

S = Senior Author, C = Corresponding Author

First Programming Language: Visual or Textual?

Mark Noone and Aidan Mooney S, C

mark.noone@mu.ie, aidan.mooney@mu.ie

Department of Computer Science

Maynooth University

Maynooth, Co. Kildare, Ireland

Please tick type of submission (see Call For Papers for more detail): Tick (√)

Research Paper (10 pages incl. literature review and methodology) √

Discussion Paper (10 pages incl. literature review)

Extended Abstracts (2-3 pages in extended abstract format)

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

2

Abstract

In modern day society, the ability to code is a highly desirable skill. So much so that

the current supply from third level institutes across the world does not meet the high

demands of industry. One of the major issues is the low progression rates from first to

second year in third level Computer Science courses with introductory programming

courses proving to be a high contributing factor. This is something that needs to be

addressed. One such way to address the issue is to get children involved and engaged

with computing at young ages.

This paper describes a study undertaken that is the first step in a body of work that

aims to garner the interest of potential Computer Science students at an early age. The

study involves a comparison of two short courses; one based in Java and one based in

Snap. The goal is to determine whether either of these languages is a better first

programming language for students than the other, or if both are viable. These

languages were chosen to allow for a comparison between a Visual Programming

Language and a Textual Programming Language.

Feedback in the form of a survey will be used to gather the opinions of the students.

This will provide data on issues such as which language was easier to learn and which

language was preferred amongst others. Based on the outcomes of this study, a full-

scale curriculum will be developed in the coming year. The outcomes of this study will

help to establish which is the best programming language to suit the learning needs of

students.

Keywords

Education, First Programming Language, Snap, Java, Short Course, Survey.

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

3

1. Introduction and Motivation

Computer Science as a third level subject has a history of volatility. While it has

generally provided a very high graduate to employment ratio, it has often struggled with

retaining students in the early years, particularly from first to second year (Quille,

Bergin, and Mooney, 2015). According to a study undertaken by the Irish Times

newspaper in 2016, “about one-third of (Irish) Computer Science students across all

institutes of technology are dropping out after first year in college" (O’Brien, 2016).

This is something that researchers and educators continually try to mitigate.

The motivation for this study relates closely to the results of a Systematic Literature

Review undertaken by the authors (Noone and Mooney, 2017). This review pertains to

the concept that tackling the task of introducing students to Computer Science, and

more specifically programming, should be done at an early age in order to best pique

and maintain their interest. In 2018, Computer Science will be introduced as an optional

subject at Leaving Certificate level in Ireland (O’Brien, 2017). A short coding course

is also an option for students taking the Junior Cycle (Curriculum Online, 2017), which

was introduced in 2017.

This paper will examine the perception of both Visual Programming Languages

(VPL’s) and Textual Programming Languages (TPL’s) amongst students aged between

10 and 18. Specifically, two short courses were developed; one in the programming

language Snap (VPL) and one in the programming language Java (TPL). These courses

were then delivered at a summer camp in the Computer Science department at

Maynooth University. In order to determine the perception and outcomes, a survey was

administered and analysed. The results from this survey will help to guide development

of a long form curriculum to be delivered to secondary school students in the future.

The overall goal is for this to be a “best bet approach” to keeping younger students

interested in undertaking a Computer Science course at third level.

2. Background and Related Literature

The study presented in this paper follows on from a Systematic Literature Review that

was undertaken between October 2016 and March 2017 (Noone and Mooney, 2017).

This review aimed to determine the value in teaching VPL’s as well as defining a “best

choice” of VPL and TPL for teaching young learners Computer Science and

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

4

programming. The results of this SLR heavily guided the study detailed in this paper,

particularly in terms of language choices.

The languages that were decided upon to be used in this study were Snap and

Java. Snap was chosen as an alternative to the popular VPL Scratch as Snap is a clone

of Scratch that offers some more advanced options which will be useful for future work

in the development of a curriculum. Java was chosen because, according to the TIOBE

index (TIOBE, 2017), Java is the most commonly used programming language in the

world. This includes an aggregate of both educational and industry based popularity.

A major finding of the literature review was that teaching methodologies are

often more important than the actual languages of choice. While there is a multitude of

literature that pointed to these languages being the “best choice”, there were some key

points that added further weight to using them as the languages of choice in this study.

Given that language choice isn’t the most important aspect of teaching, picking a

language that is widespread has clear advantages for both teacher and learner. There is

also more established material available for teaching Java and Snap. Snap provides all

the functionality of Scratch along with the ability to add additional features.

