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ORIGINAL RESEARCH ARTICLE

Proteomic analysis of Bayvarol® resistance mechanisms in the honey bee parasite
Varroa destructor

Carla Surlisa , James C. Carolana, Mary F. Coffeyb and Kevin Kavanagha*

aDepartment of Biology, Maynooth University, Co. Kildare, Ireland; bDepartment of Life Sciences, University of Limerick, Limerick, Ireland

(Received 20 October 2015; accepted 20 May 2016)

The haemophagous mite, Varroa destuctor is one of the most dangerous threats to the Western honey bee, Apis
mellifera. Varroa mites parasitize the larval and adult stages of the honey bee and can have devastating effects on the
health of the individual bee and colony. In recent years, varroa have shown resistance to the pyrethroid group of
insecticides, including Bayvarol® which has flumethrin as the active ingredient. In the work presented here, changes in
the expressed proteomes of mites, either sensitive or resistant to Bayvarol® were observed using 2D-SDS-PAGE and
shotgun label-free proteomics. A number of detoxification proteins (e.g., glutathione-s-transferase, flavin-containing
monooxygenase) were present at higher levels in the resistant mites, as were some proton pumping proteins
(e.g., Na+/K+ ATPase alpha and beta subunit, E1–E2 ATPase protein). A decrease in the abundance of 12 cuticle pro-
teins in the resistant mites was observed indicating that alteration to cuticle structure could be a potential resistance
mechanism. A number of structural proteins such as myosin and alpha tubulin were expressed at higher levels in the
resistant mites, which could indicate a change to the intracellular structure of the cuticle barrier or a change in the cell
shape/surface, rather than the addition of extra cuticle proteins. The results presented here indicate higher levels of
protein associated with cellular detoxification in Bayvarol®-resistant varroa mites.

Análisis proteómico de los mecanismos de resistencia a Bayvarol® en el parásito de la abeja de la miel
Varroa destructor

El ácaro hemófago, Varroa destuctor es una de las amenazas más peligrosas para la abeja occidental de la miel, Apis
mellifera. Los ácaros varroa parasitan los estadios larvarios y adultos de la abeja de la miel y pueden tener efectos
devastadores sobre la salud de la abeja y la colonia individual. En los últimos años, Varroa han mostrado resistencia al
grupo de insecticidas piretroides, incluyendo Bayvarol® que tiene la flumetrina como ingrediente activo. En el trabajo
que aquı́ se presenta, se observaron cambios en los proteomas expresados por los ácaros, ya sea sensibles o resisten-
tes a Bayvarol® utilizando 2D-SDS-PAGE y proteómica con marcaje libre shotgun. Ciertas proteı́nas de desintoxicación
(por ejemplo, transferasa-s-glutatión, monooxigenasa incluyendo flavina) estaban presentes en niveles más altos en los
ácaros resistentes, ası́ como algunas proteı́nas de bombeo de protones (por ejemplo, las subunidades alfa y beta de la
ATPasa Na + / K +, y la proteı́na ATPasa E1-E2). Se observó una disminución en la abundancia de 12 proteı́nas de la
cutı́cula de los ácaros resistentes lo que indica que la alteración de la estructura de la cutı́cula podrı́a ser un mecanismo
de resistencia potencial. Ciertas proteı́nas estructurales, tales como la miosina y la alfa tubulina se expresaron en
niveles más altos en los ácaros resistentes, lo que podrı́an indicar un cambio en la estructura intracelular de la barrera
de la cutı́cula o un cambio en la forma o la superficie de la célula, en lugar de la adición de proteı́nas extra de la
cutı́cula. Los resultados presentados aquı́ indican niveles más altos de proteı́nas asociadas con la desintoxicación celular
en los ácaros varroa resistentes a Bayvarol®.

Keywords: Apis mellifera; Bayvarol®; proteomics; pyrethroid; resistance; Varroa destructor

Introduction

The parasitic mite varroa Varroa destructor (Anderson &

Trueman, 2000) is one of the most serious threats to the

Western honey bee, Apis mellifera, a pollinator of great

economic importance. Varroa are not a natural parasite

of A. mellifera but shifted host from Apis cerana in the

early years of the twentieth century (Gómez-Moracho

et al., 2015). Due to this recent host shift, the host–

parasite relationship is imbalanced, with the result that

V. destructor has negatively impacted on A. mellifera popu-

lations. Varroa are obligate parasites, feeding on the

haemolymph of both larvae and adults leading to a

weakening of the health and vitality of the individual bee

and colony due to the transmission of viruses (Ball, 1985;

Di Prisco et al., 2011; Navajas et al., 2008; Shen, Yang,

Cox-Foster, & Cui, 2005; Yang & Cox-Foster, 2005). The

elevated levels of viruses in bees have been correlated

with high populations of varroa in colonies and are

thought to be a major contributing factor to honey bee

colony losses (Francis, Nielsen, & Kryger, 2013).

The most widely used chemical acaricides against

V. destructor were the pyrethroids tau-fluvalinate and

flumethrin, licensed under the trade names Apistan® (Vita

UK) and Bayvarol® (Bayer), respectively (Rosenkranz,

*Corresponding author. Email: kevin.kavanagh@nuim.ie
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Aumeier, & Ziegelmann, 2010). First introduced in the

1980s, they were very effective in controlling varroa infes-

tation with relatively few deleterious effects on the bee

colony (Thompson, Brown, Ball, & Bew, 2002). The pyre-

throid mode of action is via binding to sodium ion chan-

nels, the exact location of which is thought to be along

the hydrophilic T929 on the IIS5 helix of the para sodium

channels (O’Reilly et al., 2014). This binding prevents

closure of the channel resulting in an influx of ions, affect-

ing both the central and peripheral nervous system in

arthropods by producing a surge in repetitive discharges,

leading to eventual paralysis (Davies, Field, Usherwood, &

Williamson, 2007; Yang & Cox-Foster, 2005). Only a

small proportion of the overall number of sodium chan-

nels need to be modified by the chemical for the genera-

tion of these repetitive discharges (Davies et al., 2007).

Resistance to pyrethroids has become a major prob-

lem for the control of many pests in recent years due

to its specific target site and mode of action. Numerous

insecticide resistant mechanisms have been identified in

organisms that exhibit pyrethroid resistance including

target site alteration, to prevent binding of the chemical

initially (e.g., alteration to the shape of sodium channel),

increased tolerance to the effects of the chemical at a

cellular level (such as the ability to contend with

increased oxidative stress), increased detoxification due

to cytochrome P450s and structural alterations that

inhibit the path of the chemical through changes in cuti-

cle or the epithelial lining of the digestive tract. These

physical restrictive barriers are the least well under-

stood, but are thought to often act synergistically with

the other two mechanisms (Kasai et al., 2014).

