
First Programming Language - Java or Snap?

A Short Course Perspective

Mark Noone

Computer Science Department

Maynooth University

Maynooth, Ireland

mark.noone@mu.ie

Aidan Mooney

Computer Science Department

Maynooth University

Maynooth, Ireland

aidan.mooney@mu.ie

Abstract — A question often asked and rarely answered

effectively in the Computer Science Education field is "What is

the best First Programming Language"? We find ourselves

asking this due in part to the low retention rates in third level

introductory programming courses. With the ever-increasing

requirements for Computer Science graduates in industry, and

the introduction of programming courses in second level schools

worldwide, now is the time to answer this question with

confidence. If we can set younger students on the right

educational path early on, we should see better performance at

third level. This paper discusses the implementation of two

identical introductory 8-week short courses, one based in Java

and one based in Snap. These courses were taught to Transition

Year students in Ireland and data was collected on how they

performed and around their opinions of the languages. The goal

was to determine if there is any significant difference in the

difficulty to learn either course. If a difference is present, then

there may be elements of the language itself causing difficulty

given that the courses were identical. From the results of this

phase of the study, we can make some initial recommendations

about favorable First Programming Language choices.

Keywords — Java, Snap, Computer Science, Education, First

programming language, Visual programming language, Text-based

programming language, Short course, curriculum.

I. INTRODUCTION

The role of the First Programming Language (FPL) is a
very important one. In fact, Gupta [1] believes that the choice
of FPL is such a big decision that it will have a “profound
impact” on future learning in Computer Science. This paper
will examine the development and first phase of teaching of
two short courses; one in the Snap programming language and
one in the Java programming language. These courses were
created so as to be as equivalent as possible in content and
different only in syntax and verbosity.

Previous research by Noone & Mooney [2] into a
programming course in both Java and Snap has helped to
inform this larger scale study. The study described in this paper
is part of a larger project. The initial phases of this project, and
the work undertaken thus far will be described in Section II.

The research questions for the overall project are to
determine if there is a best approach to teaching an FPL, what

the language choice should be and if a visual or textual
approach provides the best results.

The courses developed are both eight-week courses and
cover the following threshold concepts:

• Introduction to the Language

• Variables and Operators

• Selection

• Loops

• Strings and User Input

• Arrays (Omitted in this iteration of the course delivery)

Week seven and week eight respectively of the delivery of
these courses allow time for revision of the material that was
covered and the taking of a short examination question to test
what was learned by the students.

Success in the courses will be determined using a number
of metrics. A survey was administered during the first week of
the course to collect some information relating to student
opinions of programming. In the final week, a second survey
was administered to determine how students found the course,
if they enjoyed it etc. The examination question was also
graded to determine student performance.

Finally, all of this information will be analysed with cross-
comparisons between the Java results and Snap results to help
draw some conclusions in relation to the research questions.

II. BACKGROUND

A. Systematic Literature Review

Noone & Mooney [3] first started examining this topic in
2016 with a Systematic Literature Review. This paper was
based around finding literature to answer the questions “Are
there any benefits of learning a visual programming language
(VPL) over a traditional text-based programming language
(TPL)?” and “Does the choice of FPL make a difference? What
languages are the best ones to teach?”. The main goal of the
review was to determine the best languages (one visual and one
textual) to create courses in.

John and Pat Hume Scholarship 2016, Maynooth University.

10th Annual International Conference on
Computer Science Education: Innovation and Technology (CSEIT 2019)
Copyright GSTF © 2019
ISSN: 2251-2195
DOI: 10.5176/2251-2195_CSEIT19.148

10th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2019)

GSTF © 2019

In terms of VPL choice, the blocks-based approach seemed
to resonate the best with students [4]. Within this category of
VPL’s, the most commonly used language was found to be
Scratch with 40,951,154 projects shared when last checked in
April 2019 [5].

An important aspect of these findings that we wanted to
examine is the belief that VPL’s are for younger students and
TPL’s are best for every other scenario. Cheung, Ngai, Chan &
Lau [6] believe that a gap exists somewhere between the ages
of 11 and 13; younger than that and a student will likely prefer
a VPL while above that age TPL’s may be preferred.

This coupled with the high usage rate of Scratch
encouraged us to use Snap as our VPL of choice. Snap is a
clone of Scratch that allows for the creation of custom code
blocks. This means a course can be created that is identical to
one in Scratch, while leaving room for future work in the area.
Specifically, we aim to create a “hybrid” programming
environment somewhere between Snap and Java. Weintrop [7]
examined a form of this with promising results. This plan will
be discussed more in Section VII.

