelium resulted in great levels of
RIP3 and TNF-driven necroptosis and increased susceptibility
to colitis.135 Interestingly, the latter study also demonstrated
high levels of RIP3 and necroptosis in the terminal ileum of
patients with Crohn’s disease, suggesting that RIP3-induced
necroptosis may be a valuable therapeutic target in human
disease. Absence or inhibition of RIP3 also reduces liver
damage in response to ethanol136 or acetaminophen.137

Finally, RIP1 and RIP3 drive necrotic cell death in retinal
pigment epithelial cells and photoreceptor cells, and these
effects likely have key roles in vision problems, such as
macular degeneration, retinitis pigmentosa and retinal
detachment.138–142 All of these studies emphasize the
potential roles of RIP1 and RIP3 in driving diverse inflamma-
tory diseases, and future research is faced with the challenge
of exploiting these kinases as therapeutic targets.

RIP2 and NOD Signalling

RIP2 was initially identified as a RIP-like kinase that, when
overexpressed, could activate NFkB and MAP kinases and
augment caspase 8-mediated apoptosis.143–145 RIP2 contains
an N-terminal kinase domain and C-terminal CARD domain
(Figure 1). The kinase activity of RIP2 is dispensable to
manifest its activation of NFkB but is required to mediate the
activation of ERK MAPK145,146 and to stabilize RIP2
itself.147,148 Early studies demonstrated that RIP2-deficient
mice are viable but show impaired activation of NFkB in
response to TLR signalling and are more resistant to LPS-
induced lethal sepsis.149,150 However, a more recent report,
using synthetic and highly purified forms of TLR ligands,
contend that TLRsignalling is intact in cells fromRIP2nullmice,
but loss of RIP2 leads to abrogation of signalling in response to
stimulation of nucleotide-binding oligomerization domain-con-
taining protein 1 (NOD1) and NOD2 by their specific ligands or
the intracellular pathogen Listeria monocytogenes.151 These
findings indicate that RIP2 mediates NOD1 and NOD2
signalling but not TLR signal transduction.
NOD1 and NOD2 are cytosolic receptors for bacterial

peptidoglycan derivatives such as muramyl dipeptide (MDP)
and are expressed highly in mucosal epithelium.152–154 Loss-
of-function mutations in NOD2 are associated with greatly
increased susceptibility to Crohn’s disease,155–157 whereas
gain-of-function mutations are linked to early onset sarcoidosis
andBlau syndrome.158,159 NOD2 contains anN-terminal CARD
domain, a central NACHT region and C-terminal LRRs.160

Upon binding of MDP to the LRRs of NOD2, the NACHT
regions are exposed, allowing for self-oligomerization of NOD2
molecules, followed by homotypic interactions between the
CARD domains of NOD2 and RIP2161,162 (Figure 4). This
results in ubiquitination of RIP2 followed by recruitment of the

TAK1 and IKK complexes and downstream activation of NFkB
and MAP kinase pathways by an analogous mechanism to that
described above for RIP1 signalling in the TNFR-1 path-
way.148,163–165 This results in the expression of a range of
inflammatory proteins, anti-bacterial proteins, activation of
autophagy and antigen presentation.166–168 Notably, RIP2 is
required to mediate all of the in vivo host responses to MDP.169

