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Abstract

Portfolio theory suggests that risk-averse agents favour a diversified portfo-
lio of assets as a strategy to offset market risk. This paper explicitly tests
whether Irish cereal producers decision to engage in multi-crop production (as-
set diversification) in itself reveals a relatively risk-averse nature. The issue
is examined within the context of sample selection bias, where multi-croppers
(portfolio diversifiers) are treated as a sub-sample of a general sample (mono
+ multi croppers) of Irish cereal production.
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1 Introduction

An increasing number of studies examine the risk attitudes of agricultural produc-
ers within dual-based production models (e.g. Coyle (1992), Saha, Shumway and
Talpaz (1994), Saha (1996), Saha (1997), Coyle (1999), OudeLansink (1999), Boyle
and McQuinn (2001), Sckokai and Moro (2002a) and Sckokai and Moro (2002b)).
Most of these approaches consist of a dual production model of price uncertainty.
Within these dual systems, output supplies and factor demands are simultaneously
determined within an expected utility framework and estimates of producers’ risk

attitudes and associated risk premia are directly obtained from sample data.

An issue, which typically arises in the application of these production systems to
arable producers, is that of corner solutions amongst the data i.e. those producers
who plant only one cereal (mono-croppers). For instance, the sample used in Boyle
and McQuinn (2001) is restricted to those producers who simultaneously plant both
barley and wheat (multi-croppers). Many studies restrict samples in an analogous
manner to avoid the problem of corner solutions (see OudeLansink (1999) for exam-
ple). This is particularly the case where researchers are utilising panel data as the
increased number of observations allow the researcher to circumvent the problem of

corner solutions by censoring the data.

The results achieved in studies such as Boyle and McQuinn (2001) and Oude-
Lansink (1999) are specific to those multi-cropper producers. In itself, these results
are highly important in terms of the production practices of that particular sample.
However, an interesting related question which arises is the relationship between
the risk attitudes of the overall sample of crop producers (mono + multi-croppers)
and those of the multi-croppers sub-sample. For example, can the results from the
multi-croppers be ‘extrapolated’ to the general population? In general, results from
a sub-sample can be extrapolated to those of the general sample if the sub-sample
is representative of the general sample. However, in the case of risk, the decision
of producers to engage in multi-crop production a priori suggests a relatively risk-

averse disposition on the part of producers.

This paper examines the planting behaviour and production decisions of spe-

cialist Irish cereal producers between 1984 and 1998 using a panel data set from the



National Farm Survey (NFS) conducted by Teagasc.! The paper seeks to determine
whether multi-croppers practice portfolio theory/asset diversification as a specific
strategy to offset risk, where the employment of a diversified crop portfolio, in itself,
reveals a relatively risk-averse nature. Or, whether producers’ multi-cropping strat-
egy is a function of farm-specific factors which are unrelated to risk. The issue is
tackled within the Heckman (1979) model of sample selection bias. The first stage
of the Heckman approach models the decision to engage in multi-cropping, while
the second stage estimates producers’ risk attitudes given their decision in the first

stage.

The remainder of this paper is laid out in the following manner. A dual out-
put supply model under the highly flexible mean standard deviation (MSU) utility
function is presented. The recently specified Roche and McQuinn (2003) model of
Irish grains is used to generate expectations of the mean, variance and co-variance of
wheat and barley output prices. This is followed by an introduction to the Heckman
model for selection bias, where the output supply function under the MSU is the
second stage model. Risk attitudes estimated both with and without the Heckman

approach are then compared and conclusions drawn.

2 A Production Model under the MSU

The chosen output supply function under price uncertainty is derived from the
mean standard deviation (MSU) utility function. This function, proposed by Saha
(1997), is a highly flexible utility function, which has the advantage of permitting
the data to determine both the structure and degree of producers’ risk attitudes.
Alternative, more generic specifications, such as the linear mean variance (LMYV)
model proposed by Coyle (1992) impose constant absolute risk aversion (CARA) on
producers’ attitudes and yield information only on the degree of producers’ aversion
to risk. The MSU builds on earlier work by Meyer (1987), who had established a
consistency or compatibility between the expected utility (EU) framework and the
mean standard deviation (MS) postulate. The MS approach involves producers
ranking risky alternatives according to the value of a function defined over the first

two moments of a producer’s random payoff. This consistency established between

!The Irish Agriculture and Food Development and Research Authority.