On the TPL side, the TIOBE index [8] continues to show
Java as the most widely used programming language in
industry. According to Davies, Polack-Wahl & Anewalt [9], it
is the most used programming language for CS1 courses in the
USA. It also attained a high score (14/17) on Manilla & de
Raadt’s [10] educational language benchmarking test. For
these reasons; along with our own familiarity of teaching it as a
CS1; we chose Java as the TPL of choice.

Interestingly, it was shown by Noone & Mooney [3] that
the actual choice of language isn’t as important as one might
think. It is the content that is key. That is why by developing
these courses with equivalent content we can get a good idea of
what issues the languages themselves may be posing.

B. Summer Camp Short Course

With the languages chosen, a pilot session was designed in
2017 by Noone & Mooney [2]. This pilot study involved the
development and delivery of a 90-minute lesson in both Snap
and Java. These lessons were delivered at a summer camp in
our department for 10 – 18 year old students. Both lessons
were delivered on the same day to the same cohort and were
similar in content. They covered similar threshold concepts to
those that were described for this curriculum (See Section I).

The goals of this phase of the research were to determine if
the chosen languages and course delivery style were
appropriate, and to gather some initial data on which course
was deemed more “difficult” based on language choice alone.
One of the major findings was that Java was considered
significantly more difficult than Snap (p = 6.8E-10, p<0.05). It
was also noteworthy that 41.6% of 13 – 15-year-old students
preferred the visual approach while 62.5% of 16+ year-old
students preferred the textual approach. This once again aligns
with Cheung, Ngai, Chan & Lau’s findings [6].

It is important to note that the findings of the Summer
Camp study while noteworthy were performed on a small
scale. The students were not expected to have any retained
knowledge at the end of the sessions, it was merely about

exposure to the concepts. The main purpose of the summer
camp pilot study was to inform the body of work described in
this paper and to aid in the creation of a large scale, multi-week
curriculum in both languages.

III. COURSE DEVELOPMENT

In May 2018, work began on developing the eight-week
courses in both Snap and Java based on all findings from the
summer camp short courses. For each session mentioned in
Section I, the material was created in parallel for both
languages to ensure that they were equivalent. The material
created for each week included a class plan, teaching slides, in
class practice questions, a homework sheet and a homework
answer sheet. Two surveys were also drafted; one as a pre
course survey which collected basic data and opinions on
Computer Science and one as a post course survey which
would collect opinions on the lessons, the courses and
Computer Science in general again.

The questions asked both in class and as part of the

homework sheets aligned closely with the normal CS1

material taught in our department but simplified for the target

audience. A sample of a question asked in both courses during

the “Selection” session is shown in Fig. 1.

Fig. 1. Example homework question (Java and Snap)

Once the course development was completed in June 2018,
the material was given to some colleagues for equivalence
testing. This involved reading the course materials in parallel
and deciding if they were equivalent, as we needed others to
verify our thoughts and decisions. Results of this testing were
favorable, and some feedback was also obtained which led to
further iterative development of the curriculum materials.

As well as the six major topics, the week 7 and week 8
material also had to be developed. Week 7 was a revision week
which allowed the students to reflect on all of the concepts they
had touched on over the previous weeks. This material
contained worksheets with multiple short questions (one per
topic) and two longer questions (using elements from all
weeks) to pick from. Week 8 was an examination so a question
and marking scheme needed to be written up for this session.
The material for both courses can be seen on Padlet 1, 2.

IV. COURSE DELIVERY

During July and August of 2018, contact was made with a
number of schools under the PACT initiative [11] to offer them

1 https://padlet.com/mark_noone1/java
2 https://padlet.com/mark_noone1/snap

Create a program that checks if a person is able to vote.

You will need to create an int that holds a value to

represent a person’s age. Print a statement that says “They

can vote” if they’re of age and a statement that says “They

cannot vote” if they are too young.

10th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2019)

GSTF © 2019

the option of hosting one of the courses in the first term of the
2018 – 2019 academic year. These courses would be delivered
in Transition Year, which is a one-year programme that forms
the first year of a three-year senior cycle in many Irish
secondary schools. An agreement was made with two chosen
schools, with the following make up:

• School #1 – Mixed gender public school, four
Transition Year classes, 15-16-year-old students, two
classes would undertake the Java course and two
classes would undertake the Snap course,
approximately 40 students for each course.

