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Abstract

Diutina catenulata (Candida catenulata) is an ascomycetous yeast that has been isolated

from humans, animals and environmental sources. The species is a contaminant of dairy

products, and has been linked to superficial and invasive infections in both humans and ani-

mals. Previous phylogenetic analyses have assigned the species to the Saccharomyce-

tales, but failed to identify its specific clade. Here, we report the genome sequence of an

environmental isolate of D. catenulata. Examination of the tRNA repertoire and coding

potential of this species shows that it translates the CUG codon as serine and not leucine. In

addition, two phylogenetic analyses using 204 ubiquitous gene family alignments and 3,826

single-copy genes both confirm the placement of the species in the Debaryomycetaceae/

Metschnikowiaceae, or CTG-Ser clade. The sequenced isolate contains an MTLα idio-

morph. However, unlike most MTL loci in related species, poly (A) polymerase (PAP) is not

adjacent to MTLα1.

Introduction

Candida catenulata is an ascomycetous yeast, commonly associated with dairy products such

as milk [1] and cheese [2,3], including in Ireland [4]. The species has also been isolated from

the microbiota of the oral cavity of female canines [5], and from the gastrointestinal tract and

the feces of poultry [6], wild birds [6,7,8] and piglets [9]. Its environmental niche is not

known, although it has been identified in rural dust [10] and in the estuary of the river Tagus

[11]. C. catenulata is not usually associated with disease in humans. However, rare cases have

been described, including in a cancer patient [12] and in vulvovaginal infections [13]. There

are suggestions that C. catenulata could be used in bioremediation because of its ability to

degrade hydrocarbons [14].
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The phylogenetic relationship of C. catenulata to other yeast species is unclear. Lachance

et al [15] showed that the species forms a clade with Candida rugosa and Candida scorzettiae,
but the authors were unable to determine the exact position on the fungal tree of life. Addi-

tional species were added to the clade following the identification of Candida ranongenesis
from estuarine water, and Candida mesorugosa, Candida neorugosa and Candida pseudorugosa
from clinical samples [16,17]. Khunnamwong et al. [18] carried out a detailed phylogenetic

analysis of the clade following the identification of three other related endophytic yeasts from

rice tissue. Using ribosomal DNA sequencing, they confirmed that all these species are mem-

bers of the Saccharomycetales, but again, were unable to completely determine the phyloge-

netic position. Because of new rules on naming yeast species which state that the name

Candida should only be used for asexual species closely related to Candida tropicalis [19],

Khunnamwong et al. [18] suggested that the entire clade be renamed as genus Diutina, and we

follow this proposal here.

As part of an undergraduate research project using an approach similar to that described

by Sylvester et al. [20], we isolated Diutina catenulata from soil. We generated a draft

genome sequence of one isolate and used it to build robust phylogenetic trees. These show

that D. catenulata belongs to the Debaryomycetaceae/Metschnikowiaceae family, and lies

outside the Lodderomyces clade. Analysis of tRNA sequences supports the hypothesis that

D. catenulata translates CUG as serine, similar to other species in the Debaryomycetaceae/

Metschnikowiaceae.

Materials and methods

Strain isolation

D. catenulata isolate WY3-10-4 was identified from approximately 5 g of soil collected in 15

ml sterile plastic tubes from a canal bank edge near Castleknock, Dublin (GPS co-ordinates

53.381793, -6.370725) in 2016, and isolate UCD133 from soil on a forest path in the Phoenix

Park, Dublin (GPS co-ordinates 53.354500,-6.371346) in 2017. No endangered or protected

species or locations were involved. Microorganisms were extracted from one spatula of soil

was inoculated at 30˚C in 9 ml YPD (1% yeast extract, 2% peptone, 2% dextrose) containing

0.03 mg/ml chloramphenicol and 0.1 mg/ml ampicillin in 15 ml plastic screw top tubes for 48

h. 10 μl was subcultured to fresh media for 24 h, and then dilutions were plated on YPD agar.

The internal transcribed spacer (ITS) region of the rDNA locus was amplified directly from

the yeast colonies by PCR using MyTaq Red (Bioline) and primers ITS1 and ITS4 [21]. The

PCR products were purified using the NucleoSpin Gel and PCR Cleanup Kit (Machery-

Nagel), and sequenced using the same primers by Eurofins Genomics.