the two approaches enables some of the more powerful assumptions of EU analysis
to be translated in similar conditions to the MS approach without imposing some
of the more traditional restrictions associated with the EU approach The MSU as
devised by Saha is given by the following

Uo,p)=U(M,S)=M" —57T (1)

where I and T are parameters to be estimated and it is assumed that I" > 0. Various
restrictions can be imposed on the MSU to arrive at more popular EU models. For
instance, if T = T' = 1 is imposed, the linear U(M,S) model is obtained, if T is set
equal to 1, then CARA attitudes are assumed. Under the MSU, «, the risk attitude
measure is given by the slope of the indifference curve in mean standard deviation

space

a(M,8)=—(U,/Uy) = (Y/T) M T5T! (2)
The MSU exhibits

(1) Risk aversion, neutrality and risk preference corresponding to ¥ > 0, = 0 and

< 0, respectively,

(2) Decreasing, constant and increasing absolute risk aversion as I' > 1, = 1, and

<1,

(3) Decreasing, constant and increasing relative risk aversion as T' > YT, I' = T,
'<T.

Table 112 of Saha (1997) summarises the suite of risk attitudes, which can be ac-
commodated within the MSU. The greater flexibility evident in this utility frame-
work can be compared with the more restrictive structures under the traditional

Arrow-Pratt measures.?> The following list of variables are used in the producer’s

2p.773.
3Tllustrated in Table I p.772 of Saha (1997).



decision-making process

q = a two dimensional vector of outputs - barley and wheat,
P = a two dimensional vector of random output prices,
P = a two dimensional vector of expected output prices,
x = a two dimensional vector of actual/planned inputs,
n = a two dimensional vector of input prices,
B = a two dimensional vector of cereal areas,
A = total on farm cereal area,
D = total cereal compensation payments (post 1992),
I = total producer off farm income.

Random and mean income are defined as*

)+D+1 (3)
)+D+1 (4)
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A cost function C (n, q, B) is defined as n”'x. Irish cereal production is assumed to
be non-joint in variable inputs.> While the presence of variable input data for both
cereals is not in itself sufficient proof for non-jointness in variable inputs,® most
barley grown in Ireland is sown in the spring, while wheat tends to be mainly a
winter crop. Thus, the assumption is considered appropriate in this case. Given the
underlying structure in (3), any random alternatives available to the producer are
positive linear transformations of the random variable p and are thus, related to
one another by location and scale parameters. As the producer’s income function is

linear in P, consistency is ensured between expected utility and U(o, i1). As output

4Data on I, off farm income, is only available for 1998. As a result, off farm income in 1998 was
regressed on a series of explanatory variables for that year. The figure for each farm for previous

year was then ‘backcast’ using the 1998 regression results.
®Seperate production functions in variable inputs are assumed for both cereals.
SFertiliser spread on barley could technically end up in a wheat field in which case, it would

belong in the wheat production function.



prices by assumption are the only source of uncertainty, the standard deviation of

the producer’s random income is given by

S = (qTqu)% (5)

Vp is the (symmetric, positive definite) covariance matrix of output prices. Follow-
ing Saha (1997), and using (4) and (5), the MSU can be represented as follows

1
U* (p,n, Vp, B) = max U <qu —C(n,q,B), (q" Vpq) 2) (6)

The first order condition is given by

Um(p—Cq(n,q,B)) +UsVpq=0 (7)

which can be rearranged as

p—Cq(n.q,B) = —UU—;qu (8)
U* (p,n,Vp,B) is the indirect utility function corresponding to U (M,S). The
standard price equal marginal cost result of perfect certainty is achieved if either
Ug is zero, or, if price variances and covariances are zero. Optimal output supplies
(q*) are attained by solving (8) in terms of q. Thus, q* will now be a function of

input prices n, output price variances Vp and the area vector B

q" =q(n,p,Vp,B) (9)

The next section presents the functional form used to estimate the output supply
function given by (9) and discusses the Roche and McQuinn (2003) model used to

derive price expectations.