Resistance to pyrethroids has also emerged in

V. destructor. The haplodiploid nature of V. destructor’s

reproduction promotes the spread of resistance through

its sibling mating habits, as resistance mechanisms from

female mites are passed to the haplodiploid male first-

born, the father of all subsequent offspring (Sammataro,

Untalan, Guerrero, & Finley, 2005). Resistance in

V. destructor to pyrethroids is mainly due to a point

mutation in the sodium channel (González-Cabrera,

Davies, Field, Kennedy, & Williamson, 2013), the target

site for the chemical, but also due to detoxifying ele-

ments in the cell which can help to clear the chemical

and deal with the influx of ions into the cell following

sodium channel inhibition (Maggi, Ruffinengo, Damiani,

Sardella, & Eguaras, 2009; Mozes-Koch et al., 2000; Tan

et al., 2007). These detoxification enzymes (e.g., micro-

somal p450 monooxygenases, glutathione-s-transerases

and various esterases) may play an important role in the

development of resistance in various other species such

as Drosophila spp., Heliothis virescens, Heliocoverpa

armigera, Anopholes spp. and Aedes aegypti (David et al.,

2014; Scott, 1999). Pesticides can also lead to oxidative

stress in the organism, and up-regulation of certain

detoxification or stress-related proteins could provide a

potential mechanism for protection (Abdollahi, Ranjbar,

Shadnia, Nikfar, & Rezaie, 2004).

A proteomic analysis of Bayvarol® resistant and

susceptible V. destructor is presented here in an attempt

to elucidate the determinants and mechanisms of

resistance at a protein level. Recent advances in mass

spectrometry-based proteomics and the increasing avail-

ability of genomic and transcriptomic resources are now

making it possible to investigate global systems level

changes in an organism’s proteome (Ozsolak & Milos,

2011). Quantitative expression proteomics permits the

comparison of the proteomes of phenotypically different

or experimentally treated organisms to identify either

proteins, molecular processes, or biological pathways

that may regulate or even contribute directly to the

phenotype or characteristic itself. The most commonly

used methods for expression proteomics are two-

dimensional gel electrophoresis (2DE) and quantitative

mass spectrometry, both of which were adopted for this

study. 2DE involves separating proteins in two dimen-

sions, the first based on differing protein isoelectric

points and the second by protein mass. The resulting

protein spots are then measured densitometrically and

compared for differential abundance and numerous 2DE

studies exist that have been conducted to investigate

pyrethroid resistance in arthropods (Abdollahi et al.,

2004; Brandt, Kerscher, Dröse, Zwicker, & Zickermann,

2003; Fragoso, Guedes, & Rezende, 2003; Hemingway,

Hawkes, McCarroll, & Ranson, 2004; Kasai et al., 2014).

Quantitative mass spectrometry can involve the labeling

of proteins with a signal chemical, which can be mea-

sured and used as a basis to determine quantities

(Bantscheff, Lemeer, Savitski, & Kuster, 2012). More

recently “label-free” methods have been developed to

measure the relative abundances of thousands of pro-

teins across multiple sample groups in single mass spec-

trometry runs. Label-free quantitative (LFQ) proteomics

was used here to obtain a deeper insight into the pro-

teomic profile of Bayvarol® resistant mites in an

attempt to better understand the mechanisms underly-

ing pyrethroid resistance in this devastating pest of the

honey bee.

Materials and methods

V. destructor sampling

V. destructor samples were obtained from mesh floor

collections or from sticky floor inserts from various

regions in Ireland by natural mite fall from colonies with

known levels of resistance to Bayvarol® in the autumn

following treatment. The samples were determined as

being either sensitive or resistant to Bayvarol® using the

Beltsville Method and the mite fall was collected for

subsequent analysis.

Beltsville method for measuring chemical resistance

in Varroa

The USDA Beltsville Method originally used for measur-

ing susceptibility of bees to Apistan® was employed

2 C. Surlis et al.
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here. A. mellifera adults were sampled from various

locations and placed in a plastic beaker with a mesh lid.

A Bayvarol® strip was then added to the beaker, and

the container upturned. Bayvarol sensitive mites were

collected as they fell and frozen at −70 ˚C. After 12 h,

any mites that had not fallen were washed off and fro-

zen at −70 ˚C. The percentage efficacy of Bayvarol®

against V. destructor was determined. An overall efficacy

of less than 50% indicated a resistant population of V.

destructor. The mite fall from these colonies was col-

lected and used for subsequent analysis and comparative

proteomics against known sensitive samples.

Protein extraction for gel electrophoresis

Mites were crushed using liquid nitrogen to a fine

powder in a pestle and mortar and resuspended in

500 μl of ice cold lysis buffer (PIPES (20 mM), NaCl

(5 mM), Triton × 100 (.2% v/v)). Each protein extraction

was left to lyse completely for one hour at 4 ˚C under

constant agitation before centrifugation at 8000 g for

5 min to remove cellular debris. Supernatant was

removed, and protein was quantified using the Bradford

method and 400 μg of protein was acetone precipitated

prior to focusing on 13 cm Immobiline DryStrip pH 4–7

for 2D SDS PAGE analysis.

Image analysis

Gels were stained using colloidal coomassie staining and

three independent and reproducible 2-DE gel images

were scanned using an Epson ImageScanner III. Gel

images were subjected to analysis by Progenesis

Samespot® software (version 4, nonlinear Dynamics;

UK) for image quality control, spot alignment, filtration,

normalization, and quantitation of spot volume. Obvious

matching spots were firstly aligned manually, followed

by matching in automatic alignment mode. The expres-

sion level of each protein spot was calculated in terms

of its volume. Only spots with p < .05 were considered

as statistically significant differences.

LC/MS identification of peptides

In-gel digestion was performed on two-dimensional gel

spots of interest from a reference gel with proteins

migrated to the same point between gels. The gel pieces

were trypsin digested as described by Shevchenko et al.

(2006). Tryptic peptide mixtures were spin-filtered

(Agilent Technologies, .22 μm cellulose acetate), sepa-

rated on extended liquid chromatography gradients on a

nanoflow Agilent 1200 LC system and subjected to tan-

dem mass spectrometry using an Agilent 6340 Ion Trap

LC-MS System (Agilent Technologies, Santa Clara, CA).

Database searches for identification of proteins were

carried out using Spectrum Mill MS Proteomics Work-

bench (Revision B.04.00.127). Validation criteria were

set to (i) maximum of two missed cleavages by trypsin,

(ii) fixed modification: carbamidomethylation of cys-

teines, (iii) variable modifications: oxidation of methion-

ine, and (iv) mass tolerance of precursor ions ±2.5 Da

and product ions ±.7 Da were employed. Protein identi-

ties were confirmed by conducting a BLASTp search of

the protein sequence against the Uniprot (www.uniprot.

org) and NCBI (www.ncbi.nlm.nih.gov) databases.