The ubiquitination of RIP2 is a critical step in mediating
activation of these NOD2 pathways, especially activation of
NFkB,164,165 and a number of E3 ubiquitin ligases, including
TRAF6,164 cIAP and XIAP proteins170–172 and ITCH173 have
been proposed to catalyse ubiquitination of RIP2. However,
other studies have questioned the importance of many of
these E3 ligases in the context of ubiquitinating RIP2 and
activating NFkB. Thus the ubiquitination of RIP2 is intact in
TRAF6-deficient cells,165 pharmacological depletion of cIAP1
and cIAP2 has no effect on RIP2 ubiquitination171 and ITCH-
mediated ubiquitination of RIP2 is associated with negative
regulation of RIP2-mediated NFkB signalling.173 We have
recently described a key role for the E3 ubiquitin ligase
Pellino3 in directly ubiquitinating RIP2 and mediating NOD2
downstream signalling, including its activation of NFkB and
protective effects in colitis174,175 (Figure 4). We also showed
that Pellino3 protein expression is greatly reduced in
the colons of Crohn’s disease subjects consistent with a
protective role in human disease.174 We have proposed
functional cooperation between Pellino3 and XIAP in that the
former promotes the formation of polyubiquitin chains on RIP2
in which the isopeptide linkages between adjacent ubiquitin
molecules are linked via lysine 63 of ubiquitin and XIAP
facilitates linear ubiquitination of components of the RIP2
complex in which individual ubiquitin proteins are joined head
to tail. This shows remarkable similarity to the RIP1-contain-
ing complex I in the TNFR-1 signalling pathway in which
components of the complex are initially modified by lysine 63-
linked chains followed by LUBAC-mediated linear ubiquitina-
tion that serves to stabilize the complex and further enhance
downstream signalling pathways, such as NFkB and inflam-
matory gene expression.176

The ubiquitination pathway in NOD–RIP2 signalling is
subject to various forms of regulation. Thus the inositol
phosphatase SHIP-1 disrupts the interaction between XIAP
and RIP2 to inhibit NOD2-induced NFkB activation.177

In addition, free ubiquitin can compete with RIP2 for the
binding of NOD1.178 Furthermore, the autophagy protein
ATG16L1, which has also been linked to Crohn’s disease,
interferes with the polyubiquitination of RIP2 and the recruit-
ment of RIP2 into NOD-signalling complexes, resulting in
impaired downstream signalling.179 The allelic form of
ATG16L1, which is associated with Crohn’s disease, fails to
regulate NOD-mediated inflammatory signalling, suggesting
that the targeting of RIP2 is important in controlling intestinal
pathogenesis. The LIM domain-containing protein TRIP can
interact with RIP2 to positively regulate NOD1 signalling.180

Finally, the MAP3K, MEKK4, interacts with RIP2 to preclude
basal interaction of the latter with NOD2 while stimulation of
cells with the NOD2 ligand MDP promotes dissociation of RIP2
from MEKK4 allowing for interaction of RIP2 with NOD2.181

The NOD–RIP2 pathway is also targeted by caspases, and
this is especially interesting given that NOD proteins belong to
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the large NLR family, many members of which are compo-
nents of caspase-containing inflammasomes. Caspase 12
has been shown to target RIP2 and inhibit downstream
signalling in response to NOD2 stimulation.182 This results in
an impaired mucosal antimicrobial response to enteric
pathogens due to reduced production of antimicrobial pep-
tides, cytokine and chemokines. Intriguingly, some patients
with variants of the caspase 1 gene, which encode for forms of
procaspase 1 with greatly reduced or absent enzymatic
activity, frequently exhibit fever even though levels of IL-1b
are low.183 The latter study demonstrated that the CARD
domain of these procaspase 1 variants binds to the CARD of
RIP2 to trigger activation of NFkB and presumably down-
stream inflammatory responses that underpin the regular
febrile episodes.

RIP2 in Inflammation and Disease

Although the NOD–RIP2 signalling pathways are of particular
relevance to the control of intestinal inflammation, RIP2 also

has important roles in mucosal immunity in the respiratory
system. Thus RIP2-deficient mice show impaired bacterial
clearance in an E. Coli pneumonia infection model184 and
Chlamydophila pneumoniae-induced pneumonia.185 In both
models, the absence of RIP2 resulted in impaired expression
of various pro-inflammatory mediators, reduced neutrophil
infiltration and increased bacterial burden. However, under
certain circumstances, the role of RIP2 in mediating an anti-
bacterial response can be damaging to the host. This applies
in the case of secondary bacterial infection following an initial
viral infection.186 In this case, viral challenge leads to
production of type I IFNs that strongly upregulate NOD1,
NOD2 and RIP2 resulting in an exaggerated inflammatory
response to secondary infection with E. Coli. Thus the NOD–
RIP2 pathway likely has key roles in the increased lethality
and morbidity that is clinically observed in secondary bacterial
infections.
RIP2 has been associated with other inflammatory disease