2.1 Empirical Model

The cost function specified in (3) and (4) is approaximated by the Diewert and Wales
(1987) flexible functional form. The form builds on work developed by McFadden
and Lau and allows for the imposition of curvature properties with relative ease.
Given the assumption of non-jointness in variable inputs, a separate cost function
is specified and estimated for both wheat and barley. The cost function for wheat

is given as

2 2 2
Clg2m,z) =h(m) g+ Y simiga + »_ sini+ Y simizid
i=1 i=1 i=1

2 2 2
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where z is a vector with z; = a time trend and 29 = by = wheat area (the second
component in the B vector),” #, e and w are vectors of parameter values pre-selected
by the researcher. The parameters s are the only ones estimated. The function A (n)

is defined as

—_

h(n) = 3 (n"Ln) [v"n] (11)
where L = LT = [lij] is a 2 x 2 negative, semidefinite, symmetric matrix and
vT = [y, v9] > 07 is a vector of non-negative constants, not all equal to zero and s

is a matrix of parameters to be estimated. Under these set of restrictions, h (n) can
be shown to be globally concave. As terms involving s are linear in input prices,
they do not appear in the Hessian matrix of C. Thus, V2, C (n,q,z) = V3,h (n) q.
Therefore, if the estimated L matrix is negative semidefinite, then the cost function
C given by (10) is globally concave in input prices. Negative semi-definiteness can
be imposed in various ways. In this instance, the Wiley, Schmidt and Bramble
(1973) technique is adopted, with L being set equal to —EE” where E” = [e;;] is
an upper triangular matrix. Consequently, the L matrix in (11) can be shown to

be equal to®

"In the case of barley, zo = b1 (the first component in the B vector).
8See Barnett and Zhou (2000) for details.
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where €17 is now the parameter to be estimated. Given the cost function (10), the

first order equation, given by (9), may be written as

2
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Re-expressing this in closed-form solution for g9, yields the following output supply

function for wheat

2
1
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(13)

This output supply function is then used to estimate producers risk attitudes

under price uncertainty.

2.2 Price Expectations Model

Most of the published production models of price uncertainty use the Chavas and
Holt (1990) model for the expected mean, variance and covariances of output
prices (e.g. Chavas and Holt (1990), Chavas and Holt (1996), Coyle (1992), Coyle
(1999), OudeLansink (1999), Boyle and McQuinn (2001), Sckokai and Moro (2002a),
Sckokai and Moro (2002b) and Garrido, Bielza and Sumpsi (2002)). However,

9For a more detailed discussion on this point see McQuinn (2003).



Roche and McQuinn (2003) contend that the Chavas and Holt (1990) approach “is
too ad hoc given the fact that in the last 15 years there have been many develop-
ments in the time series literature for the purposes of estimating conditional first-
and second-order moments.” Roche and McQuinn (2003) hypothesise a long-run
relationship between Irish and UK grain prices and model expected variances and
covariances within an ARCH framework. They explicitly test the forecasting perfor-
mance of their model against the Chavas and Holt (1990) approach using standard
forecast statistics (the mean squared error (MSE) and the mean absolute deviation
(MAD)) as well as the recently developed test of superior predictive ability (SPA)
by Hansen (2001).1% In all cases, the Roche and McQuinn (2003) model outpreforms
that of Chavas and Holt (1990). Therefore, this model is used to generate the price
expectations required under the MSU. The model is summarised in Equation (3) of

Roche and McQuinn (2003) and is presented in its linear autoregressive distributed

lag form as'!
wir wir wir wuk wuk w
by - f (11 taptflapt72apt71 y D9, €t—1,€t—2, Uy ) (14)
bir bir bir buk | buk b
Dby = f <1ataptflapt72apt71apt72aet*laet727ut>

b
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ug’

[ ] = [w] ~ MN (0, H,)

The series p¥*" is the price of MCA'? adjusted Irish feed wheat, p?“* is the price
of British feed wheat, e is the punt/sterling exchange rate, p*" is the price of MCA
adjusted Irish feed barley, p?“* is the price of British feed barley, ¢ is a trend term
and the u’ are stochastic error terms. The covariance matrix of Irish grain prices,
H,, is estimated following Baba, Engle, Kraft and Kroner (1991) and Flavin and
Wickens (2001) using the following MVARCH(1,1) model

Ht = AIA + BI (ut_lut_l) B (15)

10T he SPA tests for the best standardized forecasting performance relative to a benchmark model.

" The model proposed in Equation (3) of Roche and McQuinn (2003) is for the growth rates in
prices, whereas the model expressed in (18) is for price levels.

12Monetary Compensation Amount.