Label-free proteomic analysis

Ten adult female V. destructor were chosen for each

replicate for label-free proteomics, and were homoge-

nized using a motorized pellet pestle in a sterile micro-

fuge tube in 7 M urea, and 2 M thiourea buffer

supplemented with protease inhibitor cocktail (Roche

Complete mini inhibitors). After centrifugation at 9000 g

for 5 min the supernatant was transferred to a fresh

microfuge tube for Bradford analysis. Protein (300 μg)
was removed and acetone precipitated overnight at

−20 ˚C. Samples were centrifuged at 10,000 g for

10 min and the pellet was resuspended in 300 μl of 8 M

urea. Samples were re-quantified using the Qubit® quan-

tification kit, following the manufacturer’s instructions

(Life Technologies). Protein (75 μg) was reduced with

2 mM dithiotreitol (Sigma–Aldrich), and alkylated

with 2.7 mM iodoacetamide (Sigma-Aldrich) and digested

with sequence grade trypsin (Promega; Ireland) at a

trypsin: protein ratio of 1:40, overnight at 37 ˚C. Tryptic

peptides were purified for mass spectrometry using C18

spin columns (Medical Supply Company; Ireland) and

1 μg of peptide mix was eluted onto a QExactive

(ThermoFisher Scientific; USA) high-resolution accurate

mass spectrometer connected to a Dionex Ultimate

3000 (RSLCnano) chromatography system. Peptides

were separated by an increasing acetonitrile gradient

from 2 to 40% on a Biobasic C18 PicofritTM column

(100 mm length, 75 mm ID), using a 120 min reverse

phase gradient at a flow rate of 250 nl/min. All data

were acquired with the mass spectrometer operating in

automatic data-dependent switching mode. A full MS

scan at 140,000 resolution and a range of 300–1700 m/z

was followed by an MS/MS scan, resolution 17,500 and a

range of 200–2000, selecting the 15 most intense ions

prior to MS/MS.

Quantitative mass spectrometry data analysis

Protein identification from the MS/MS data was

performed using the Andromeda search engine in

MaxQuant (version 1.2.2.5; http://maxquant.org/) to cor-

relate the data against an annotated database derived

from the V. destructor genome survey downloaded from

Biomedical Central Genomics (Cornman et al., 2010).

The following search parameters were used: first search

peptide tolerance of 20 ppm, second search peptide tol-

erance 4.5 ppm with cysteine carbamidomethylation as a

fixed modification and N-acetylation of protein and oxi-

dation of methionine as variable modifications and a

Resistance mechanisms to Bayvarol® in varroa 3
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maximum of two missed cleavage sites allowed. False

Discovery Rates (FDR) were set to 1% for both peptides

and proteins and the FDR was estimated following

searches against a target-decoy database. LFQ intensities

were calculated using the MaxLFQ algorithm (Cox et al.,

2014) from razor and unique peptides with a minimum

ratio count of two peptides across samples. Peptides

with minimum length of seven amino acids were consid-

ered for identification and proteins were only consid-

ered identified when more than one unique peptide for

each protein was observed.

Result processing

Results processing, statistical analyses, and graphics

generation were conducted using Perseus V. 1.5.0.31.

LFQ intensities were log2-transformed and ANOVA of

significance and t-tests between the proteomes of

Bayvarol® sensitive and Bayvarol® resistant mites were

performed using a p-value cut-off of .05. Proteins that

had intensity values of zero (indicative of absence or

very low abundance in a sample) were included in the

study only when they were completely absent from one

group and present in at least three of the three repli-

cates in the second group. These proteins were also

included in the statistical analysis after imputation of

representative numbers based on the lowest value for

each data-set, which was calculated as a 1.75 downshift

from the mean value, allowing for .25 width in the

downshift for standard deviation. The Blast2GO suite

(www.Blast2GO.com) of software tools was utilized to

assign gene ontology terms (GO terms) relating to

biological processes, molecular function, and cellular

component. A BLAST search was carried out on the

peptide sequences of interest, followed by GO mapping,

Annotation, and Enzyme code, and KEGG analysis.

Graphs were compiled at a level three ontology using

the mapping software on the Blast2GO resource.

Results

Analysis of Bayvarol® sensitive and resistant V.

destructor proteomes

The proteome of varroa mites deemed either sensitive

or resistant to Bayvarol® was resolved by 2D SDS-

PAGE. In total, nine identified protein spots were

shown to be altered in abundance in the resistant mites

(Figure 1). Differentially abundant proteins were excised,

digested, and identified by LC/MS as described (Table 1).

An increase in abundance of proteins involved in detoxi-

fication was observed in the Bayvarol® resistant mites

including glutathione-s-transferase (GST) (Spot 3; 2.8-

fold increase; p = .020), aldehyde dehydrogenase (Spot

2; 5.9-fold increase; p = .002), and retinal dehydrogenase

(Spot 1; 6.1-fold; p = .01).

Comparative analysis of differential protein

expression of Bayvarol® resistant and sensitive V.

destructor using label-free proteomics

LFQ proteomics was conducted on Bayvarol® sensitive

and resistant varroa mites. In total, 3757 peptides were

identified representing 650 proteins with two or more

peptides and 134 proteins were determined to be

(A) (B)

Figure 1. 2D SDS PAGE gel showing from varroa deemed sensitive and resistant to Bayvarol®. Representative 2D gel
electrophoresis images of 400 μg of protein extracted from Bayvarol® sensitive (A) or resistant (B) mites. Statistically significant
differentially abundant proteins were identified using Progenesis SameSpots® software and spots identified using LC-MS/MS are
outlined and numbered.
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differentially abundant (ANOVA, p < .05) with a fold

change of >1.5, of which 89 were found in higher abun-

dance in the resistant mites (Table 2) and 45 were found

in higher abundance in the sensitive mites (Table 3).

A total of 41 proteins were present in all three

resistant samples and absent in all three sensitive mite

samples, and a further four were present in each repli-

cate of the sensitive mites and absent in all three of the

resistant samples (Table 4). These protein hits were also

used in the statistical analysis of the total differentially

expressed group following imputation of the zero values

using a number close to the lowest value of the range

of proteins plus or minus the standard deviation. After

data imputation these proteins were included in subse-

quent statistical analysis (Tables 2 and 3). A number of

related proteins were observed at similar abundance

levels including a number of aldehyde dehydrogenases,

myosin, heat shock proteins, and Na+/K+ subunit pro-

teins which were at higher abundance in the resistant

mites. Numerous proteins involved in cuticle structure

and translation were found at higher abundance in sensi-

tive mites (Figure 2).

The Blast2GO annotation software was used to

group proteins based on conserved GO terms in order

to identify processes and pathways potentially associated

with Bayvarol resistance or sensitivity. GO terms were

categorized by biological processes (BP; Figure 3) and

molecular function (MF; Figure 4). No major changes

Table 1. Table of differentially expressed proteins from the proteomic profiles resolved by two-dimensional SDS PAGE
electrophoresis of sensitive and resistant varroa.