To further this point, a survey conducted in the USA in 2011 (Davies, Polack-

Wahl and Anewalt, 2011) investigated 371 institutions of educations who were asked

what language they used for their beginner programming courses (CS1 or CS0). The

results were that 48.2% of institutions had adopted Java. While this doesn’t inform us

of the current rates today, nor does it inform us of data outside of the USA, it still gives

a strong idea of where the numbers have been in recent years.

In many countries, CoderDojo and other similar after school club organisations

often use Scratch or another visual language as the backbone of their teaching. It is well

established that VPL’s are considered more fun for young learners to experiment with

when compared to the more complex TPL’s. The authors have had experience with

running such a CoderDojo and have seen first-hand the effect learning Scratch, and

other blocks based languages, has had on some students. Other researchers have

examined this further by looking at retention of students (Armoni, Meerbaum-Salant

and Ben-Ari, 2015). They found that after learning Scratch at an early age, the students

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

5

that chose to progress to a Java/C# course in later years appeared to pick up information

faster and grasp some of the tougher concepts earlier than their peers.

However, which of these two approaches makes the learning process easier for

the student? This is the question we were hoping to answer. As mentioned earlier,

language choice and approach is not as important as methodology; however, some

elements of each language type might be easier for different age groups to learn. Due

to this, a combination of both languages might be a good, if not the best, approach to

take. A study undertaken in 2015 which involved teaching five weeks of Snap and five

weeks of Java found that 58% of students thought Snap was easier to use (Weintrop

and Wilensky, 2015). Some students reported that the blocks approach was easier to

read. Some drawbacks were also noted; for example, blocks were identified as being

less powerful giving less implicit customisation (but this isn’t a huge issue for CS1).

These are but a few examples of why these languages were chosen. In general, no

matter what language or tool is chosen it will have both positives and negatives. For

this study, the two languages were chosen due to pedagogical evidence of their success.

3. Methodology

This section will describe the implementation of the two short courses; one in Java and

one in Snap. This includes the full development of each course as well as a survey and

the overall plan for implementing the study.

3.1 Curriculum Development

Once the two languages had been decided on, work could commence on developing a

short course style curriculum in both. The goal was to create two courses that were close

to identical in terms of content and level of difficulty, while still managing to showcase

the important elements of each respective language. The courses would be designed to

be delivered to students aged 10-18 in 90-minute sessions. As well as the author,

multiple demonstrators would be employed at the summer camp to provide help to the

students whenever they struggled. This would allow for even detailed topics to be

covered in a very short timeframe. In terms of content, both courses would cover the

topics presented in Table 3.1.

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

6

For Java, the course closely followed a shortened, but expedited version of the

CS1 course delivered in the Computer Science department at Maynooth University. For

Snap, elements were taken from the “Beauty and Joy of Computing course” (BJC,

2017) as well as from personal experiences with Scratch. The key element that allows

these courses to be delivered in such a short timeframe (compared to usually spending

weeks learning these topics) lies in the expectations. The students are not expected to

become experts in the material. We simply aim to give them an overview of what

programming entails and introduce some threshold concepts.

Language Tools

(BlueJ / Snap)

Java boilerplate /

Snap run blocks

“Hello World”

for the language

Selection statements

(if/else)

Basic Math Variables Loops An advanced topic

Table 3.1 – Course Topics

At the end of each topic in a course, an exercise would be displayed on the slides

giving the students a chance to trial what they have learned. The students’ copy of the

material would not contain the answers to these exercises. Once the students had

sufficient time to work on the exercise, the answer would be given on the lecturer’s

copy of the slides on screen so they could see the optimal solution.

Figure 3.1(a) – Snap Advanced Code Figure 3.1(b) – Java Advanced Code

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

7

For the final section of each course, the advanced topic was covered. This is the

only element of the courses that would be significantly different across each course.

For Snap, the concept of drawing shapes was chosen since it would utilise a part of

everything they had learned so far and also demonstrate some nice animation features

of the software (See Fig. 3.1(a)). For Java, the concept of creating a very basic calculator

was chosen. Again, this would combine everything they had learned together, while

showing something functional that they would understand (See Fig. 3.1(b)).