The use of the results from the MVARCH model has a number of attractive
features. First, the error correction model captures the dynamic nature of price
transmissions between the mean Irish cereal prices and that of its largest grain
trading partner. Second, allowing for ARCH errors has been shown to improve the
efficiency of the results achieved in such a transmission framework (see Bollerslev,
Chou and Kroner (1992) for example). The model is estimated on a rolling basis

and forecasts are generated for the sample period 1984-1998.

The parameters outlined in (10) are given the following values: w = 1l,e =
1 and # = 1. For the parameter v, the same approach is taken as that outlined in
the footnote to p.54 of Diewert and Wales (1987). This implies that v; is measured
in the units of input i. Therefore, v; is chosen to be equal to the average amount of

input i (Z;) as this ensures invariant elasticity estimates.

The next section discusses the Heckman two-step procedure and its application

in the present context.

3 The Heckman Two-Step Procedure

The Heckman two-step procedure is used to investigate bias resulting from non-
randomly selected samples. The relationship between results of the sub-sample
multi-croppers and those which pertain for the general sample may be construed
as an example of potential selection bias in that the sample may be unduly risk
averse (or less risk averse) relative to the general sample. In setting the issue within
the context of the Heckman two-step procedure, the possibility of a non-randomly

selected sample may be explicitly tested.

Heckman treated the bias originating from non-randomly selected samples as an
ordinary specification or omitted variable bias. The Heckman procedure is a two-
step procedure where the first stage models the decision to participate in the sample
(plant both cereals simultaneously) and the second stage models the behavioral
equation using information acquired in the first stage estimation. In an agricultural
context, this approach has been adopted both by Shonkwiler and Yen (1999) and
by Sckokai and Moro (2002). Use of the Heckman approach usually requires the
specification of an indentification variable - one which is highly correlated with the

producer’s decision to simultaneously plant both wheat and barley but which is



uncorrelated with the producer’s output decision once the producer has decided to

plant both cereals.

One such variable that suggests itself to be used to identify the planting decision
is a soil index. This index defines the quality of the soil possessed by each producer.
The assumption is that the quality of the soil determines whether the producer
plants both cereals simultaneously or whether the producer must plant one cereal
alone. It is hypothesised that if soil quality is sufficiently good, the producer will
plant both cereals simultaneously. However, relatively poor soil quality will result
in the producer merely growing one crop. Once the producer is able to grow both
cereals, the soil index is not assumed to affect the output decision for either cereal.
Shonkwiler and Yen (1999) include variables denoting the geographical locality as
well as the agronomic conditions of each farm, in their first-stage probit model.
Consequently, in addition to the soil variable, individual producer fixed effects are
also controlled for in the producer’s first stage decision. This involves adding 164
individual dummies to the probit model. Therefore, the initial decision to plant

both cereals is postulated as

P, = uSY; + €4, (16)
where Planting = 1 if P; > 0 and 2 is a vector of variables in the second stage equa-
tion plus the additional identifying variable and producer level fixed effects. Due to
the binary nature of the dependent variable a probit model is used. Therefore, the
probability of (P = 1) i.e. of planting both cereals is given by the following

Prob (P =1) = & (uf) (17)
where @ is the cumulative distribution function for a standard normal variable.

Similarly the probability density function ¢ (u€2;) can be obtained from the same

regression. If both ® and ¢ are combined as follows

—”) — X (uf2,) (18)
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the inverse Mills ratio A (u€2;) is obtained. This ratio provides an estimate of the
probability of a producer simultaneously planting both cereals. This variable is
then added to the second stage equation - the output supply equation where it
‘corrects’ for the potential selectivity bias introduced by censoring the data for
corner solutions. Therefore, the output supply equation for both wheat and barley

can be re-written as

1
TMT-123"2 | 54,0.0imi + TST-1Vpy,

2 2 2 )
2
—E E sz-zjnz-zj—QE sqlqlemiql—g E szjzjwinizj]
=1

i=1 j=1 i=1 j=1

2
4 = rmt! [pl —h(n) =Y sim
i=1

—YST 1 Vpia + B (u2) + 25 Vi (19)

where 8\ = poy; and p is the correlation coefficient between the errors for ¢; and
]Di-l?)