• School #2 - All girls private school, one Transition
Year class, 15-16-year-old students, approximately 20
students total, would undertake the Java course.

All five classes began in mid-October 2018 with the
intention to run until the final week before Christmas for a total
of eight weeks. There were some challenges with this which
ended up pushing the last two sessions to late January 2019
after a month-long break from material, but all material was
still delivered to all students.

One exception to this is that the “Arrays” sessions were not
delivered to any class. This was due to the fact that Strings
took longer for the students to comprehend and practice than
originally expected. As such, Strings and User Input (originally
a single week session) was expanded out to two weeks and
arrays had to be dropped from the course. The revision and
final exam were adjusted to account for this.

The first session began with an introduction to the
programming environment of choice (JCreator for Java, Snap
UI for Snap). The students were also given an overview of
what the rest of the course would entail. Finally, they were
asked to complete a short survey on their opinions of CS and
what they expected from the course. Data was collected
anonymously with each student being given an ID number to
link their data with the survey in the final week.

All intermediate sessions began with a recap of what was
covered in the previous week and a run through of the
homework questions that were assigned. The new material was
then delivered.

Week seven gave the students control to look over any
material they previously struggled with. They were able to ask
questions or simply work away on questions. The final session
began with the post course survey and the course completed
with a final examination.

V. OUTCOMES - EFFICACY

The final examination was delivered in week eight of the
course delivery. Students were given 45 minutes to answer a
short question which used an element of each week’s material.
The questions posed in Java can be seen in Fig. 2 and the
question posed in Snap can be seen in Fig. 3.

Once the examination was completed, a photograph was
taken of each student attempt, saved as their ID number. After
the course was completed, these attempts were then graded
based on a marking scheme.

Fig. 2. Java examination quesion

Fig. 3. Snap examination quesion

The marking schemes gave either 0 (no attempt made), 5
(decent attempt made at using the element) or 10 (good or
perfect use of the element) for each of ten different
requirements to give a total of 100 marks. The ten marking
elements for each language’s examination are given in Table I.

TABLE I. MARKING SCHEMES FOR JAVA AND SNAP

Marks

(/100) JAVA SNAP

10 Use of import Use of a “When click” block

10 Use of class Use of the “Answer” element

10 Use of a main method Use of an update statement

10 Use of a String variable Use of a variable with text

10 Use of the Scanner Use of “Ask and Wait” input

10 Use of a loop Use of a loop

10 Use of an if statement Use of an if statement

10 Use of modulus Use of modulus

10 Use of a print statement Use of “Say” block to print

10 Use of charAt Use of “letter X of” block

The average results from these tests were as follows:

➢ Snap – 34.4/100 ➢ Java in school #1 – 22.8/100

➢ Java – 22.8/100 ➢ Java in school #2 – 42.5/100

Write a Snap program which:

1. Creates a String variable

2. Gets the value for this String using user input (use

any sentence when testing)

3. Using a loop and selection, go through this String

and only print every even positioned character.

For example:

Hello World -> el ol (2, 4, 6, 8, 10)

Write a Java program which:

1. Creates a String

2. Gets the value for this String using user input (use

any sentence when testing)

3. Using a loop and selection, go through this String

and only print every even positioned character.

For example:

Hello World -> HloWrd (0, 2, 4, 6, 8, 10)

10th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2019)

GSTF © 2019

From these results, we were able to discern some important
information. First of all, the overall grades were quite low.
There any many possible factors for this including the limited
timeframe for practice, the general difficulty of learning
programming [12], the fact that the last two sessions (revision
and examination) needed to be delivered after the winter
holidays, and in school #1’s case the lack of a permanent
teacher present in the room. Additionally, it is worth noting
that no marks would be awarded to students towards their end
of year marks for Transition Year so a lack of motivation may
be present.

For the null hypothesis that the Java examination would not
be more difficult than the Snap examination; the results show
that this is possibly the case. This was shown through the usage
of a two tailed t-test which was the metric used for all further
data analysis in this paper. A minimum p-value of 0.05 will be
required to reject any null hypotheses. In this instance, we had
p = 0.3420 (p > 0.05). This is not a statistically significant
enough result to say if one exam was more challenging than the
other. If this were true, it would imply that Java is not actually
implicitly harder to learn than Snap is.

Interestingly though, when we break this down further and
assume that the two schools were both significantly different
environments, the results look a little different. We can affirm
this by comparing the Java results of school #1 with school #2.
When we do, we see a statistically significant difference in
outcomes with p = 0.0009 (p < 0.01). This means that there’s a
greater than 99% chance that the differing environments
between the schools had a significant effect on the study.