Protein spot and identity
Coverage

(%)
Fold change increase in resistant

mites
P

value
Sensitive
mites

Resistant
mites

1. Retinal dehydrogenase 1-like 23.9 6.1 .0171

2. aldehyde dehydrogenase 14.2 5.9 .00264

3. Glutathione-s-transferase mu 1-like 10 2.8 .0253

4. Secreted salivary gland peptide 35.4 5.9 .0348

5. Beta tubulin 13.2 3 .0244

6. Inorgnaic pyrophosphotase 20.1 1.8 .0371

7. Proteosome subunit alpha type 5-like 11 3.9 .040

8. Spermidine synthase like 52.6 2.3 .0288

9. LOC100907454 secreted protein
putative

16.4 3.9 .0129

Notes: Each experiment was carried out in triplicate and statistically significant differentially expressed (p < .05) spots were identified. Spot profiles
taken from Progenesis SameSpots®, the percentage coverage of identified peptides and relative fold change in resistant mites are shown.
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Table 2. Identities and expression values for proteins that were identified as being significantly higher in abundance in the Bayvarol
resistant varroa.

Protein annotation Peptides
Sequence

coverage (%) PEP
Mean LFQ
Intensity

Expression in
resistant Varroa

Myosin-9 3 46.2 7.71E − 110 6.39E + 09 18.9
Methylmalonate-semialdehyde dehydrogenase 5 47.6 7.23E − 99 2.73E + 09 12.5
Isocitrate dehydrogenase 4 65.2 1.48E − 50 1.62E + 09 7.2
Myosin-9 5 51.9 4.82E − 49 1.60E + 09 6.6
Alpha tubulin 6 42 1.62E − 254 1.52E + 09 6.5
Myosin-9 8 40.9 1.04E − 120 2.45E + 09 6.4
Ankyrin 2 3/unc44 8 36.3 2.49E − 106 9.77E + 08 6.0
Myosin heavy chain 9 46.7 2.36E − 167 1.91E + 09 5.8
Methylenetetrahydrofolate dehydrogenase 9 26.3 6.77E − 162 1.29E + 09 5.4
T-complex protein 1 subunit beta 6 38.9 2.62E − 70 9.77E + 08 5.1
Actin-5C 6 22.6 5.32E − 39 1.86E + 10 5.0
Aldehyde dehydrogenase 4 44.8 2.34E − 54 1.99E + 09 5.0
Myosin-9 10 24.8 2.03E − 42 8.28E + 08 4.4
Spermidine synthase 2 20.8 5.17E − 09 1.07E + 09 4.4
Quinone oxidoreductase 3 30.8 2.62E − 51 1.08E + 09 4.3
Chaperonin subunit 10 35 2.08E − 95 9.34E + 08 4.1
Translation elongation factor 4 38.4 1.63E − 91 2.02E + 09 4.1
Paxillin 9 43.2 3.60E − 114 1.32E + 09 3.8
Myosin heavy chain skeletal muscle 13 55 4.82E − 194 3.78E + 09 3.6
Cystathionine beta-lyase 2 67.7 1.03E − 58 5.42E + 08 3.6
Alcohol dehydrogenase 5 37.3 1.96E − 142 1.56E + 09 3.4
Succinate dehydrogenase 4 24.3 2.23E − 37 8.40E + 08 3.4
Spermatogenesis associated factor 4 49.7 9.82E − 49 8.28E + 08 3.3
Peptidyl-prolyl cis-trans isomerase 3 61.5 1.15E − 80 9.63E + 08 3.3
Paramyosin 16 36 6.58E − 274 9.38E + 09 3.3
Sumo-1-activating enzyme e1a 12 28 3.37E − 146 1.69E + 09 3.3
Aconitase 9 63.8 6.87E − 234 5.56E + 09 3.2
Vinculin 4 13.9 1.55E − 22 6.61E + 08 3.2
Myosin heavy chain skeletal muscle 14 64.2 1.81E − 138 2.89E + 09 3.1
Iron-containing alcohol dehydrogenase 5 40.5 2.27E − 65 2.60E + 10 3.0
Flavin-containing monooxygenase 4 36.3 3.64E − 62 9.60E + 08 2.8
Alpha-actinin-4 6 22.3 2.58E − 45 7.48E + 08 2.7
Myosin-9 6 51.6 5.00E − 172 8.62E + 09 2.7
Myosin heavy chain 16 50.7 6.15E − 164 4.06E + 09 2.7
Tubulin alpha-3 chain 4 55.4 5.66E − 77 1.95E + 09 2.7
60S ribosomal protein L19 2 17.9 9.75E − 06 1.11E + 09 2.6
Myosin-9 9 69.3 .00E + 00 8.33E + 09 2.6
GOT2 aspartate aminotransferase 2 25.2 4.70E − 07 6.74E + 08 2.5
Myosin-9 7 67.9 .00E + 00 5.13E + 08 2.5
Conserved protein (transmembrane) 2 23.6 3.70E − 12 4.58E + 08 2.5
6-phosphogluconolactonase 3 39.3 2.96E − 33 1.32E + 09 2.5
Processing peptidase beta subunit 2 30.1 2.01E − 15 6.20E + 09 2.4
Glycogenin-1 3 61.8 1.33E − 20 4.96E + 08 2.3
ADP/ATP translocase 9 46.8 1.72E − 57 2.86E + 09 2.2
Citrate synthase 6 26.9 2.56E − 35 2.60E + 09 2.2
Aminotransferase 2 14.5 3.76E − 45 5.81E + 08 2.2
LIM domain-containing protein 4 52.7 1.49E − 162 8.41E + 09 2.2
Aconitase 2 43.9 3.73E − 11 3.70E + 08 2.2
ADP/ATP translocase 7 64.1 1.33E − 25 3.79E + 09 2.2
Myosin-9 19 56.2 1.05E − 147 1.51E + 10 2.2
Ornithine aminotransferase 3 32.2 7.07E − 33 4.70E + 08 2.2
Glycerol-3-phosphate dehydrogenase 4 18.5 4.50E − 72 6.73E + 08 2.1
Phosphoglucomutase 4 40.6 1.34E − 40 7.89E + 08 2.1
Paramyosin 4 26.8 3.16E − 235 4.99E + 09 2.1
Formiminotransferase-cyclodeaminase 4 45.5 2.86E − 16 4.62E + 08 2.1
ADP/ATP translocase 8 48.5 1.23E − 35 3.11E + 09 2.1
Filamin 6 53.6 3.00E − 130 3.52E + 09 2.0
Acetyl-coa hydrolase 8 49 2.72E − 68 5.51E + 09 2.0
Hsp70 13 31.8 1.90E − 198 9.70E + 09 2.0
E1–E2 atpase 14 38.8 6.70E − 273 7.92E + 09 2.0
Hsp70 8 44.2 1.77E − 113 4.56E + 09 2.0

(Continued)

6 C. Surlis et al.

D
ow

nl
oa

de
d 

by
 [

M
ay

no
ot

h 
U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

22
 2

8 
Ju

ne
 2

01
6 



were evident between the profiles of resistant and sen-

sitive mites, with the most noticeable change being in

the proportion of proteins involved in single-organism

metabolic process, which accounted for 3% of the over-

all proportion of GO terms for proteins involved in the

sensitive mites but 12% of the protein composition of

resistant mites. A comparison of the overall proportion

of GO terms for proteins found in sensitive and resis-

tant mites, grouped based on molecular function assign-

ment is also presented (Figure 5). The largest increased

groups in resistant mites compared to sensitive mites

were carbohydrate derivative binding, small molecule

binding, ion binding, and oxidoreductase activity. Pro-

teins involved in cuticle and ribosome structure were

present at lower levels in the resistant mites (Figure 5).