states and models. Levels of RIP2 are elevated in the non-T-
cell fraction of blood from multiple sclerosis (MS) subjects,187

and pathogenesis in murine models of MS have been shown
to be dependent on NOD1, NOD2 and RIP2 with the latter
having an especially important role in activating CNS dendritic
cells.188 Intriguingly, peptidoglycan has been detected within
antigen-presenting cells, including dendritic cells, in the brain
of MS patients189 suggesting that the peptidoglycan–NOD–
RIP2 axis in CNS may contribute to MS pathogenesis. RIP2
has also been implicated as a driver in experimental allergic
airway inflammation by activating NFkB and inflammatory
gene expression.190 Furthermore, RIP2-deficient macro-
phages, although showing weaker inflammatory signalling,
display increased lipid accumulation that contributes to more
severe atherosclerosis in recipient mice,191 implicating a
potential role for RIP2 in cardiovascular disease.
A complex picture thus emerges of the role of RIP2 in

inflammation and immunity. Given its critical role in NOD
pathways, RIP2 clearly has a protective role in mucosal
immunity and homeostasis as deficiency in NOD signalling is
linked to Crohn’s disease and loss of RIP2 leads to increased
bacterial burden in pulmonary infection models. However,
high levels of RIP2 can lead to damaging inflammatory
responses as indicated by pathogenesis in models of MS and
secondary bacterial infections. Such opposing roles of RIP2
highlight the need for efficient regulatorymechanisms to avoid
the potential damaging consequences of RIP2 action.

Conclusion and Perspective

Although much research has focused on the role of RIP
proteins in cell death, it is clear that these kinases have many
physiological and pathophysiological functions that are
derived from their important roles in inflammation and innate
immunity. Furthermore, many of the regulatory roles of RIP
kinases in inflammation are mediated by their effects on cell
death. Thus, while RIP1 is a key determinant in deciding
whether a cell produces pro-inflammatory mediators or dies
by apoptosis, RIP3 can direct a cell to die by the more
inflammatory process of necroptosis. Although the latter
provides a safeguard death mechanism against intracellular
pathogens that encode for factors that interfere with
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Figure 4 RIP2 and NOD signalling. Bacterial invasion of epithelial cells results
in the stimulation of NOD proteins by peptidoglycan-derived peptides such as MDP.
MDP binds to the leucine-rich repeat regions of NOD2 allowing for NACHT domains
to mediate NOD oligomerization. The CARD domains of oligomerized NOD proteins
interact with the CARD domains of RIP2 kinase molecules followed by binding of
TRIP protein to RIP2 and XIAP and Pellino3-mediated polyubiquitination of RIP2.
This facilitates recruitment of TAK1 and IKK complexes and downstream activation
of NFkB, MAPKs and AP-1. The transcription factors drive expression of cytokines,
chemokines and anti-bacterial peptides. NOD signalling can also result in cell
autophagy. RIP2 is targeted by various negative regulatory proteins: ITCH catalyzes
ubiquitination of RIP2 to inhibit NFkB activation; SHIP-1 disrupts the interaction
between XIAP and RIP2; Free ubiquitin competes with RIP2 for the binding of
NOD1; the autophagy protein ATG16L1 interferes with the polyubiquitination of
RIP2 and the recruitment of RIP2 into NOD-signalling complexes; MEKK4 inhibits
the basal interaction of RIP2 with NOD2; and Caspase 12 targets RIP2 and inhibits
downstream signalling
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apoptosis, necroptosis is also emerging as a key player in a
number of inflammatory diseases. Thus, like RIP2, RIP1and
RIP3must be tightly controlled, with loss of this control leading
to hyper-inflammation and pathology. RIP kinase thus emerge
as lead therapeutic targets in a number of diseases. The first
inhibitors of RIP kinases have emerged over the past number
of years.128 The challenge and opportunity sit side by side to
translate our increased understanding of RIP kinase biology
into RIP-targeted therapeutics to treat inflammatory diseases.
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