With this in mind, we can now compare the outcomes of
the Java examination and the Snap examination in school #1
(which was also the school with the larger dataset with two
classes each). We found that the Snap grades were significantly
higher with p = 0.01239 (p < 0.05). This tells us that there’s a
very high probability that the Java examination was in fact
more difficult to perform well in, and we can reject the null
hypothesis for school #1.

This would align with Noone & Mooney’s [2] previous
findings that Java was a significantly harder language to learn.
This is the key point of the study and requires further
examination with additional cohorts of students in order to
verify the findings.

VI. OUTCOMES – SURVEY ANALYSIS

The examination results were only one metric analysed as
part of this process. As previously mentioned, two surveys
were also administered; the first one prior to the first session of
the course which collected opinions on what they might expect
from the course, if they might consider studying Computer
Science at University and other collected survey data.

The second survey was administered right before the final
examination to determine the easiest and hardest sessions from
the student’s vantage, their overall enjoyment of and
difficulties with the course and once again whether they would
consider studying Computer Science at University.

One important point to note as we delve into some of the
results from these surveys is that the cohort who were there for
the pre-survey did not exactly match the cohort who undertook
the post-survey. There is much overlap but due to absences on
both days, there are some who only sat one of the two surveys.

In Fig. 4, the opinions of the Java students on studying
Computer Science at University can be seen and in Fig. 5 the
opinions of the Snap students on studying Computer Science at
University can be seen.

In terms of the Java students, we found that with p = 0.2349
for the change in opinions between the pre course survey and
the post course survey that there was no significant decrease.
This implies that the course itself did not negatively affect their
views of programming and Computer Science. In terms of the
Snap students, with p = 0.1795 we can make the same
conclusion.

What these results did show however is that some of the
students were able to make their mind up over the duration of
the course. This is an important thing given the current dropout
rates in Computer Science course at University [13]. It is vital
that students are aware of what Computer Science is before
committing to attending third level and having exposure to
courses like these ones will ensure this.

Fig. 4. Computer Science at University opinions – Java Course

Fig. 5. Computer Science at University opinions – Snap Course

54.29%

34.29%

45.71%

65.71%

PRE SURVEY OPINIONS POST SURVEY OPINIONS

Would you consider studying CS at
University? (Snap course opinions)

Yes / Maybe No

10th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2019)

GSTF © 2019

In Fig. 6, Fig. 7, Fig. 8 and Fig. 9, the outcomes are shown
for which course sessions the students found the easiest and
most difficult. In Fig. 6 and Fig. 8 it is interesting to note that
loops were considered the hardest to learn in Java, but not as
many deemed it the hardest in Snap. Instead, Strings and User
Input seemed to be the most difficult Snap session (which was
still a highly chosen session in Java). In Fig. 7 and Fig. 9 it was
clear that the introductory sessions eased students into each
course and were overwhelmingly considered the easiest. This is
much in line with what we would have expected.

Fig. 6. Hardest Session to Learn in Java

Fig. 7. Easiest Session to Learn in Java

Fig. 8. Hardest Session to Learn in Snap

Fig. 9. Easiest Session to Learn in Snap

The two other key questions in the post course survey were
“How much did you enjoy the course? (1= Not at all, 5 = It
was OK, 10 = I loved it)” and “How difficult did you find the
course? (1 star = easy, 5 stars = difficult)”.

In terms of enjoyment, the average rating for Snap was 5.6
and the average rating for Java was 5.4694. The difference
between the results for both courses was not significant with p
= 0.8027. In other words, there was no difference at all in
enjoyment levels of the courses. This is logical since the
courses had identical content so enjoyment levels would be
expected to be similar.

When it came to difficulty though, the results were more
interesting. Java was rated 3.51 / 5 on average for difficulty.
Snap however was only rated a 2.63 / 5. The courses were as
identical in content as possible. Comparing the rated
difficulties, we have p = 0.0002 which is significant at p <0.01.
This means that students found Snap to be much easier than
Java, which again aligns with the previous findings of Noone
& Mooney [2].

If we look even deeper at school #1 only (as they would have a
similar cohort of students, they rated Java 3.69 / 5 in terms of
difficulty) the result only gets more significant with p =
0.0001. This leaves very little room for the results to be chance
meaning that Java is clearly more difficult than Snap. The only
way we could be more certain is if the exact same students
rated each language which is planned for a future phase.