4 Data and Regression Results

Data for the analysis is obtained from the National Farm Survey (NFS) conducted
by Teagasc.'* An unbalanced panel, from 1984 to 1998, comprising data on spe-
cialist cereal producers who engaged in both multi- and mono-cropping production
was compiled.'® The two variable input items used in the analysis are nitrogenous
fertiliser and ‘other’ inputs. Note, that the ‘other’ inputs item contains all other
variable inputs. The prices for these input items are considered to be non-stochastic
and known to producers in advance of the input application decision. In addition to
output prices, input prices are also assumed to be constant across space and vari-
able only through time. The prices used for these input items are national aggregate
price indices and are from the Irish Central Statistics Office (CSO). The identifying
variable - the soil index is based on an index used in the NFS. The NFS index

13Disturbances from the second stage estimation are heteroscedastic unless explicitly corrected.
“For more on the NFS see Heavey, Roche and Burke (1998).
!5The general sample totaled 1700 observations, while the multi-cropping sub-sample totaled 913

observations.
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ranges from 1 to 5 with 1 denoting the most appropriate cereal growing ground and

5 denoting the least favourable tillage conditions.

The estimation procedure is as follows; the probit model (16) is estimated and
the inverse Mills ratio (18) is calculated, the system given by (19) for wheat and
barley is then estimated and the risk attitudes in the presence of the inverse Mills
ratio are then compared with those estimated from (13). If little difference exists
between both sets of results, then Irish multi-croppers would not appear to be a

relatively risk-averse sub-sample of the general sample of Irish cereal producers.'6

Table 1 (insert Table 1 here) documents the results from the first stage probit
regression i.e. equation (16). In general, 54 per cent of the coefficients are signifi-
cant at the one per cent level. The fixed effects nature of the model requires that
parameter estimates are based solely on within producer variation. Unsurprising-
ly, increases in expected output prices have a positive and significant effect on the
decision to plant both cereals. Variances and the co-variance of output prices have
positive and negative effects respectively on the decision to plant simultaneously,

while the input prices have conflicting effects on the probability of multi-cropping.

The sign of the soil variable confirms with a priori expectations - the greater the
size of the index i.e. the poorer the quality of the soil, the less likely a producer is to
plant both crops. The co-efficient is insignificant at conventional levels. To further
test for the suitability of the soil variable along with the inclusion of indivdual
producer effects, Table 2 (insert Table 2 here) reports the results of likelihood ratio
tests examining the inclusion of both the soil variable and producer level dummies.
We are unable to reject the constraint of the soil variable coefficient being equal
to 0. However, the producer level effects add significant explanatory power to the
first stage probit model. Thus, while the quality of a producer’s soil in itself may
not significantly affect planting decisions, there would appear to be other individual
effects - proximity to other multi-cropping producers, other agronomic conditions
etc. which do. For instance, Shonkwiler and Yen (1999) use a variable denoting the
geographical locality of each far. It may well be that producers in a particular area

develop an expertise in ‘multi-cropping’ which results in a relatively large number

16 All estimations are conducted using the nonlinear three-stage systems estimators in both
SAS/ETS and RATS for Windows Version 5.04. Programs are available from the authors up-

on request.
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of producers in that area attempting to grow both cereals. A mean dummy effect is
included in Table 1, however results for the individual 164 producers are available
upon request. In total 73 per cent of the dummies were significant at the one per

cent level.

The inverse Mills ratio (18) is generated for all multi-croppers from the first
stage model and is added as an explanatory variable in (19). Table 3 (insert Table
3 here) contains the parameter estimates from the second stage estimation. From
the Table, it may be observed that 61 per cent of the parameters are significant at
the 5 per cent level while 52 per cent of the parameters are significant at the 1 per
cent level. The risk coefficients, as well as parameter tests are further summarised
in Table 4. (Insert Table 4 here) The results presented in Table 4 may be compared
with Table II of Saha (1997). Irish cereal producers are risk averse, as both «
and Y are clearly positive. Further tests suggest that the MSU utility function
specification constitutes a better representation of producers’ risk attitudes than

the more restrictive specifications of CARA used in other studies.!”

From the results presented in Tables 3 and 4, it appears that Irish producers ex-
hibit decreasing absolute risk aversion (DARA) and decreasing relative risk aversion
(DRRA). This initial result of DARA is in line with a priori expectations i.e. as
producers experience increased income, one expects them to become less risk averse.
Table 1 of Saha, Shumway and Talpaz (1994) illustrates that in many international
studies CARA has been rejected in favour of DARA. Thus, the result of DARA has

considerable support in the literature.