Using KEGG pathway analysis, pathways involving

proteins of differential abundance between the sensitive

and resistant mites were examined for possible associa-

tion with the resistant phenotype. The P450 metabolic

pathway involved in xenobiotic detoxification was one

pathway which showed differences between the sensi-

tive and the resistant mites (Figure 5) with a number of

enzymes found at higher levels in the resistant mites

(Figure 6).

Discussion

Flumethrin, the active ingredient in Bayvarol®, is a

member of the pyrethroid group of insecticides which

acts upon the sodium channel of the cell membrane

resulting in the loss of the ability to close correctly,

leading to over saturation of potassium and sodium

within the cell and subsequent cell death (Martin,

Ochou, Hala-N’Klo, Vassal, & Vaissayre, 2000; Vontas,

2001). Resistance to pyrethroids can be due to knock-

down resistance of the target site of the chemical, but

evidence suggests that this type of resistance does not

exist independently, and that other resistance mecha-

nisms such as increased detoxification can also operate

(Martin, 2004; Vontas et al., 2005). The cross resis-

tance of V. destructor mites to unrelated chemicals sup-

ports the theory that metabolic resistance could play a

role in the development of resistant populations

(Martin, 2004; Vontas et al., 2005). Resistance due to

changes in the rate or efficacy of metabolism is

thought to be mainly attributed to up-regulation of

metabolic enzymes such as esterases, gluthathione-S

transferases, and P450 mono-oxygenases (Puinean

et al., 2010; Wang et al., 2015).

Table 2. (Continued).

Protein annotation Peptides
Sequence

coverage (%) PEP
Mean LFQ
Intensity

Expression in
resistant Varroa

Gars/airs/gart 5 15.3 4.74E − 15 3.38E + 08 1.9
NADH:ubiquinone oxidoreductase NDUFS2/

49 kda subunit
3 33.3 2.77E − 15 4.36E + 08 1.9

Filamin-C 8 65.1 7.52E − 63 5.93E + 09 1.9
ATP-binding cassette subfamily E member 1 3 40 1.53E − 120 4.08E + 09 1.9
Vacuolar H+ – atpase V1 sector subunit B 9 79.8 2.48E − 88 3.14E + 09 1.9
Paxillin 5 38.4 5.15E − 71 8.50E + 09 1.8
Spectrin alpha chain 4 73 6.07E − 39 4.02E + 08 1.8
Tubulin beta-1 chain 11 66 5.43E − 192 1.11E + 10 1.8
Aldo-keto reductase 3 34.5 4.50E − 68 8.63E + 09 1.8
THO complex subunit 3 28.4 4.27E − 29 5.55E + 08 1.8
THO complex subunit 33 71.6 .00E + 00 4.28E + 10 1.8
Arginine kinase 4 33.7 .00E + 00 1.04E + 10 1.7
Phosphoribosylamidoimidazole-

succinocarboxamide synthase
5 48.4 7.59E − 117 4.93E + 09 1.7

4-aminobutyrate aminotransferase 2 38.5 1.53E − 15 3.79E + 08 1.7
Acetyl-coa acetyltransferase 4 35.6 4.38E − 67 4.15E + 09 1.7
Na+/K+ atpase beta subunit 3 22.2 9.35E − 08 1.26E + 09 1.7
Na+/K+ atpase alpha subunit 8 33.5 4.48E − 87 3.75E + 09 1.7
Hsp90 protein 14 34.2 1.36E − 203 1.41E + 10 1.7
Aldehyde dehydrogenase 7 46.4 1.81E − 59 1.13E + 09 1.6
Aminoimidazole-4-carboxamide

ribonucleotidetransformylase
3 46.2 1.50E − 84 3.82E + 09 1.6

Chaperonin subunit 2 34.4 3.16E − 45 8.08E + 09 1.6
Translation elongation factor EF-1 alpha/Tu 6 41.7 3.78E − 63 1.35E + 10 1.6
Phosphoglycerate kinase 4 41.7 2.85E − 56 5.54E + 09 1.6
Heat shock protein 12 53.1 .00E + 00 3.83E+10 1.6
Glutamine synthetase 2 cytoplasmic 5 38.5 9.27E − 189 1.05E + 10 1.5
Phosphoglycerate mutase 2 18.6 4.93E − 27 8.57E + 08 1.5
Heat shock protein 10 71.5 1.42E − 283 1.12E + 10 1.5
Chaperonin subunit 14 63 5.73E − 207 1.47E + 10 1.5

Notes: Relative fold changes in expression of proteins in the profile of Bayvarol® resistant mites, and the number of matched peptides, sequence
coverage, PEP and mean LFQ intensities. Proteins that had more than two matched peptides, with a t-test probability < .05 and that were found to
be differentially expressed at a 1.5-fold change and greater in resistant compared to sensitive mites are given.
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The comparison of the proteomic profiles of both

sensitive and resistant varroa mites showed significantly

different patterns of expression, with a total of 9 pro-

teins identified as being differentially expressed by 2DE

and 179 identified as being differentially abundant by

LFQ analysis. This overview of the proteomic profile

made possible by mass spectrometry, gives an excellent

opportunity to observe differences between two pheno-

types of the same organism on a large scale, highlighting

differences that may be contributing towards the

observed phenotype, such as the resistant mites. A

number of proteins were observed to be differentially

expressed between the profiles of sensitive and resistant

mites that have previously been linked with resistance

to pyrethroid, as well as some novel groups of proteins

that could potentially be helping confer resistance

In the comparative 2DE, a significant increase in the

abundance of GST was observed in Bayvarol® resistant

mites compared to the level in sensitive mites. GST has

previously been associated with detoxification against

Table 3. Identities and expression values for proteins that were identified as being significantly lower in abundance in the
Bayvarol® resistant varroa.