This is once again key. It further exposes the fact that Java
is more challenging to learn. This can only mean that some
element of Java (verbosity, overhead or something else
entirely) caused it to be more difficult to learn given the nature
of the study with identical courses. If this is the case, why do
we not teach CS1 in a VPL all of the time? Of course, this
study can only make this assertion for students aged 15 – 16
years old. This is a younger cohort than we would see at
University level. Further work will need to be done in order to
verify if this is also the case for older (and younger) students.
As it stands, it may be an isolated result for this age group or
this specific cohort of students.

We also examined whether gender made a difference to the
difficulty the students perceived with either course. We found
that there was no measurable difference in the difficulty rating

21

6 6

2

0

5

10

15

20

25

Snap Introduction Variables Loops Strings / User Input

EASIEST SESSION IN SNAP

18

7 7

3

0

2

4

6

8

10

12

14

16

18

20

Strings / User Input Loops Variables Selection

HARDEST SESSION IN SNAP

22

17

7

3

0

5

10

15

20

25

Loops Strings / User Input Variables Java Introduction

HARDEST SESSION IN JAVA

32

13

2 2

0

5

10

15

20

25

30

35

Java Introduction Variables Strings / User Input Selection

EASIEST SESSION IN JAVA

10th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2019)

GSTF © 2019

for girls against boys in the Java course (p = 0.5514) or the
Snap course (p = 0.5033). These results mean that within the
same language groupings, gender did not have an effect on
how students perceived the course.

Due to the low number of participants who took both
surveys in certain cases (Males taking Java course n = 8,
females taking Snap course n = 9) the results were inconclusive
as to whether Java was more difficult than Snap amongst only
males and only females respectively. The data did seem to be
trending towards the overall conclusion that Java was more
challenging, however. Females rated Java 3.36 / 5 on average
for difficulty compared to their average Snap difficulty rating
of 2.89 / 5. Likewise, males rated Java 3.63 / 5 on average
compared to Snap 2.54 / 5.

Finally, we note some interesting comments that the
students of the course made. These comments were made
under the post-course survey question “Do you have any other
comments or suggestions?”. All feedback is valuable, and these
comments will help shape future iterations of the courses.

• “Nope but maybe have a school teacher in the
classroom” – From a student in the Snap course. This
is very important given the difference between school
#1 (no teacher present) and school #2.

• “I found that when I was doing the tasks with
instructions it was easy, but when I had to do them on
my own, I found it to be much more difficult.” – From
a student in the Java course. This is a common issue
that faces many students in CS1 / CS2 courses.

• “It was a useful experience to get under my belt! I'm
not sure if programming is what I want for my future,
but it was good to get to know the basics and try it
out.” – From a student in the Java course.
Programming courses in schools are important to help
students decide early on if it would interest them as a
degree choice.

VII. FUTURE WORK AND CONCLUSIONS

The results from this study show promise. At least with the
15 – 16 age group, it does seem that Snap was easier to learn
than Java was. We aim to further our analysis of this in a few
ways. First and foremost, the courses presented in this paper
will be refined and redelivered to more schools to see if the
results can be replicated (in particular, we will prioritise school
types we haven’t yet delivered curricula to, i.e. private all boys
school, private mixed gender schools or public single gender
schools). We also endeavour to deliver the exact same courses
to different age groups (younger children, CS1 University
students, adult learners) to see if the results are the same or if
the type of student affects the outcomes. Similarly, we would
like to deliver both courses to the same group of students to see
if they feel one was more difficult.

There were some challenges in the course delivery that
need to be ironed out for the next phase. First and foremost, a
permanent teacher from the school should always be present in
the classroom to help keep student focus. Secondly, a long
break is not recommended within the course delivery and may

have skewed the results negatively. Finally, more time for
practising would be preferred as some students didn’t seem to
take in the concepts.

As briefly mentioned in Section II, we are currently
beginning work on developing a “hybrid” Java language. The
concept of a hybrid programming language has been examined
by multiple educators in recent years with promising results. In
particular, Weintrop [7], Poole [14] and Harken [15] have
looked at the concept in different ways. Weintrop [7] has
created one of these environments with some promising early
results. Harken [15] has commented that “browsability” is a
key feature of visual blocks-based environments that reduced
the complexity of learning them.

Our hypothesis is that a hybrid, drag and drop
implementation of the Java programming language will reduce
the difficulty of learning Java. We have already proven in this
study that Snap was certainly easier, for 15 – 16 year old
students, than Java. Using Snap’s “build your own blocks”
feature, we will be able to create custom blocks to match the
syntax and semantics of Java keywords and code sections.
With this created, we can create a third version of the course
using the hybrid environment.