The finding of DRRA, that is, a declining level of risk aversion to the same
proportional risk, is also noteworthy, as Saha, Shumway and Talpaz (1994) note,
studies on relative risk aversion frequently yield ambiguous results. In particular,
most studies reveal either CRRA or DRRA. The importance of the flexibility of
the utility function adopted is underlined by the finding of DRRA. As noted by
Saha (1997), “most prior studies have not investigated whether the nature of relative

risk aversion preference differs according to income levels”.

The estimated 3y coefficient is positive but statistically insignificant. This result
is of considerable interest. In general, a significant coefficient on the inverse Mills

ratio suggests, that, the results of the first stage probit regression adds significant

'"Such as Coyle (1992) and OudeLansink (1999).

13



explanatory power to the second stage regression i.e. that there is sample selection
bias problem. However, in this case, the insignificance of the coefficient, coupled
with the explanatory power of the producer level effects in the probit model, suggest
that producers’ risk attitudes in themselves do not cause producers to engage in
multi-cropping production. In other words, the fact that producers engage in multi-
cropping does not in itself signify that these producers are a relatively risk averse

subsample of the general sample of specialist Irish cereal producers.

The issue may be further explored by comparing the estimates of the risk co-
efficients T and I' from (19) and (13) in Table 5 (insert Table 5 here) i.e. both
with and without the inclusion of the inverse Mills ratio. If the inverse Mills ratio
adds little or no explanatory power to the second stage estimation then both sets
of risk parameters should be almost identical. All parameter estimates of (13) are
provided in the Appendix to this paper. Comparing parameter results in Table 5, it
may be observed that there is very little difference in the results achieved by adding
the inverse Mills ratio. No difference exists between the size and sign of the risk
parameters. Clearly, any information added to the second stage regression by the

inverse Mills ratio does not appear to affect the risk attitudes estimated.

Diagnostic tests were performed on the output supply function both with and
without the inverse Mills ratio. In particular, both the White (1980) test for het-
eroscedasticity and the Baltagi (2001) LM test were performed on sets of output
supply functions (13) and (19). The Baltagi (2001) test is for unbalanced panels
and has a null hypothesis of homoscedastic errors.!® The test results are in Table
2 of the Appendix. The null cannot be rejected in any case. Thus, once the plant-
ing decision is made, producer specific effects would not appear to effect output

decisions.

5 Concluding Comments

This paper has explicitly examined whether multi-cropping production is a concious

risk management strategy employed by a sub-sample of Irish crop producers. The

8Under the LM test, the error term is hypothesised to have the following structure: u; =
i + At + v where p; and A\ are producer specific and time effects. The null hypothesis therefore

. 2
ISH():O'HZO'?,:O.
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issue is treated as a potential sample bias problem and risk attitudes of producers

are estimated with and without the Heckman two-step procedure.

Preliminary estimation suggests Irish multi-croppers are risk-averse and experi-
ence both DARA (in common with many other international studies) and DRRA.
Other more restrictive utility function specifications are rejected by the data. Of in-
terest is whether these risk attitudes estimated for a sub-sample can be extrapolated

to the general sample of producers.

Application of the Heckman two-step procedure reveals that, multi-croppers
would not appear to be more risk-averse then the general sample of producers. A
producer’s decision to engage in multi-cropping does not reveal in itself a more risk
averse nature. While producer specific effects impact on a producer’s decision to
simultaneously plant two crops as opposed to one, once the planting decision has

been made, subsequent production effects are unaltered.

15



References

Baba, Y., Engle, R., Kraft, D. and Kroner, K.: 1993, Multivariate simultaneous generalized
ARCH, Unpublished Manuscript.

Baltagi, B.: 2001, Econometric analysis of panel data, John Wiley and sons.

Barnett, W. and Zhou, G.: 2000, Financial firms’ production and supply-side monetary
aggregation under dynamic uncertainty, in W. A. Barnett and A. Serletis (eds), The
Theory of Monetary Aggregation, Elsevier, New York, pp. 482-528.

Bollerslev, T., Chou, R. and Kroner, K.: 1992, ARCH modelling in finance: A review of
the theory and empirical evidence, Journal of Econometrics 52, 5—-59.