Protein annotation Peptides Sequence coverage (%) PEP Overall intensity
Expression in
resistant varroa

Conserved hypothetical protein 2 48.5 1.22E − 28 1.64E + 09 −13.3
Ribosomal protein L37A 3 28.5 7.14E − 11 1.01E + 09 −5.0
Gastric triacylglycerol lipase 3 21.5 8.82E − 13 6.63E + 08 −4.0
Cold-inducible RNA-binding protein 2 32.7 9.66E − 41 1.12E + 09 −3.9
Ferritin 6 36.4 1.94E − 200 5.21E + 10 −3.2
Nucleolysin TIA-1 1 5 2.08E − 14 7.58E + 07 −2.9
Cytochrome B5 2 19.4 1.01E − 06 5.22E + 08 −2.9
Ubiquitin carboxyl-terminal hydrolase 2 22.1 3.82E − 07 1.82E + 08 −2.5
Cuticular protein 6 45 3.94E − 129 3.84E + 09 −2.4
Cuticular protein 8 65.1 5.60E − 220 2.99E + 10 −2.4
Cuticular protein 15 75.1 .00E + 00 1.62E + 10 −2.3
Transferrin receptor 4 57.9 2.86E − 127 5.34E + 09 −2.1
Cuticular protein 7 25.5 3.94E − 150 8.29E + 09 −2.1
60S ribosomal protein L23 4 38.8 1.93E − 82 5.25E + 09 −2.0
Structural constituent of cuticle 6 51.6 5.20E − 278 4.80E + 10 −2.0
Cuticular protein 7 46 .00E + 00 7.82E + 10 −2.0
Ribosomal protein L8 4 19.3 1.42E − 08 2.74E + 09 −2.0
Secreted protein 2 16.2 5.15E − 11 3.39E + 08 −1.9
Angiotensin-I converting enzyme 4 26.5 4.69E − 94 6.63E + 08 −1.9
Cuticular protein 4 52.1 6.18E − 259 3.19E + 10 −1.9
Ribosomal protein S18 5 54.5 1.12E − 172 8.42E + 09 −1.9
Cuticle protein 2 35.4 3.32E − 34 8.54E + 08 −1.9
60S ribosomal protein L9 5 38.6 4.95E − 94 3.96E + 09 −1.8
Secreted salivary gland peptide 4 32 2.82E − 54 6.78E + 10 −1.8
Cuticular protein 5 70.6 .00E + 00 7.12E + 10 −1.8
Transferrin receptor 4 47.2 2.10E − 100 5.34E + 09 −1.8
Rho guanine dissociation factor 2 37.3 1.25E − 83 2.62E + 09 −1.8
Alternative splicing factor srp20/9G8 2 11.9 8.10E − 58 7.50E + 09 −1.8
Ribosomal protein L15 4 27.9 7.39E − 32 2.54E + 09 −1.6
Cuticular protein 5 53.5 7.36E − 241 1.35E + 11 −1.6
Histone H4 12 55.3 2.62E − 92 3.38E + 10 −1.6
Transformer-2 sex-determining protein 3 46.2 4.55E − 65 3.80E + 09 −1.6
60S ribosomal protein L3 3 21.2 4.59E − 25 3.39E + 09 −1.6
60S ribosomal protein rpl7a 6 26.6 1.37E − 56 2.56E + 09 −1.6
Calmodulin-A 15 94.6 9.25E − 287 2.75E + 10 −1.6
40S ribosomal protein S13 5 33.3 1.29E − 12 3.91E + 09 −1.6
Beta-galactosidase precursor 6 59.6 7.44E − 31 1.16E + 09 −1.6
Glyceraldehyde 3-phosphate dehydrogenase 7 72 .00E + 00 1.77E + 11 −1.5
Ribosomal protein L13 9 47.2 8.31E − 70 8.07E + 09 −1.5
40S ribosomal protein S2 5 36 3.37E − 32 1.75E + 09 −1.5
Cuticular protein 5 45.5 1.76E − 89 1.21E + 10 −1.5
Conserved hypothetical protein 4 43.2 3.51E − 21 4.44E + 09 −1.5
Heat shock protein 20.6 7 44.4 3.43E − 304 3.57E + 10 −1.5
Ribosomal protein L3 4 48.5 4.35E − 45 5.07E + 09 −1.5
60S ribosomal protein L30 5 49.2 1.46E − 68 6.57E + 09 −1.5
60S ribosomal protein L10 3 27.6 1.04E − 44 7.92E + 09 −1.5

Notes: Relative fold changes in expression of proteins in Bayvarol resistant mites, the number of matched peptides, sequence coverage, PEP, and
overall intensity. Proteins that had more than two matched peptides, with a t-test probability <.05 and that were found to be differentially expressed
at a 1.5-fold change and greater in sensitive compared to resistant mites are given.
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Table 4. Exclusively expressed proteins in Bavarol® sensitive and resistant mites.

Protein annotation
LFQ intensity
sensitive_1

LFQ intensity
sensitive_2

LFQ intensity
sensitive_3

LFQ intensity
resistant_1

LFQ intensity
resistant_2

LFQ intensity
resistant_3

Conserved hypothetical
protein

5.6E + 08 1.2E + 09 1.0E + 09 0 0 0

Translation initiation factor 3 1.5E + 08 2.6E + 08 1.4E + 08 0 0 0
Sulfotransferase 1.0E + 08 9.7E + 07 9.8E + 07 0 0 0
Trailer hitch, isoform D 4.5E + 07 4.8E + 07 5.2E + 07 0 0 0
Spermidine synthase 0 0 0 2.7E + 08 3.0E + 08 3.4E + 08
Coronin-6 0 0 0 8.5E + 07 1.3E + 08 7.6E + 07
Myosin-9 0 0 0 2.3E + 08 3.6E + 08 2.0E + 08
Alpha tubulin 0 0 0 4.6E + 08 4.0E + 08 4.1E + 08
Dipeptidyl peptidase III 0 0 0 1.2E + 08 1.9E + 08 1.2E + 08
Myosin-9 0 0 0 2.8E + 08 6.3E + 08 3.4E + 08
Spectrin alpha chain 0 0 0 1.4E + 08 1.5E + 08 1.3E + 08
Peptidyl-prolyl cis-trans

isomerase
0 0 0 3.4E + 08 2.1E + 08 3.9E + 08

Glycosyl hydralase sucrase-
isomaltase

0 0 0 4.2E + 08 8.6E + 08 5.9E + 08

Aconitase 0 0 0 9.2E + 07 1.7E + 08 1.3E + 08
26S proteasome subunit S9 0 0 0 1.0E + 08 1.6E + 08 1.1E + 08
Formiminotransferase-

cyclodeaminase
0 0 0 1.6E + 08 2.0E + 08 1.3E + 08

DEAD box ATP-dependent
RNA helicase

0 0 0 5.7E + 07 7.7E + 07 4.6E + 07

Glycogenin-1 0 0 0 1.2E + 08 1.9E + 08 1.7E + 08
Ornithine aminotransferase 0 0 0 1.5E + 08 1.6E + 08 1.6E + 08
Aminotransferase 0 0 0 1.6E + 08 1.6E + 08 2.2E + 08
Isocitrate dehydrogenase 0 0 0 4.8E + 08 4.3E + 08 4.9E + 08
Myosin-9 0 0 0 1.5E + 09 3.5E + 09 1.2E + 09
60S ribosomal protein L19 0 0 0 2.8E + 08 2.1E + 08 2.1E + 08
Methylmalonate-

semialdehyde
dehydrogenase

0 0 0 1.2E + 08 2.6E + 08 1.3E + 08

Methylmalonate-
semialdehyde
dehydrogenase

0 0 0 8.8E + 08 1.1E + 09 8.6E + 08

THO complex subunit 0 0 0 1.4E + 08 1.6E + 08 1.8E + 08
Vinculin 0 0 0 2.2E + 08 2.5E + 08 2.0E + 08
Chaperonin subunit 0 0 0 2.8E + 08 4.3E + 08 2.0E + 08
T-complex protein 1 subunit