We hope to then see that Java is harder than Java Hybrid,
and Java Hybrid is harder than Snap in terms of learning
difficulty. We infer that this could be the case due to the
browsability and blocks-based environment having enough of
an effect to ease the complexity of Java’s verbosity without
trivialising the learning of the language. From looking at
results of similar studies, we do not believe that it would make
learning Java easy enough to put it on level ground with Snap
and other purely visual blocks-based languages, however.

In the coming months, when this work is completed, we
aim to run a short test (one session) of the efficacy of each of
the three languages in a Summer Camp setting. If the anecdotal
evidence from this seems promising, it will be ramped up and
delivered in parallel to the Snap and Java courses in the next
phase of the project.

Overall, the results of this study show promise for
considering other forms of FPL rather than just a text-based
approach. All approaches have their merits but with increasing
drop-out rates [13] and student difficult with traditional CS1
courses as shown by Watson & Li [16], considering other
approaches might just be the key to improving retention.

ACKNOWLEDGMENT

This work was assisted through the support of funding
received from the John and Pat Hume scholarship, Maynooth
University in 2016.

REFERENCES

[1] D. Gupta, “What is a good first programming language?,”

Crossroads, vol. 10, pp. 1–7, 2004.

[2] M. Noone and A. Mooney, “First Programming Language : Visual

or Textual ?,” in International Conference on Engaging Pedagogy

(ICEP), 2017.

10th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2019)

GSTF © 2019

[3] M. Noone and A. Mooney, “Visual and Textual Programming

Languages: A Systematic Review of the Literature,” J. Comput.

Educ., vol. 5, no. 2, pp. 149–174, 2018.

[4] S. Sandoval-Reyes, P. Galicia-Galicia, and I. Gutierrez-Sanchez,

“Visual Learning Environments for Computer Programming,” 2011

IEEE Electron. Robot. Automot. Mech. Conf., pp. 439–444, 2011.

[5] MIT Media Lab, “Scratch Statistics,” 2019. [Online]. Available:

https://scratch.mit.edu/statistics/. [Accessed: 25-Apr-2019].

[6] J. Cheung, G. Ngai, S. Chan, and W. Lau, “Filling the gap in

programming instruction: a text-enhanced graphical programming

environment for junior high students,” ACM SIGCSE Bull., vol. 41,

pp. 276–280, 2009.

[7] D. Weintrop, “Blocks , Text , and the Space Between,” 2015 IEEE

Symp. Vis. Lang. Human-Centric Comput., no. C, pp. 301–302,

2015.

[8] TIOBE, “TIOBE Index,” 2019. [Online]. Available:

https://www.tiobe.com/tiobe-index/. [Accessed: 01-May-2019].

[9] S. Davies, J. A. Polack-Wahl, and K. Anewalt, “A snapshot of

current practices in teaching the introductory programming

sequence,” 42nd ACM Tech. Symp., p. 625, 2011.

[10] Linda Mannila, Michael de Raadt, “An objective comparison of

languages for teaching introductory programming,” ACM, New

York, NY, USA, vol. 276, pp. 32–37, 2006.

[11] A. Mooney, J. Duffin, T. Naughton, R. Monahan, J. Power, and P.

Maguire, “PACT : An initiative to introduce computational thinking

to second-level education in Ireland.”

[12] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the

difficulties of novice programmers,” ACM SIGCSE Bull., vol. 37,

no. 3, pp. 14–18, 2005.

[13] C. O’Brien, J. Humphreys, and N. Ide McAuliffe, “Concern over

drop-out rates in Computer Science courses,” Irish Times, 2016.

[Online]. Available:

http://www.irishtimes.com/news/education/concern-over-drop-out-

rates-in-computer-science-courses-1.2491751. [Accessed: 02-May-

2019].

[14] M. Poole, “Design of a blocks-based environment for introductory

programming in Python,” Proc. - 2015 IEEE Blocks Beyond Work.

Blocks Beyond 2015, pp. 31–34, 2015.

[15] A. H. Harken, “To block or not to block? That is the question,” J.

Thorac. Cardiovasc. Surg., vol. 149, no. 4, pp. 1040–1041, 2015.

[16] C. Watson and F. Li, “Failure rates in introductory programming

revisited,” Proc. 2014 Conf. Innov. Technol. Comput. Sci. Educ.,

pp. 39–44, 2014.

10th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2019)

GSTF © 2019