Boyle, G. and McQuinn, K.: 2001, Production decisions under price uncertainty for Irish
wheat and barley producers, in T. Heckelei, H. Witzke and W. Henrichsmeyer (eds),
Agricultural Sector Modelling and Policy Information Systems, Wissenschaftsverlag
Vauk Kiel KG, pp. 135-143.

Chavas, J. and Holt, M.: 1990, Acreage decisions under risk: The case of corn and soybeans,
American Journal of Agricultural Economics 72, 529-38.

Chavas, J. and Holt, M.: 1996, Economic behaviour under uncertainty: Joint analysis of
risk preferences and technology, Review of Economics and Statistics pp. 329-35.

Coyle, B.: 1992, Risk aversion and price risk in duality models of production: A linear
mean-variance approach, American Journal of Agricultural Economics T4, 849-59.

Coyle, B.: 1999, Risk aversion and yield uncertainty in duality models of production: A
mean-variance approach, American Journal of Agricultural Economics 81, 553-67.

Diewert, W. and Wales, T. J.: 1987, Flexible functional forms and global curvature condi-
tions, Econometrica 55, 43-68.

Flavin, T. and Wickens, M.: 2001, Macroeconomic influences on optimal asset allocation,
Working paper, Economics Department, NUI Maynooth.

Garrido, A., Bielza, M. and Sumpsi, J.: 2002, The impacts of crop insurance subsidies
on land allocation and production in Spain, Paper to the European Association of
Agricultural Economists, Zaragoza.

Hansen, P.: 2001, An unbiased and powerful test for superior predictive ability, Working
paper, Brown University, Providence, Rhode Island.

Heavey, J., Roche, M. and Burke, T. (eds): 1998, National Farm Survey, Teagasc, Teagasc
headquarters, Sandymount Avenue, Dublin 4.

Heckman, J.: 1979, Sample selection bias as a specification error, Econometrica 47, 153—62.

Lau, L.: 1978, Applications of profit functions, in M. Fuss and D. McFadden (eds), Produc-
tion Economics: A Dual Approach to Theory and Applications, Vol. 1, North-Holland,
Amsterdam, pp. 133-216.

McFadden, D.: 1978, The general linear profit function, in M. Fuss and D. McFadden
(eds), Production Economics: A Dual Approach to Theory and Applications, Vol. 1,
North-Holland, Amsterdam, pp. 269-86.

16



McQuinn, K.: 2003, On the use of price expectations in production models of price uncer-
tainty, Paper read to the Irish Economics Association Annual Meeting, April 25-27,
Limerick, Ireland.

Meyer, J.: 1987, Two moment decision models and expected utility maximisation, American
Economic Review 77, 421-30.

OudeLansink, A.: 1999, Area allocation under price uncertainty on Dutch arable farms,
Journal of Agricultural Economics 50, 93-105.

Roche, M. and McQuinn, K.: 2003, Grain price volatility in a small open economy, European
Review of Agricultural Economics 30, 77-98.

Saha, A.: 1996, A firm’s choices under price risk: Duality results in the non-linear mean-
standard deviation framework, Working paper, Texas A&M.

Saha, A.: 1997, Risk preference estimation in the nonlinear mean standard deviation ap-
proach, Economic Inquiry 35, 61-71.

Saha, A., Shumway, R. and Talpaz, H.: 1994, Joint estimation of risk preference structure

and technology using expo-power utility, American Journal of Agricultural Economics
76, 173-184.

Sckokai, P. and Moro, D.: 2002a, Modelling the CAP arable crop regime under uncertainty,
Paper to the American Association of Agricultural Economists, Long Beach, California.

Sckokai, P. and Moro, D.: 2002b, Risk-related effects of the CAP arable crop regime: Results
from a FADN sample, Paper to the European Association of Agricultural Economists,
Zaragoza, Spain.

Shonkwiler, J. and Yen, S.: 1999, Two step estimation of a censored system of equations,
American Journal of Agricultural Economics 81, 750-777.

White, H.: 1980, A heteroscedasticity-consistent, covariance matrix estimator and a direct
test for heteroscedasticity, Fconometrica 48, 817-838.

Wiley, D., Schmidt, W. and Bramble, W. J.: 1973, Studies of a class of covariance structure
models, Journal of the American Statistical Association 68, 317-23.