Genome sequencing and assembly

Genomic DNA was extracted from D. catenulata WY3-10-4 using phenol-chloroform and

sequenced on two lanes of an Illumina HiSeq2500, producing 2x250bp paired-end reads.

Library preparation and sequencing were carried out at the Earlham Institute, Norwich, UK,

using the LITE method (Low Input Transposase-Enabled), a custom Nextera-based system.

Illumina sequencing produced 4,958,140 raw paired-end reads. Low quality bases and

adapters were removed using Skewer (v0.2.2) [22] with parameters -m pe (paired end mode)

-l 35 (minimum read length allowed after trimming) -q 30 (trim 3’ end of read until quality

of 30 or greater is reached) -Q 30 (the lowest mean quality value allowed after trimming) -r

0.001 (maximum allowed error rate) -t 2 (number of concurrent threads). A second round of

adapter removal was carried out using TrimGalore (v0.4.3) (https://www.bioinformatics.

babraham.ac.uk/projects/trim_galore/) with parameters—paired—length 35 (minimum
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read length allowed after trimming)—nextera (trim first 12bp of the Nextera adapter)—strin-

gency 3 (length of overlap with adapter sequence required to begin trimming). 3,966,474

high-quality reads were subsequently available for assembly. Trimmed reads were assembled

using SPAdes (v3.9.1) [23] with parameters—careful (reduce number of mismatches and

short indels in contigs) -t 10 (number of threads) -m 100 (RAM limit in gigabytes). A prelim-

inary analysis suggested that there was a low level of contamination of reads from other spe-

cies. Contaminating contigs were removed by filtering those less than 1 kb in size, or with k-

mer coverage of less than 25% of the average for the assembly. The final assembly consists of

613 contigs, with a total length of 13,099,930 bases and an N50 of 41,233 bp. This includes

two rDNA contigs (Dcat_rDNA_01 and Dcat_rDNA_02). A mitochondrial DNA contig

(22,336 bp) was also assembled. All data have been deposited in GenBank under Bioproject

PRJNA421257. Average assembly coverage was calculated by aligning the trimmed reads

used for the assembly against the final assembly with bwa mem (v0.7.15) [24] and the

Genome Analysis Toolkit DepthOfCoverage tool (v3.7) was used to calculate the mean cov-

erage across the whole assembly.

Variant analysis was performed to ascertain the ploidy of the isolate. Trimmed reads were

aligned against the final assembly sequence with bwa mem (v0.7.15). Duplicate reads were

marked with PicardTools MarkDuplicates (v2.8.3) (http://broadinstitute.github.io/picard) and

variants called with the Genome Analysis Toolkit HaplotypeCaller (v3.7) [25].

Phylogenetic analysis

Predicted protein sets for 40 Saccharomycotina species and the outgroup species Neurospora
crassa were obtained from public databases, and a predicted protein set for Diutina catenulata
was generated using AUGUSTUS with aMeyerozyma guilliermondii training set, generating

7128 predicted genes [26]. Gene family finding was carried out on the 250,403-protein dataset

using the random BLASTp approach with an e-value cutoff of 10−20 [27,28]. A total of 3,835

single-copy gene families were identified using this approach; of these, 206 families had one

ortholog from each species in the dataset. All gene families were aligned using MUSCLE [29],

and conserved regions of each alignment were sampled using Gblocks with the default param-

eters [30]. Nine gene families did not retain character data after sampling and were removed

from further analysis. Best-fit evolutionary models were determined for the remaining 3,826

gene families using ProtTest [31]. Maximum-likelihood gene phylogenies were generated for

each gene family using PhyML, with 100 bootstrap replicates and each family’s corresponding

best-fit model [32].

Heuristic Bayesian supertree reconstruction of 42 species based on 3,826 single-copy gene

phylogenies was performed using the ST-RF model as implemented in p4 [33]. Two separate

Monte Carlo Markov Chain (MCMC) analyses with 4 chains each were ran for 30,000 genera-

tions with β = 1, sampling every 20 generations. Both analyses converged after 30,000 genera-

tions and a consensus Bayesian supertree phylogeny based on posterior probability of splits

was generated from 150 trees sampled after convergence [28,33]. This consensus phylogeny

was visualized using iTOL [34] (S1 Fig).