3.2 Pilot Tests

Before the commencement of the main testing phase at the Computer Science Summer

Camp, a pilot test for each course was conducted. The Snap course was tested on a

cohort of approximately 20 Junior Cycle students. These students were attending

Maynooth University to experience taster courses in multiple disciplines. The material

was well received based on anecdotal feedback. Many students followed along with the

course material, while some others lost focus. This was not a major concern as it would

be expected with a group who had not decided themselves to attend the course.

The Java course was also tested on a small group of Senior Cycle students by a

member of our research group. The anecdotal feedback from them was generally

positive. Some students struggled with the loops concept (a threshold concept within

programming). This was rectified in the final course by moving it to later in the teaching

process for those who wanted a challenge after completing the main phase.

The feedback received from both of these pilot tests was vital as it helped to verify

that the timing of the courses was correct as well as revealing some enhancements that

were needed in the material.

3.3 The Survey

Since there would be no official testing of the students, feedback relating to the success

or failure of the courses would come from the results of a survey. This survey was

compiled, using Google Forms, after the initial pilot tests were completed. The goal of

the survey was to learn about how the students felt about the courses; how the courses

compared was a key element of this. The questions that were decided upon for the

survey can be seen in Appendix A.

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

8

These questions would help to gather feedback from the students with as little bias

as possible. It would allow them to express their preferences within each individual

course as well as make a fair comparison of the two courses. The ability to filter the

results by age and gender is also key to determining if there are any preference patterns.

In line with ethical requirements, consent forms were given to parents before the

commencement of the camp to ensure data collection and possibly publication was

allowed by their parents. On the day, consent from the students was also collected.

3.4 Course Delivery During the Summer Camp

In June 2017, the departmental summer camp began. The camp is broken down into

three separate weeks where students can choose to do any of the weeks individually or

all three weeks. All the content was unique in each week. The Java and Snap sessions

were both scheduled to run on the same day in week two. In total, there were 35

students sitting the courses on the day with ages varying from 10 to 18 years of age.

 The Snap session was the first session delivered. The students all chose a PC

which had the Snap website preloaded as well as a copy of the material opened. After

a short introduction, the slides were presented and delivered at a slow pace. The

majority of students followed along with no issues, with minimal assistance from the

demonstrators. Some students were on the wrong track with some of the exercises, but

understood the answer once it was shown on the screen. This session ran for 90 minutes.

 After a short 30-minute lunch break, the students returned and immediately

started working with Java. Java was chosen to go second due to the perceived extra

difficulty it would present. Since the material of the two courses mostly matched, they

would only be learning the syntax of Java in the first part of the Java course rather than

both the concepts and the syntax. To further assist with the learning of Java, some parts

of the exercises were live coded after the students made their attempt rather than being

static on the screen. After the completion of the Java course, the survey was

immediately administered while all the material was still fresh in their minds. If there

was more time available, another study would have been ran using Java first as well.

4. Results

This section will look at the analysis of the data gathered at the CS Summer Camp as

well as anecdotal feedback from the students about their opinions of the courses.

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

9

4.1 Survey Analysis

All 35 students who were present on the day of the study provided a response to the

survey. The demographic of the participants varied slightly with 88.6% of the

participants being male and 11.4% being female. In terms of the age groups, 8.6% were

between 10 and 12, 68.6% were between 13 and 15, and 22.9% were 16 or older. To

examine if these demographics show patterns in their perceptions of the different

languages and styles, most feedback will be broken down in relation to age groups.

The most encouraging outcome from the survey was that 88.6% of respondents

said they wanted to learn more programming in the future. The other 11.4% said that

they “maybe” want to learn more in the future. This shows that the perception of

younger learners towards the topic is very positive.

The main question that arose from this study is whether one language was

perceived to be harder than the other or not. The results of this question can be seen in

Figure 4.1(a) and Figure 4.1(b). The mean difficulty rating for Snap was 3.57/10 while

Java had a mean difficulty rating of 6.94/10. Based on a one-tail paired two sample t-

test, this represents a clear statistical inference that Java was harder to learn than Snap

(p = 6.8E-10). We wanted to check how this breaks down across the age groups? Is

there a clear upward trend of the languages getting easier as you get older? From the

results of this study, there seems not to be a clear trend, as can be seen in Figures 4.2(a)

and 4.2(b). Unsurprisingly, for all age groups, Java remained more difficult than Snap

(10-12 year olds: p=0.0471, 13-15 year olds: p=1.03E-06 and 16+ year olds: p=0.0013).