beta
0 0 0 2.6E + 08 3.9E + 08 2.9E + 08

Gars/airs/gart 0 0 0 9.6E + 07 1.4E + 08 1.3E + 08
Ankyrin 2 3/unc44 0 0 0 2.4E + 08 3.2E + 08 3.0E + 08
Alpha-actinin-4 0 0 0 1.6E + 08 3.4E + 08 1.9E + 08
Spectrin alpha chain 0 0 0 8.5E + 07 1.7E + 08 8.8E + 07
Flare, isoform A 0 0 0 1.4E + 08 1.7E + 08 2.3E + 08
Nucleolysin TIA-1 0 0 0 1.6E + 07 2.8E + 07 3.6E + 07
Succinate dehydrogenase 0 0 0 1.8E + 08 3.4E + 08 2.5E + 08
Enoyl-coa hydratase 0 0 0 1.0E + 08 1.6E + 08 8.3E + 07
Spermatogenesis associated

factor
0 0 0 2.7E + 08 3.0E + 08 3.2E + 08

26S protease regulatory
subunit 6A

0 0 0 1.5E + 08 1.2E + 08 1.3E + 08

Phosphofructokinase 0 0 0 1.3E + 08 2.2E + 08 1.7E + 08
GOT2 aspartate

aminotransferase
0 0 0 1.8E + 08 2.4E + 08 1.5E + 08

Myosin-9 0 0 0 1.2E + 08 2.1E + 08 1.6E + 08
Polyadenylate-binding protein 0 0 0 1.4E + 08 1.5E + 08 1.5E + 08
Phosphoglucomutase 0 0 0 2.2E + 08 3.4E + 08 2.4E + 08
Prolylcarboxypeptidase 0 0 0 3.7E + 07 3.9E + 07 4.7E + 07

Notes: Proteins were considered exclusive to a sample when normalized LFQ intensities were obtained for all three replicates in a given sample. A
zero value indicates a protein that was absent or undetected in a sample.
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insecticides (Fragoso et al., 2003; Kostaropoulos,

Papadopoulos, Metaxakis, Boukouvala, & Papadopoulou-

Mourkidou, 2001) and has been linked to the metabolic

resistance to pyrethroids in the spotted mite Tetranychus

urticae (Stumpf & Nauen, 2002). Pyrethroid exposure

leads to oxidative stress by inducing lipid peroxidation

and by depletion of reduced glutathione, and superoxide

dismutases, catalases and GSTs provide defense against

this stress (Nardini, Christian, Coetzer, & Koekemoer,

2013).

A substantial number of proteins from the dehydro-

genase superfamily were present at much higher levels

in the Bayvarol® resistant mites with some also

detected only in the resistant mites, with their detection

Figure 2. Volcano plot of all identified proteins based on relative abundance differences between sensitive and resistant varroa. (A)
Volcano plot of protein intensity difference (−log2 mean intensity difference) and significance in differences (−log P-value) based a
two-sided t-test. Proteins above the line are considered statistically significant (p value < .05) and those to the right and left of the
vertical lines indicate fold changes ≥1.5 in resistant and sensitive mites, respectively. The top 20 differentially abundant proteins are
annotated. (B) Same volcano plot indicating proteins of similar expression profile potentially associated with Bayvarol® resistance,
annotated according to biological process ontology term.
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completely absent in the sensitive mites. This group of

dehydrogenases included two alcohol dehydrogenases

(5-fold and 1.6-fold increase, Table 2), retinal dehydro-

genase (6.1-fold increase, Table 1), methylmalonate

semi-aldehyde dehydrogenase (12.5-fold increase, Tables

2 and 3), isocitrate dehydrogenase (12.5-fold increase,

Tables 2 and 3) and methylenetetrahydrofolate dehydro-

genase (5.4-fold increase, Table 2). Dehydrogenases

have been previously linked to insecticide resistance

due to their ability to exhibit esterase-like activity

(Kedishvili, Goodwin, Popov, & Harris, 2000). Variations

in dehydrogenase expression has been observed in pyre-

throid resistant insects, such as the increase of aldehyde

dehydrogenase in Anopheles gambiae after exposure to

permethrin (Vontas, 2001) which is similar to the

increase observed here in Bayvarol® resistant mites. An

additional study on pyrethroid/DTT resistant A. gambiae

reported similar changes in the levels of dehydrogenases

with two members of the family showing higher levels in

resistant mosquitoes at both the genetic and proteomic

level (Lumjuan, Wicheer, Leelapat, Choochote, &

Somboon, 2014). Methylmalonate-semialdehyde dehy-

drogenase was expressed exclusively in the proteomic

profile of the Bayvarol® resistant mites (Table 3). It

exhibits esterase activity, typical of all dehydrogenases,

but is unique among the members of this family because

coenzyme A is required for the reaction and a CoA

ester is produced (Kedishvili et al., 2000). The presence

Figure 3. Bar chart highlighting the difference in protein differences involved in selected biological processes. Comparative bar
chart of level three biological process annotation for resistant and sensitive mite proteins based on percentage proportion of the
total proteins found in the proteomic profile.

Figure 4. Bar chart highlighting the difference in protein differences involved in selected molecular function. Comparative bar chart
of level three molecular function annotation for resistant and sensitive mite proteins based on percentage proportion of the total
proteins found in the proteomic profile.
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of these dehydrogenases in the resistant mites at such

increased levels of abundance indicates that they may be

playing a role in conferring the resistant phenotype. The

combined elevated levels of these proteins could poten-

tially allow for a more efficient means of xenobiotic

degradation.

Certain components of the cytochrome P450

detoxification system were also altered in abundance

(Figure 6). P450 components have previously been

linked with metabolic resistance of various insecticides

including pyrethroids (Puinean et al., 2010; Scott, 1999;

Zhang & Scott, 1996). A large increase in NADH-Cyto-

chrome b5 reductase was observed and this has previ-

ously been associated with resistance in cypermethrin

resistant house flies (Zhang & Scott, 1996). Cytochrome

C oxidase subunit and cytochrome C reductase subunit

were also increased in abundance in the resistant mites,

however it was not deemed significant (Figure 6). Cyto-

chrome b5 was significantly reduced in abundance in the

resistant mite population, and a small non-significant

reduction was also observed in cytochrome C oxidase.

This varied expression in the cytochrome subunits could

implicate altered oxidative detoxification in the resistant

phenotype, as pyrethroids are known to cause oxidative

stress (Scott, 1999).