204 ubiquitous gene family alignments retained character data after sampling in Gblocks.

From these 204 alignments, a 93,825-character superalignment for 42 species was constructed

using FASConCAT [35]. 32,988 phylogenetically-uninformative sites were removed from the

superalignment using PAUP�, for a final superalignment length of 60,837 characters [36].

MCMC Bayesian supermatrix reconstruction was performed on the superalignment using

PhyloBayes MPI with the default CAT+GTR evolutionary model [37], running two simulta-

neous chains for 100,000 iterations and sampling every 100 iterations [38]. After the chains
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converged, a consensus Bayesian supermatrix phylogeny was generated using a burn-in of

1000 trees and the phylogeny was visualized using iTOL (Fig 1).

Alignments and phylogenetic analysis of PAP proteins were implemented in SeaView [39].

CUG codon analysis

Non-overlapping open reading frames of at least 60 amino acids were predicted using a Python

script. The nucleotide sequence of each ORF was translated using the standard genetic code

and aligned against a database of proteins from 36 species in YGOB [40,41] using BLASTP

with a threshold e-value of 1e-10. Each possible translation of each codon was then assigned a

score as follows: for every codon in a predicted ORF, if it aligned with at least 5 proteins in the

database, and more than 80% of these had the same amino acid at this site, we assigned a score

of 1/n, where n is the total number of proteins aligned. The scores for each codon were then

added across all ORFs in the genome. For each codon, the correct translation was identified as

the highest scoring translation across all ORFs. The full analysis is shown in S1 File.

Sequencing of MTL locus

The region surroundingMTLα1 was amplified (primers GAAAATGCTATGAGGTCGGG and

GACCTGAATTTGCCGTGCTT) from genomic DNA extracted using phenol-chloroform from

two D. catenulata isolates (WY3-10-4 and UCD133). The PCR products were purified using

the Macherey-Nagel NucleoSpin Gel and PCR Clean-up Kit and sequenced using the Eurofins

Genomics Mix2Seq platform.

Results and discussion

Diutina catenulata was isolated from soil in Dublin, Ireland, by culturing in glucose media and

reduced oxygen as described by Sylvester et al [20]. Isolates were identified by sequencing the

ITS region, which, for WY3-10-4, differed by only one base from the D. catenulata type

sequence over 385 bases [42]. Phylogenetic analysis by Khunnamwong et al [18] suggested that

D. catenulata lies in an unaffiliated clade within the Saccharomycetales, and is possibly related

to the Debaryomycetaceae/Metschnikowiaceae. However, their phylogenetic reconstruction

failed to support a single origin of the Debaryomycetaceae/Metschnikowiaceae, and the

authors were reluctant to place the species within this family.

Genera such as Debaryomyces and Lodderomyces are assigned to the family Debaryomyceta-

ceae, whereas the family Metschnikowiaceae is named from theMetschnikowia genus, which

includesMetschnikowia bicuspidata, a pathogen of brine shrimp, as well as a group of large-

spored species [43,44,45]. Recent analysis based on whole genome sequences has shown that

the Metschnikowiaceae and the Debaryomycetaceae (and possibly also the Cephaloascaceae)

form a single, monophyletic clade [46,47,48] (Fig 1). The species in the clade translate CUG as

serine, rather than leucine, and are often referred to as the CTG or CUG clade [27,49,50]. It

has recently been shown that the yeast Pachysolen tannophilus (a member of the Pichiacea, a

sister clade to the Debaryomycetaceae/Metschnikowiaceae) also has a non-standard transla-

tion of CUG, but in this species CUG encodes alanine rather than serine or leucine [50,51]. It

is therefore more accurate to refer to the Debaryomycetaceae/Metschnikowiaceae as the

CTG-Ser clade.