17



Table 1: Parameter Estimates of Probit Model (Heckman first stage)

Variable Parameter Estimate P-Value
Barley Price Variance 0.096 0.143
Expected Barley Price 0.061 0.000
Expected Wheat Price 0.039 0.000
Wheat Price Variance 0.002 0.517
Nitrogen Price 0.0001 0.052
Other Inputs Price -0.1E-5 0.886
Barley Output -0.004 0.534
Wheat Area 0.005 0.773
Wheat Output -0.001 0.911
Barley Area 0.017 0.306
Prices Covariance -0.1E-4 0.516
Soil -0.236 0.322
Mean Dummy Effect 0.342 0.096

Samplesize = 1700 Observations. Results for individual producer level dummies are avail-

able from the authors upon request.
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Table 2: Likelihood Ratio Test on Soil Variable
and Individual Fixed Effects (Heckman first stage)

Variable x? Calculated x? Critical*
Soil Variable 1.01 3.84
Fixed Effects 241.3 146.57

*At the 5 % level
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Table 3: MSU-type Supply Function Estimates for Irish Wheat
and Barley Producers under Price Uncertainty (Heckman second stage)

Wheat Barley
Parameter Estimate T-Stat Estimate T-Stat
el 11.57 4.67 31.23 5.91
S11 53.21 7.23 5.74 1.69
$99 0.87 0.11 -44.27 -12.04
S1z, 1.27 1.30 1.32 1.32
592, 2.19 2.19 0.79 1.51
S1zy 0.02 1.39 -0.03 -4.34
522, -0.005 -2.05 -0.031 -3.55
Sqq -0.03 -4.87 0.043 12.22
Sz121 -0.04 -0.65 0.012 0.58
Sz029 0.6E-5 10.68 -0.0001  -10.64
r 8.78 50.73 8.78 50.73
T 5.42 44.19 5.42 44.19
0B 5.15 0.65 5.15 0.65

Sample size = 913 Observations.
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Table 4: Estimated Risk Parameters and Hypothesis tests under
MSU for Irish Wheat and Barley Producers (Heckman second stage)

Parameter/Test Description Estimate Std. Error/P-Values
r 8.78 (0.000)
T 5.42 (0.000)
% (/)M Tsht 13493.99 (0.000)
Ho: ' =171 = 1** Linear U(M,S) model  4435.3 (0.000)
Ho: T' = 1#** CARA Attitudes 50.71 (0.000)
Ho: (T -T) = 0*F** CRRA Attitudes 48.15 (0.000)

Note: * denotes evaluated at the sample mean. ** denotes Asymptotic x?(2) test statistic,
p-value in parentheses. *** denotes Asymptotic t-test statistic, p-value in parentheses.
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Table 5: Comparison of Risk Attitudes
under MSU Model both with and without Inverse Mills Ratio

Parameter Model Estimate T-Stat
r with Inverse Mills 8.78 50.73
T with Inverse Mills 5.42 44.19
r without Inverse Mills 8.78 50.77
T without Inverse Mills 5.42 44.23

22



Appendix A

Table 1: MSU-type Supply Function Estimates for Irish Wheat and
Barley Producers under Price Uncertainty (without Inverse Mills)

Wheat Barley
Parameter Estimate T-Stat Estimate T-Stat
el 11.57 4.67 31.23 5.91
$11 51.52 7.23 5.51 1.70
599 0.87 0.11 -43.41 -12.18
S1z, 1.26 1.30 0.65 1.33
592, 2.18 2.19 0.77 1.52
S1zy 0.02 1.39 -0.03 -4.39
5922, -0.005 -2.05 -0.031 -3.59
S4q -0.03 -4.87 0.042 12.37
Sz -0.04 -0.65 0.012 0.59
Szo2s 0.6E-5 10.69 -0.0001  -10.76
r 8.78 50.77 8.78 50.77
T 5.42 44.23 5.42 44.23

Sample size = 913 Observations.
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Table 2: Diagnostic Tests for All Supply Models

Multi-Croppers Calculated Critical Calculated  Critical
Equation Model White Stat White Stat* LM Stat LM Stat*
Barley without Inverse Mills 10.1 20.1 7.7 9.21
Wheat without Inverse Mills 16.1 20.1 3.6 9.21
Barley with Inverse Mills 3.8 21.67 4.6 9.21
Wheat with Inverse Mills 9.9 21.67 0.2 9.21

* denotes at the 1 per cent level
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