Figure 4.1(a) – Snap Difficulty Figure 4.1(b) – Java Difficulty

6

8

6
5

3
2 2

3

0 0
0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

St
u

d
e

n
ts

Difficulty Rating

How would you rate
the difficulty of Snap?

0 0 0

2

5 5

11

7

3
2

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

st
u

d
e

n
ts

Difficulty Rating

How would you rate
the difficulty of Java?

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

10

This is not conclusive given that the number of students who fell outside the 13-15-

year-old range was very low. Given that the courses were created with the same core

content (with the exception of the one advanced topic in each), no external bias is being

added to the difficulty ratings. This is purely based on the syntax and content of the

languages themselves and how they compare to each other.

To look deeper, the students were asked what they considered to be the hardest

aspect of each course. For Snap, 34.3% said variables were, 28.6% said drawing shapes

and 22.9% said loops. For Java, 68.6% said making the calculator, 17.1% said loops

and 11.4% said selection statements. Putting the shapes and the calculator on this

section of the survey was an oversight as they involved using all the core elements of

the course to make. However, this still gives us a good idea of what students were

finding difficulty with and were mostly in the expected places.

Figure 4.2(a) – Snap Difficulty by Age Figure 4.2(b) – Java Difficulty by Age

Finally, when asked whether they preferred one of the styles of programming (text

based or visual based), 37.1% of students said they preferred text based and 31.4% said

visual based and 31.4% said that they had no preference. However, analysing the age

brackets for this question it was observed that 13-15 year olds had a larger preference

for the visual based language (41.6%) over the text based language (29.2%) with 19.2%

having no preference. Conversely, 16+ year olds overwhelmingly preferred text based

programming (62.5%) with 0% choosing the visual based option and 37.5% having no

preference. This gives some credence to the theory that younger students enjoy visual

programming more and older students’ prefer textual programming.

3.33 3.75
3.125

1

3

5

7

9

Snap mean
difficulty

rating 10 - 12
year olds (3)

Snap mean
difficulty

rating 13 - 15
year olds (24)

Snap mean
difficulty

rating 16+
year olds (8)

Snap Mean Difficulty
Rating / 10

6
7.08 6.875

1

3

5

7

9

Java mean
difficulty

rating 10 - 12
year olds (3)

Java mean
difficulty

rating 13 - 15
year olds (24)

Java mean
difficulty

rating 16+
year olds (8)

Java Mean Difficulty
Rating / 10

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

11

4.2 Anecdotal Feedback

As well as the numerical data presented in Section 4.1, the students could make some

optional comments on the course related to their favourite and least favourite elements

as well as anything else they wished to add. When asked if they enjoyed each course,

60% of students responded that they did (for both courses). Similarly, 34.3% (Snap)

and 25.7% (Java) said that they though the courses were “OK”. The remaining 5.7%

(Snap) and 14.3% (Java) did not enjoy the courses. In terms of a preferred course,

51.4% of the students preferred the Snap course with 48.6% preferring Java.

In terms of students’ favourite and least favourite things in each course, some

students chose not to respond, and others gave spoiled answers. For favourite things,

there were 30 valid answers while for least favourite things there were 24 valid answers.

These were then summarised into categories and the results can be seen in Figure 4.3(a)

and Figure 4.3(b).

Figure 4.3(a) – Students responses to their

favourite things in the courses

Figure 4.3(b) – Students responses to their

least favourite things in the courses

A few other key anecdotal comments from the survey included:

 “Make the programming bit more interesting” – This was a fair comment. It is

difficult to find the balance between learning and fun in an introductory course.

 “Spend more time on Java” – Given the higher difficulty of Java, it is

completely fair that students would need more time to learn the Java material.

 “Overall it was really interesting and enjoyable!”

Variables
7%

Shapes
30%

Snap in
general

17%

Calculator
20%

Java in
general

23%

Coding in
general

3%

Favourite Things

Loops
12%

Calculator
29%

Copying
Code
4%

Java in
general

17%

Snap in
general

21%

Compile
Errors
13%

Variables
4%

Least Favourite
Things

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

12

5. Conclusions and Future Work

The results of this study, even though the number in attendance was reasonably small

and a lot of the feedback was anecdotal, are still important. When and why one might

use a VPL as a teaching tool are questions that are often asked and rarely answered.

This study has shown that a language like Snap has as much potential for learning as

Java, provided the target audience is correct.

Some elements of the study could have been done differently. The time available

for delivery of the course was not ideal with some students feeling like they needed

longer for certain concepts. There were some minor mistakes in the survey such as

asking the students what the most difficult element was and including the element that

encompassed everything. These issues will be ironed out for future studies.