To help solve the phylogenetic position of D. catenulata, we used Illumina technology to

generate a draft genome of the WY3-10-4 isolate. A draft genome was assembled with approxi-

mately 61.2X coverage. Variant calling against the final assembly identified 928 single nucleo-

tide polymorphisms (SNPs). This lack of variation strongly suggests that the isolate is a

Diutina catenulata, a member of the CTG-Ser clade
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Fig 1. Diutina catenulata is a member of the Debaryomycetaceae/Metschnikowiaceae clade. The phylogenetic tree was inferred from a superalignment

of 204 ubiquitous gene families from 42 species. A consensus Bayesian supermatrix phylogeny was generated using PhyloBayes [38]. Clades within the

Saccharomycotina (Debaryomycetaceae/Metschnikowiaceae, Pichiaceae, Phaffomycetaceae, Saccharomycodaceae and Saccharomycetaceae) are

highlighted in color. Species within the Lodderomyces clade in the Debaryomycetaceae/Metschnikowiaceae are surrounded with a gray box. The exact

definition of the Lodderomyces clade is not clear, and it may include Spathaspora species [48]. The branch supports show Bayesian Posterior Probabilities.

https://doi.org/10.1371/journal.pone.0198957.g001
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haploid. We annotated the genome using Augustus [26], and identified gene families shared

with 40 Saccharomycotina species and the outgroup species Neurospora crassa.

A superaligment of 204 ubiquitous gene families was used to construct a consensus Bayes-

ian supermatrix phylogeny (Fig 1). The phylogenetic reconstruction matches previous trees

constructed from whole genome data [46,47]. Many of the major groups are recapitulated,

including the Saccharomycetaceae, Saccharomycodaceae, Phaffomycetaceae, Pichiaceae and

the Metschnikowiaceae (Fig 1). D. catenulata is placed within the Debaryomycetaceae/Metsch-

nikowiaceae with a Bayesian Posterior Probability (BPP) of 1 (Fig 1).

D. catenulata is found as an outgroup to the Lodderomyces clade, and to Scheffersomyces,
Spathaspora and Suhomyces. The phylogenetic placement has strong outgroup support (BPP

1). This conclusion is further supported by a supertree generated from 3,826 single-copy gene

phylogenies, which places D. catenula in the same phylogenetic position (S1 Fig). However,

D. catenulata lies on a long branch in Fig 1, supporting the suggestion by Khunnamwong et al

[18] that the entire Diutina clade is quite divergent from other characterised species in the

Debaryomycetaceae/Metschnikowiaceae.

Analysis of coding potential of D. catenulata
If D. catenulata is a member of the CTG-Ser clade, we expect that it translates CUG as serine.

To test this hypothesis, we used a bioinformatics method similar to Riley et al [50]. Each D.

catenulata gene was used as a query for a BLAST search against the YGOB database of proteins

from 36 yeast species that use the universal genetic code [41]. For each codon site in a D. cate-
nulata gene, we tabulated the amino acid(s) in other species to which the site was aligned in

the BLAST output. The results for each of the 61 sense codons were then summed across all

genes. For all codons except CUG, the most common amino acid in alignments was its univer-

sal translation, for example AUG codons aligned most commonly with methionine residues.

However, for CUG, approximately 4900 CUG sites in D. catenulata genes aligned with serine

in other species, and only 212 with leucine (Fig 2A). This result indicates that CUG is likely

translated as serine in D. catenulata.

Species in the CTG clade translate the codon CUG using a novel tRNA, tRNASer(CAG),

which evolved from an existing tRNASer [50,51,52]. We therefore examined the tRNA reper-

toire of the D. catenulata genome using tRNAscan-SE [53]. The genome is predicted to

encode 285 tRNAs, including 22 tRNALeu and 20 tRNASer molecules. Four identical tRNAs

with the anticodon CAG are predicted to translate CUG as serine, and not leucine (Fig 2B).

These tRNAs have a G at position 82, the discriminator base, which is characteristic of

tRNASer(CAG) in the Debaryomycetaceae/Metschnikowiaceae; tRNALeu(CAG) molecules

have an A at this position [50]. The tRNAs also have a G at base 33, immediately 5’ to the anti-

codon, which reduces leucylation (Fig 2B) [54].