An additional protein, flavin-associated mono-

oxygenase was expressed 2.8-fold higher in resistant

mites compared to those sensitive to Bayvarol®

(Table 2). Flavin-associated mono-oxygenase is strongly

linked to the detoxification of xenobiotic substances in

a wide range of organisms (Berenbaum & Johnson, 2015;

Cashman, Perotti, Berkman, & Lin, 1996; Krueger &

Williams, 2005; Naumann, Hartmann, & Ober, 2002). Its

detoxification characteristics have been linked to the

development of resistance to certain chemical pesticides

including pyrethroids (Dawkar et al., 2013; Lumjuan

et al., 2014; Tian, Sun, & Su, 2014). Thioredoxin reduc-

tase-2 has a role in the oxidoreductase response of a

cell to stress and was increased by 5.9-fold in resistant

mites compared to the levels in susceptible mites

(Table 1). Thioredoxin reductase was present at higher

levels of abundance in resistant A. gambiae as part of an

overall up-regulation of a number of detoxification pro-

teins (David et al., 2005).

Figure 5. KEGG analysis of a drug detoxification pathway showing a number of proteins increased in abundance in Bayvarol®

resistant varroa. Various parts of the cytochrome P450 drug metabolism pathway that were found to be present at significantly
higher levels in mites that showed resistance to Bayvarol® (Red indicates up regulation) are given.
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The elevated levels of these detoxification enzymes

in resistant V. destructor could confer a greater ability to

withstand the oxidative stresses caused by the chemical

and lead to the organism becoming more tolerant to

the effects of the chemical.

A number of cuticle proteins were at lower levels of

abundance in the proteomic profile of the resistant

mites (Figure 2(b)). One possible means by which organ-

isms are thought to become resistant is by alteration of

the route of entry of the chemical such as a thickening

or hardening of the cuticle or other epithelial barriers

(Hemingway et al., 2004). A number of cuticular pro-

teins were present in lower amounts in resistant mites

(Figure 2(b)), which partly contradicts the trend

observed in previous reports (Puinean et al., 2010; Silva,

Jander, Samaniego, Ramsey, & Figueroa, 2012; Vontas

et al., 2005; Wang et al., 2015). The protein that

showed the lowest abundance in the resistant mites,

exclusively expressed in the profile of sensitive mites,

was a conserved hypothetical protein (Table 3). This

protein is possibly a cuticular protein as it shows

homology to gasp from Drosophila melanogaster, a chitin

binding cuticle constituent. Previous research has

demonstrated that a down-regulation of some cuticle

proteins alongside an up-regulation of others does

occur, suggesting that an alteration in cuticle composi-

tion may occur, leading to decreased rates of entry of

the chemical (Vontas et al., 2005; Wang et al., 2015).

However, no cuticle proteins were observed here to be

of higher abundance in resistant mites which may

indicate that the cuticular changes in resistant mites

involve the removal of certain proteins without their

replacement.

A number of proteins with structural roles were

found to be significantly increased in mites that showed

resistance to Bayvarol® (Figure 2(b)). Some of these

were also present exclusively, indicating presence and

absence in all three replicates of the resistant and sensi-

tive mites, respectively (e.g., coronin, alpha tubulin)

(Table 4). Proteins involved in cytoskeleton structure

have previously been shown to be changed in abundance

in deltamethrin resistant mosquitoes (Bonizzoni et al.,

2012). A large group of myosins were also found at

much higher levels in resistant mites and some were

exclusively present in the resistant mite population. Sim-

ilar results have previously been reported in deltame-

thrin resistant Culex pipiens pallens, where it has been

shown that the over-expression of a light chain regula-

tory myosin confers resistance in a cell line derived

Aedes albopictus (Yang et al., 2008). It is not unreason-

able to postulate that proteins associated with altering

the structure of cells and cell junctions may contribute

to resistance to a chemical, in particular chemicals in

which the mode of entry is through the exoskeleton or

the digestive tract such as the pyrethroid insecticides.

A number of other groups of proteins were also dif-

ferentially expressed in the Bayvarol® sensitive and the

resistant V. destructor including a group of ribosomal

proteins the majority of which were present at a lower

levels in the resistant mites (Table 3). Deltamethrin

resistant mosquitoes demonstrated a 23-fold increase in

the expression of the L39 gene (Tan et al., 2007), but

this was not the case in the Bayvarol® resistant mites

studied here. Yu et al. (2014) demonstrated that

another ribosomal protein s29 regulates metabolic resis-

tance by binding to CYP6N3, so perhaps the unbound

versions of certain ribosomal proteins were more abun-

dant during proteomic analysis of the sensitive mites.

A number of proteins involved in ion transport were

also greater in abundance in resistant mites. NADH

ubiquinone oxidoreductase NDUFS2/49 kDa subunit is

thought to act as a proton pump for sodium and potas-

sium and was present at higher levels (1.9-fold) in resis-

tant mites (Brandt et al., 2003) (Table 2). Mosquitoes

that were resistant to pyrethroids had similar elevated

levels of this protein post-treatment with permethrin

(Vontas et al., 2005). E1-E2 ATPase putative, vacuolar

H+ – ATPase V1 sector subunit B, Na+/K+ ATPase beta

subunit and alpha subunit were all expressed at higher

levels in the proteome of resistant mites (2, 1.9, 1.7,

and 1.7-fold, respectively) (Table 2). These proteins act

as proton pumps for detoxification of the cell, and

higher levels of these proteins in the cell could help

combat the extra ions due to malfunctioning sodium

transport channel (Emery, Billingsley, Ready, & Djamgoz,

1998). As pyrethroid treatment results in the influx of

ions into the cell due to the inhibition of the sodium

channels in the membrane, perhaps the extra abundance

of proteins involved in alternative proton pumping

mechanisms observed in resistant mites presented here

counteract this influx.

Figure 6. Average LFQ intensities of a number of
cytochrome p450 components differentially expressed in the
proteomic profile of Bayvarol® sensitive and resistant mites. A
number of cytochrome P450 components that were found to
be differentially expressed between the sensitive and resistant
V. destructor mites.
Note: *Indicates a statistically significant change in expression
levels at p < .05.
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Pyrethroids are metabolized by hydrolysis of ester

bonds, oxidation at the acid and alcohol moieties, and

several conjugation reactions such as hydrophilic and

lipophilic conjugates (Mikata, Osobe, & Kaneko, 2011;

Strachecka, Borsuk, Olszewski, Paleolog, & Lipiński,

2013). Here, a number of proteins involved in hydrolysis

(processing peptidase beta subunit putative, acetyl-CoA

hydrolase putative, aminoimidazole-4-carboxamide

ribonucleotidetransformylase/IMP were present in higher

levels in pyrethroid resistant mites (Table 2) and these

could be potential effectors of the more efficient break-

down of the chemical in resistant mites. These could

potentially be leading to the phenotype observed in the

resistant mites by helping to overcome the oxidative

stress induced by the synthetic pyrethroid. In addition,

the ion transport and transferase proteins were also

expressed at higher levels in the resistant mites and this

could also be contributing toward the resistant pheno-

type by helping to combat the influx of ions induced by

the pyrethroid.

The work presented here offers novel insights into

the metabolic resistance mechanisms that could play a

role in the resistance of V. destructor to Bayvarol® and

may open the possibility of identifying targets to circum-

vent this phenotype.
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