Without a doubt, both languages deserve further investigation. In the coming

months, these curricula will be scaled up into a multi-week course for delivery in

secondary schools. The target audience will be Transition Year students (approximately

15 years old). The longer versions of these courses will spread out the material more,

allowing for time to absorb the content fully. New and more advanced elements will

also be added into the content of course. Assessment will involve both surveys and

quizzes / tests. Finally, the courses will be delivered to multiple groups with some

learning Java first and others learning Snap first. This will provide a clearer picture.

This new course will align perfectly with the introduction of Computer Science as

a Leaving Certificate subject in 2018. The timing could not be better for testing out

what does and does not work at an entry level. It is very important to be aware that the

choice of language is not always the most important choice but how it is delivered to

the students. With that said computer programming is an important skill and knowing

which type of computer language engages students at different ages can help improve

interest in the subject. It is hoped that with the aid of these courses, more students can

be guided towards engaging with Computer Science during their school life and

eventually leading them to college courses and careers in the field.

6. Acknowledgments

This work was completed with the help of funding from the John and Pat Hume

scholarship, Maynooth University.

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

13

References

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real”

programming. ACM Transactions on Computing Education (TOCE), 14(4), 25.

BJC (2017). Beauty and Joy of Computing an AP CS Principles course. Retrieved

August 12, 2017, from bjc.edu.org

Curriculum Online (2017, June). Short Course Coding Specification for Junior Cycle.

Retrieved August 12, 2017, from https://curriculumonline.ie/getmedia/cc254b82-

1114-496e-bc4a-11f5b14a557f/NCCA-JC-Short-Course-Coding.pdf

Davies, S., Polack-Wahl, J. A., & Anewalt, K. (2011, March). A snapshot of current

practices in teaching the introductory programming sequence. In Proceedings of the

42nd ACM technical symposium on Computer science education (pp. 625-630). ACM.

Noone, M., & Mooney, A. (2017, October). Visual and Textual Programming

Languages: A Systematic Review of the Literature. ArXiv e-prints Journal. Retrieved

October 5, 2017, from https://arxiv.org/abs/1710.01547

O’Brien, C. (2017, February). Computer science to be fast-tracked onto Leaving Cert.

Retrieved August 12, 2017, from

https://www.irishtimes.com/news/education/computer-science-to-be-fast-tracked-

onto-leaving-cert-1.2964672

O'Brien, C. (2016, January). Concern over drop-out rates in computer science courses.

Retrieved August 12, 2017, from

https://www.irishtimes.com/news/education/concern-over-drop-out-rates-in-

computer-science-courses-1.2491751

Quille, K, Bergin, S., & Mooney, A. (2015). PreSS#, A Web-Based Educational

System to Predict Programming Performance. International Journal of Computer

Science and Software Engineering (IJCSSE), 4 (7). pp. 178-189. ISSN 2409-4285.

TIOBE (2017, August). TIOBE Index for August 2017. Retrieved August 13, 2017,

from http://www.tiobe.com/tiobe-index/

Weintrop, D., & Wilensky, U. (2015, June). To block or not to block, that is the

question: students' perceptions of blocks-based programming. In Proceedings of the

14th International Conference on Interaction Design and Children (pp. 199-208).

ACM.

International Conference on Engaging Pedagogy (ICEP), Griffith College, Dublin, Ireland, December 15, 2017

14

Appendix A - Survey

1. What age are you?

 9 or younger

 10 – 12

 13 – 15

 16 or Older

2. What gender are you? (Male, Female)

3. How would you rate the difficulty of Snap? (1-10)

4. How would you rate the difficulty of Java? (1-10)

5. What was the hardest aspect of Snap to learn?

 Variables

 Selection (if / else)

 Loops

 Drawing Shapes

6. What was the hardest aspect of Java to learn?

 Variables

 Selection (if / else)

 Loops

 Making a Calculator

7. Did you enjoy the Snap course? (Yes / No / It was OK)

8. Did you enjoy the Java course? (Yes / No / It was OK)

9. Which course did you prefer? (Snap / Java)

10. What was your favourite thing from either course?

11. What was your least favourite thing from either course?

12. Which style of programming do you prefer?

 Text (Java)

 Blocks (Snap)

 Both are equally good!

13. Would you like to learn more programming in the future? (Yes / No / Maybe)

14. Any other comments?