MAT locus of D. catenulata
Many species within the Lodderomyces clade are asexual, or at best undergo a parasexual cycle

[55,56]. Mating and meiosis have however been described in several species outside the Lod-

deromyces clade, including Debaryomyces hansenii [57] andMetschnikowia species [43]. In

both parasexual and fully sexual species, cell type is determined by alleles at the Mating-Type

Like (MTL) loci, or idiomorphs. Transcriptional regulation by α1 and α2 (at theMTLα locus)

or a1 and a2 (at theMTLa locus) controls cell identity. However, theMTL loci also contain

idiomorph-specific versions of PAP [poly(A) polymerase], PIK (phosphoinositol kinase),

and OBP (oxysterol binding protein), which have no known role in mating [58]. Analysis

of the likelyMTL idiomorph of D. catenulata shows that it is very similar toMTLα of

Diutina catenulata, a member of the CTG-Ser clade
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M. guilliermondii (Fig 3A). OBP, PIK and α1 genes are present, in the same order and in the

same syntenic position as inM. guilliermondii. There is no obvious α2 sequence, but this has

gene also been lost fromM. guilliermondii and from several related species [55,56,59,60].

orf19.3202, a gene whose function is unknown, but which does not appear to be essential

for viability in C. albicans [61], is also not present atMTL or elsewhere in the D. catenulata
assembly. Surprisingly, there is also no PAPα sequence at the D. catenulata MTL. To eliminate

the possibility of a misassembly atMTL, the region between PIKα and RCY1was amplified

from the two isolates of D. catenulata. Sanger sequencing confirmed the loss of orf19.3202 and

PAP in both isolates (S2 File). BLAST analysis identified a PAP gene on a different contig in

the WY3-10-4 genome. However, phylogenetic reconstruction shows that this is a PAPa,

rather than a PAPα, allele (Fig 3B). The simplest interpretation is that D. catenulata has a het-

erothallic structure atMTL, and that mating may occur betweenMTLa isolates (currently

uncharacterised) andMTLα isolates (like the sequenced strain). PAPa may have become sepa-

rated fromMTLa by a species-specific rearrangement.

Conclusion

We used genomic analysis of tRNA complement, coding potential and phylogenetic analyses

to address an outstanding question regarding the evolutionary relationship of D. catenulata to

other yeast species in the Saccharomycotina. Our results categorically place D. catenulata in

Fig 2. D. catenulata translates CUG codons as serine. A. Bar plot showing frequencies of amino acid matches to CUG

codons in theD. catenulata genome. The values on the Y-axis represent the number of CUG codon sites that align with

the amino acid residues shown on the X-axis in the YGOB protein database [41]. Analysis of all codons is shown in S1

File. B. Comparison of tRNASer(CAG) from D. catenulata with the same tRNA encoded by other species in the

Debaryomycetaceae/Metschnikowiaceae. The discriminator base at the 3’ end (highlighted in red) is G in tRNASer(CAG),

and A in most tRNALeu(CAG) molecules. The G base just 5’ to the anticodon (highlighted in blue) also reduces

leucylation [54].

https://doi.org/10.1371/journal.pone.0198957.g002
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Fig 3. The Mating Type-like Locus in D. catenulata. A. Gene order aroundMTLα inM. guilliermondii andD.

catenulata. Orthologous genes are connected with gray lines. Mating-type genes are filled in pink, and other genes

associated with theMTL are edged in pink. The assembly of the D. catenulata contig stops at OBP. B. Phylogenetic

relationship of PAPα and PAPa from the indicated species from the Debaryomycetaceae/Metschnikowiaceae clade. The

PAP protein from D. catenulata (which is not found at theMTL locus) is more closely related to PAPa than to PAPα
alleles. Alignments and phylogenetic trees were constructed using PhyML in SeaView [39].

https://doi.org/10.1371/journal.pone.0198957.g003
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the Debaryomycetaceae/Metschnikowiaceae, or CTG-Ser clade, as an outgroup of the Lodder-

omyces clade.

Supporting information

S1 Fig. Supertree reconstruction of D. catenulata phylogeny. Heuristic Bayesian supertree

reconstruction of 42 species based on 3,826 single-copy gene phylogenies was performed as

described in Methods. The consensus phylogeny was visualized using iTOL. Clade colors are

as described in Fig 1.

(PDF)

S1 File. BLAST-based predictions of codon usage in D. catenulata isolate WY3-10-4.

(XLS)

S2 File. Sequence between PIK1 and RCY1.

(DOCX)
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